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