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ABSTRACT

This paper proposes a real-time capable method for transcribing
and separating occurrences of single drum instruments in poly-
phonic drum recordings. Both the detection and the decomposi-
tion are based on Non-Negative Matrix Factorization and can be
implemented with very small systemic delay. We propose a sim-
ple modification to the update rules that allows to capture time-
dynamic spectral characteristics of the involved drum sounds. The
method can be applied in music production and music education
software. Performance results with respect to drum transcription
are presented and discussed. The evaluation data-set consisting of
annotated drum recordings is published for use in further studies
in the field.

Index Terms - drum transcription, source separation, non-
negative matrix factorization, spectral processing, audio plug-in,
music production, music education

1. INTRODUCTION

The rapid development of music technology in the past decades
has inevitably changed the way people interact with music today.
As one result, music production has shifted almost entirely to the
digital domain. This evolution made music recording affordable
for amateurs and semi-professionals. Furthermore, it enabled the
rise of completely novel approaches to music practice and edu-
cation. With these developments in mind, our work focuses on
the real-time processing of drum set recordings. We aim at tran-
scribing and isolating the single drum instruments that are played
in a monaural, polyphonic drum set recording. Thus, our topic
is at the intersection of automatic music transcription and source
separation, two major fields in Music Information Retrieval (MIR)
research [1, 2]. Strictly speaking, we are performing drum detec-
tion rather than transcription, since our approach is agnostic to the
underlying metric structure (relations of beats and bars). However,
we will use the term drum transcription for the sake of simplic-
ity throughout the paper. We also use the term decomposition as
synonym for source separation.

Our paper is structured as follows. First, the goals of our work
are outlined in Sec. 2. After a review of the related work in Sec. 3,
we explain the proposed transcription and separation algorithm in
detail in Sec. 4. Finally, Sec. 5 describes the evaluation conducted
and Sec. 6 summarizes this work.

∗ All correspondance should be adressed to this author.

Figure 1: A simple, one-bar drum rhythm in music notation. Taken
from [3].

2. GOALS

In professional music production, drum kits are usually recorded
using several microphones that allow for separate processing of
the different drum instrument signals via mixing desks. However,
proper microphone setup is not trivial and even professional audio
engineers often have to cope with heavy cross-talk between record-
ing devices. In addition, amateur music producers might only have
a single microphone available due to limited budget. Thus, our
goal is to detect and separate occurrences of single drums within
monaural polyphonic drum set recordings in real-time.

Our first application scenario is music production software,
where post-processing of individual drum instruments in the mix
plays an important role. In digital music production, so-called
drum trigger plug-ins, such as Drumagog 1 or Steven Slate Trig-
ger 2 are quite common. When applied to multi-channel drum set
recordings, onsets can be detected in each drum channel and can
be used to trigger additional digital audio samples. In a sense,
these tools already perform monophonic drum transcription. One
drawback of these plug-ins is the need for manual setting of trigger
thresholds. Furthermore, they offer only conventional means (e.g.,
equalization, noise-gates) for attenuating cross-talk between drum
channels. Of course, it would be desirable to better isolate the sin-
gle drum-sounds automatically. As will be explained in Sec. 4, our
approach requires to train the system with isolated drum sounds of
the expected drum instruments. Having in mind that all drum in-
struments are played in succession during sound-checks, it is quire
realistic to fulfill that requirement in practice.

The second application scenario are educational music games,
such as Songs2See3, BandFuse4 and RockSmith5. Only a small
number of music video games and music education software also
offer the possibility to practice drums. In all cases, this functional-
ity is enabled by using MIDI-fied drum sets. However, none of the
existing applications allows users to practice on real-world acous-

1http://www.drumagog.com/
2http://www.stevenslatedrums.com/
3http://www.songs2see.com/
4http://bandfuse.com/
5http://rocksmith.ubi.com/
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tic drum sets. We want to enable budding drummers to play along
to a given rhythm pattern or song, while their performances, in
terms of striking the correct drums to the correct points in time,
are assessed in real-time. As a pre-requisite, it is necessary to rec-
ognize the different drum instruments in a monaural audio signal.
Having beginners in mind, the system is constrained to detect on-
sets of three drum instruments as explained in Sec. 2.1. In ed-
ucational music video games available on the market, it is pretty
common to have a tuning stage before playing a song. In the same
manner, we can require the use to play all drum instruments in
succession for training the system.

2.1. The drum kit

A conventional drum kit usually consists of the drum instruments
shown in Figure 2. They comprise the kick (1), snare (2), toms
(3,4), hi-hat (5) and cymbals (6,7). The drums can be classified
into membranophones (kick, snare, toms) and ideophones (hi-hat,
cymbals). The sound is produced by striking them with drum
sticks usually made of wood. In this work we are focusing on kick,
snare and hi-hat. The kick is played via a foot pedal, generating a
low, bass-heavy sound. The snare has snare wires stretched across
the lower head. When striking the upper head with a drum stick,
the lower head vibration excites the snares, generating a bright,
snappy sound. The hi-hat can be opened and closed with another
foot pedal. In closed mode, it produces a clicking, instantly de-
caying sound. In opened mode, it can sound similar to a cymbal
with many turbulent high frequency modes. Real-world acoustic
drums generate sound spectra that vary slightly with each succes-
sive stroke. Sample-based drum kits usually feature a limited num-
ber of pre-recorded drum sounds, while synthetic drum kits often
provide just one particular sound (given the synthesis parameters
are fixed).

Generally speaking, kick, snare and hi-hat can be ordered as-
cending by their spectral centroid. However, when polyphonic
drum rhythms are played on a drum set, it is pretty common that
different drums are struck simultaneously. In many common drum
rhythms, the hi-hat plays all quarter or eighth notes and therefore
coincides with kick and snare quite often. An example is shown
in Figure 1. If such short rhythms of one to four bars are con-
stantly repeated they are also called drum loop. In these cases,
discerning the instruments by their spectral centroid is no longer
possible, since only the mixed sound can be measured. In the worst
case, a kick occurring simultaneously with a hi-hat could be mis-
taken for a snare drum. Besides the recognition of ghost-notes
and other special playing techniques, the ambiguity in classifying
polyphonic drum sounds poses the major challenge in automatic
drum transcription.

3. STATE-OF-THE-ART

In this section, the most important directions of research in auto-
matic drum transcription are presented. As described in [4], the ex-
isting approaches can be discerned into three different categories.

3.1. Source separation methods

The first category is also known as separate and detect because
the signal is first decomposed into individual streams via source
separation, before onset candidates are detected in each individ-
ual stream. The pre-requisite is typically a time-frequency trans-

form (e.g., the Short-term Fourier Transform (STFT)). The generic
signal model decomposes the resulting magnitude spectrogram X
into a linear superposition of individual component spectrograms.
The components are usually represented by fixed spectral basis
functions B and corresponding time-varying amplitude (or gain)
envelopesG. An intuitive interpretation is that theB describe how
the constituent components sound, whereas the G describe when
and how intense they sound. The approaches described in the lit-
erature mostly differ in the decomposition method as well as the
constraints and initialization imposed on B and G.

Independent component analysis (ICA) computes a factoriza-
tion

X = B ·G (1)

such that the separated source spectra are maximally independent
and non-Gaussian. Independent subspace analysis (ISA), first de-
scribed in [5], applies Principal Component Analysis (PCA) and
ICA in succession for decomposing X . In order to classify the ar-
bitrarily permuted and scaled components afterwards, feature ex-
traction and classifiers such as k-Nearest-Neighbor (kNN) or Sup-
port Vector Machines (SVM) can be used [6]. An extension to ICA
called Non-Negative ICA (NICA) has the constraint that the matrix
B must be non-negative [7]. In [8], it is shown how to use NICA
for transcription of kick, snare and hi-hat from polyphonic music.

Prior subspace analysis (PSA) was first proposed in [9] and
utilizes a set of template spectrum basis functions in a matrix Bp.
These consist of the averaged spectra drawn from a large collec-
tion of isolated drum sounds. A first approximation of G can be
computed by

Ĝ = B+
p ·X (2)

where B+
p denotes the pseudo-inverse of Bp. The rows of matrix

Ĝ contain the temporal activations of the template spectra in the
spectrogram, but are not independent. In order to make them in-
dependent, ICA is applied afterwards. This results in an unmixing
matrix W transforming Ĝ into independent amplitude gain func-
tions according to

G =W · Ĝ (3)

Subsequently, an improved estimate of the source spectra can be
computed by

B = X ·G+ (4)

which now contains the source spectra adapted to the actual sig-
nal. Using this method, [10] reports an F-measure of 0.75 for the
detection of kick and snare in polyphonic music.

An early work applying Non-negative Matrix Factorization
(NMF) [11] for the separation of drums from polyphonic music
is presented in [12]. It uses NMF minimizing the Kullback-Leibler
Divergence (KL), with random initialization of B and G. From
the resulting components, spectral and temporal features are com-
puted and classified with an SVM trained on the classes drums vs.
harmonic. The reported results show that the NMF and SVM ap-
proach performed better than ISA and SVM. Another variant of
NMF for drum transcription is described in [13]. The NMF is first
applied to individual drum samples for kick, snare and hi-hat in or-
der to derive Bp, which are later fixed during the NMF iterations.
The method shows good performance on drum loops, yielding an
average F-measure of 0.96 for kick, snare and hi-hat detection. In
[14, 15], it is shown how source separation of instruments with
time-varying spectral characteristics (such as drums) may benefit
from an NMF extension called Non-Negative Matrix Factor De-
convolution (NMFD). Recently, NMF-based methods have also
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Figure 2: A conventional drum kit with annotated drum instruments, taken from [3].

been applied to real-time drum detection [16], where each drum
onset is identified with Probabilistic Spectral Clustering based on
the Itakura-Saito Divergence (IS).

3.2. Template matching

The second category of drum transcription techniques follow a so-
called match and adapt approach. It relies on temporal or spectral
templates for the events that should be detected. In a first approx-
imation, the occurrences of events that are similar to the template
are detected. Afterwards, the templates are iteratively adapted to
the given signal. The work presented in [17] uses seed templates
for kick and snare, that are constructed from a collection of iso-
lated drum sound spectrograms. First, onset detection determines
possible candidates for drum sounds. At each onset candidate, a
spectrogram snippet with the same size as the template is stored
and compared with the templates. The reciprocal of the distance
between the observed spectrogram and the template yields the re-
liability for that drum’s occurrence. In the adapt stage, the seed
templates are updated by taking the median power over all pre-
viously selected frames. This suppresses highly variable spectral
peaks from pitched, harmonic instruments. The process of tem-
plate adaption is applied iteratively, so that the output of this me-
dian filtering is used as the next seed template. The final stage
determines whether the drum sound actually occurs at the onset
candidate. Application of the template matching in conjunction
with harmonic structure suppression, yielded an F-measure of 0.82
for kick and 0.58 for snare. A combination of template matching
and sound separation is described in [18], where the candidates for
template extraction are first detected using NMF. Instead of me-
dian filtering, a modified minimum filtering is applied. Another
example of template matching is given in [19], where characteris-
tic band pass filter parameters are learned. The training process is
realized as an optimization of the characteristic filters with the Dif-
ferential Evolution (DE) algorithm and fitness evaluation measures
for determining each filter’s ability to correctly detect the onset of
the respective drum. The output of each filter represents the ac-
tivations of the single drums and can be transcribed by means of
envelope extraction and peak picking.

3.3. Supervised classification

The last category of transcription algorithms is referred to as seg-
ment and classify. It first employs temporal segmentation of the
audio track into onset events. Usually, a fixed number of frames
following each detected onsets is kept or a temporal grid of fixed
periodicity is aligned to the audio track. Subsequently, each tem-
poral event is identified by a classifier. Often, well-known machine
learning methods such as SVM or GMM are used in conjunction
with features extracted from each segment. The method in [20]
uses a set of features comprising averaged MFCCs, various spec-
tral shape parameters and the log-energy in six frequency bands
corresponding to the spectral centroids of different drum instru-
ments. The features are classified by a set of eight binary SVMs
that have been trained on the classes kick, snare, hi-hat, clap, cym-
bal, rim shot, toms and percussion. Evaluated on a data-set of drum
loops, the best configuration yielded a recognition rate of 83.9%.
The method proposed in [21] uses a similar approach, but is ap-
plied for drum transcription in polyphonic music. The algorithm
achieved an average F-measure of 0.61 for kick, snare and hi-hat.
Finally, Hidden Markov models (HMM) are a machine learning
method that can be used to model drum sequences. Although they
are often counted as part of the segment and classify approach,
they stand out as they are able to perform the segmentation and
detection jointly. HMMs model temporal sequences by comput-
ing the probability that a given sequence of observed states were
generated by hidden random variables, i.e., the activations of the
drum classes. In [4], HMMs are used to model MFCCs and their
temporal derivatives. The method achieves an F-measure of 0.81
for the recognition of kick, snare and hi-hat in drum loops and 0.74
in polyphonic music.

4. PROPOSED METHOD

In the preceeding section, we showed that good results have al-
ready been achieved in drum loop transcription. However, only a
fraction of the methods is capable of real-time processing and only
very few are suited for sound separation as well. As laid out in Sec-
tion 2, our approach should cover both aspects. An overview about
our proposed method is given in Figure 3. As in other works, we
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Figure 3: Overview of the proposed method. Prior basis vectors Bp are derived from isolated drum sound spectrograms. Drum set
recordings are split into spectral frames individually subjected to NMF. The resulting B and G are used for onset detection as well as
inverse STFT in order to obtain isolated drum instrument recordings.

also transform the drum recording to the time-frequency domain
via STFT. As indicated in Sec. 2, we follow the approaches de-
scribed in [13, 16]. We assume that an initial training phase can be
conducted, where the individual drum sounds expected in the drum
recordings are available in isolation. During training, we compute
one prior basis vector Bp per drum instrument by just averaging
along the time axis of each training spectrogram. The choice of
just a single basis vector per drum is motivated by the findings in
[22] as well as our general goal to spare computation time for real-
time applicability. Of course, it is possible to use more than one
component per drum and still reach real-time capability. In order
to keep the number of samples required for processing as small as
possible, the NMF decomposition is applied to each spectral frame
of the drum recording individually, thus generating a succession of
activations for kick, snare and hi-hat in G. In the following, three
variants of the NMF decomposition are detailed.

4.1. NMF decomposition with adaptive bases

For decomposition, we use the KL Divergence resulting in the well
known update rules [11] for both the spectral bases (5) as well as
the amplitude envelopes (6):

B ← B ·
X
BG

GT

1BT
(5)

G← G ·
BT X

BG

BT 1
(6)

It should again be noted, that X represents an N × 1 matrix
corresponding to one individual spectral frame with N linearly
spaced frequency bins. The matrix 1 consists of all ones in the
appropriate dimensions. The spectral basis matrix B is initialized
with Bp as proposed in other works [13, 23, 16].

4.2. NMF decomposition with fixed bases

As proposed by other authors [24], we optionally omit the update
ofB in Eq. 5 and just replaceB with the fixed prior basisBp. This
way, it can be ensured that only the expected spectra will lead to
activations in G. It can be assumed, that NMF with only one fixed
basis vector per instrument will not be able to model time-dynamic

spectral characteristics of drum sounds, which is in line with the
findings of [16], where separate NMF templates for head and tail
of a drum sound are used. Intuitively, this method is also likely to
produce spurious activations in case the incoming signal consists
of other components than the previously trained drum sounds. The
NMF updates rules will try to model the currently observed spec-
tra as good as possible given the fixed prior basis vectors, thus
yielding activations of all drum components in the form of cross-
talk. Consequences for the resulting approximation of X will be
explained in 5.3.

4.3. NMF decomposition with semi-adaptive bases

In our novel approach, we introduce a modification imposing semi-
adaptive behavior on B during the NMF iterations. In contrast to
the procedure described in Sec. 4.1, we do not just initialize B
with Bp and let them iterate freely afterwards. Instead, we allow
the spectral content inB to deviate more from the initial value, the
closer we are to the NMF iteration limit. This behavior is simply
achieved by blending between the initial Bp and B from the cur-
rent iteration as given in Equation 7. The blending parameter α
depends on the ratio of current iteration count k to iteration limit
K taken to the power of β as show in Equation 8.

B = α ·Bp + (1− α) ·B (7)

α = (1− k

K
)β (8)

Thus, the NMF components are first pushed towards the ex-
pected drum sounds. The adaption to subtle variations in the in-
coming spectra are allowed later. It should be noted, that the pro-
posed procedure is not equal to Online Non-Negative Matrix Fac-
torization (ONMF) algorithms (e.g., [25, 26]). Instead of learn-
ing the final NMF decomposition of an infinite stream of spec-
tral frames over time by updating B with every incoming spectral
frame, we revert to Bp prior to the NMF decomposition of every
individual frame.
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Figure 4: Comparison of drum loop spectrograms obtained from the different decomposition methods. The top spectrogram is obtained
from the input drum loop. The bottom spectrogram shows the idealized (oracle) target when separating the kick. The second, third and
fourth spectrogram show the separation results obtained with adaptive B, fixed B = Bp and semi-adaptive B, respectively. The kick
separated using fixed B is clearly inferior compared to the oracle kick. This is evident by the smeared transient (light green brackets). It
does exhibit less cross-talk from the snare (light blue brackets) yielding better transcription results than adaptive B (see Sec. 5.2). Thus,
semi-adaptive B seems to be the optimal compromise between both.
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4.4. Onset detection

After decomposition, frame-wise matrix multiplication of the acti-
vations in G corresponding to a single drum with the correspond-
ing columns in B yields well separated individual spectrograms
for kick, snare and hi-hat. Based on these, onset detection is per-
formed in a straightforward manner by means of peak-picking.
While other authors used the amplitude envelopes in G directly,
we encounter different spectra in every frame for the adaptive and
semi-adaptive bases. Thus, we take the extra step of spectrogram
reconstruction prior to onset detection. Following the approach
proposed in [27], novelty curves D are extracted from the suc-
cessive spectral frames for each drum by differentiating the loga-
rithmic magnitude along time. Afterwards, all bins per frame are
summed up and half-wave rectification is applied since only salient
positive peaks corresponding to onsets are of interest. Inevitably,
cross-talk artifacts that can occur due to imperfect decomposition
may lead to erroneous spikes that can be mistaken as drum onsets.
Thus, an adaptive threshold procedure is applied to the novelty
curve. The threshold T is derived by element-wise nonlinear com-
pression D0.5, subsequent application of an exponential moving
average filter and nonlinear expansion of the result D2.0. A vari-
able boost factor b can be used to adjust the additive offset of T
manually. This is done by simply multiplying b with the arith-
metic mean of T and adding the result to T . In real-time mode,
the long-term arithmetic mean is derived by a frame-wise iterative
update. If the novelty curve rises above T for several frames and
fulfills additional plausibility criteria (see [16]), it is marked as an
onset. Finally, the onset detection stage returns a list of onset times
per drum instrument, yielding the final transcription result.

5. EVALUATION

In order to assess the drum transcription performance, experiments
with manually transcribed drum set recordings were conducted.
The well known Precision, Recall and F-measure were used as
evaluation metrics with a tolerance of 50 ms between annotated
and detected onsets.

5.1. Test data

A training set was created for initialization of single drums (kick,
snare, hi-hat) in [3]. In order to capture the individual character-
istics, the drums were hit separately with varying velocity. For
recording, an overhead microphone at a fixed height of 1 m was
used. The recordings were made with 10 different drum kits, con-
sisting of different drum sizes and a broad range of materials. The
size of the kick drum ranges from 18 inch to a 24 inch diameter,
and depths of 16 inch up to 22 inch. Materials were birch, ma-
hogany or maple. The snare drums all had the same size of 14
inch diameter and 6.5 inch in depth but different materials (such as
metal, wood or acrylic). The sizes for hi-hat ranged from 13 inch
to 15 inch. A second subset was generated using sample-based
drum sets from the BFD6 plug-in. The third part of the set fea-
turing purely synthetic drum kits was generated using Steinberg’s
Groove Agent7 plug-in. The onsets were transcribed manually by
an experienced drummer using the software Sonic Visualiser [28].

6www.fxpansion.com/BFD
7http://www.steinberg.net/en/products/vst/

groove_agent/groove_agent.html

In total, the test set consisted of 33 drum sequences which
were fairly simple groove patterns of kick, snare and hi-hat. The
tempo of the performed drum rhythms varies between 100 and 140
BPM. Overall, 10 minutes of audio were recorded (in 44.1 kHz,
mono, 16 Bit) resulting in 3471 annotated onsets. The shortest
annotated interval between consecutive onsets is 107 ms (16th note
at 140 BPM). The combined data-set is available online as a public
benchmark for drum transcription8.

Real acoustic drums Sample−based drums Synthetic drums
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Threshold Boost

All drums

 

Adaptive B
Fixed B=Bp
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Figure 5: Overview of transcription F-measure rates versus the
threshold boost b on the different drum sets. The largest plot shows
the combined results for all drum sets. The F-measures for fixed
B = Bp and semi-adaptive B are very similar, thus the corre-
sponding curves are almost indistinguishable.

5.2. Results

Using the described test data, an extensive grid search was per-
formed in order to estimate the optimal set of parameters. We
omit the details and just explain that the most influential param-
eters were the threshold boost and the number of NMF iterations
used during decomposition. The best average F-measure of 0.95
across all drum kits was obtained with H = 512 samples hop-
size, N = 2048 bins spectrum size, b = 1.25 threshold boost,
K = 25 NMF iterations and β = 4 blending non-linearity in
case of the semi-adaptive bases. Most surprisingly, the acoustic
and sample-based drum kits lead to better F-measure scores than

8http://www.idmt.fraunhofer.de/en/business_
units/smt/drums.html
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the synthetic drum kits. This is somewhat counter-intuitive, since
we expected the drum transcription performance to decrease when
dealing with drum recordings under larger natural variation in the
single drum sounds. We interpret this as a benefit of the semi-
adaptive bases, which can be seen by the comparison between the
different approaches in Figure 5. There, we show the influence of
b on the F-measure scores across the different drum kits as well
as the three different adaption degrees of the spectral bases. It can
clearly be seen, that the adaptive B yield slightly worse transcrip-
tion results, which we account to the more pronounced cross-talk
artifacts. Differences between F-measure scores of fixed B and
semi-adaptive B are extremely small. Nevertheless, the discus-
sion in Sec. 5.3 shows that fixed basis vectors have their weak-
nesses when the drum sounds to be separated exhibit high spectral
variability over time.

5.3. Influence of basis adaption

We present an illustrative example for the different degrees of adap-
tivity. The uppermost plot in Figure 4 shows the spectrogram of
a synthetic drum loop consisting of kick, snare and hi-hat playing
the rhythm given in Figure 1. It should be noted that the magni-
tude of the spectrograms has been converted to dB and has been re-
sampled to a logarithmically spaced frequency axis for visualiza-
tion purposes only. The bottom plot shows the oracle spectrogram
of the kick playing in isolation. This kick, sampled from a Roland
TR 808 drum computer, is obviously rather invariant across the
repeated onsets but exhibits a very time-dynamic behavior per on-
set. One can clearly see a strong vertical head-transient caused
by the sharp attack. Afterwards, a slightly decreasing center fre-
quency can be observed in the tail. In the second plot of Figure 4
we see the kick spectrogram obtained from NMF decomposition
with adaptive bases. The third plot shows the approximation of
the kick spectrogram achieved with only one fixed spectral basis
vector per drum instrument. The modeling of the attack transient
is inferior, since it is smeared into the tail of the drum sound. The
fourth plot shows the kick spectrogram resulting from decompo-
sition with semi-adaptive spectral bases. When compared to the
oracle spectrogram, one can clearly see that the attack transients
are preserved very well. On closer inspection, all NMF variants
exhibit cross talk from hi-hat and snare in the kick spectrogram
(marked with light blue brackets). They are most pronounced for
the fully adaptiveB and can cause erroneous onset candidates dur-
ing onset detection (see Sec. 4.4).

5.4. Real-time capability

The proposed algorithm has been implemented as VST plugin. A
screen-shot of the user interface is shown in Figure 6. Three dif-
ferent drum sounds can be trained via live input or prepared audio
files. Alternatively, artificial spectral basis templates can be used
and refined in an iterative update. The plugin works in quasi-real-
time, the systemic delay is only dependent on the input delay of
the audio hardware and the used hop-size. For the optimal pa-
rameter settings given in Sec. 5.2, we could measure a delay of
approximately 6 ms.

6. CONCLUSIONS

This paper presented a method for real-time transcription and sep-
aration of drum sounds from drum set recordings. It is based on

Figure 6: Screen-shot of a VST plug-in encapsulating the proposed
algorithm. The semi-transparent colored curves visualize the ex-
tracted G of the individual drums, the colored spectra on the right
show the extracted B. Blue corresponds to hi-hat, green to snare
and red to kick. The individual onset detection functions D are
overlayed as black lines and the dynamic thresholds T as solid
colored lines.

NMF decomposition initialized with prior spectral basis templates
for the expected drums. Under the assumption, that the isolated
drum sounds are available for training, the transcription perfor-
mance for polyphonic drum input featuring the specific instru-
ments is on par with state-of-the-art results. The novel concept of
semi-adaptive spectral bases does not yield improvements in tran-
scription but seems promising for enhancing the perceptual quality
of drum sound separation. Our collected data-set used for evalu-
ation is contributed to the research community in order to foster
reproducible research results. Future work will be directed to sys-
tematically evaluate alternative decomposition strategies, such as
ONMF and NMFD. Furthermore, the applicability to a larger va-
riety of different drum instruments (toms, cymbals, etc.) will be
assessed allowing the inclusion of commonly used test corpora,
such as the ENST drums data-set.
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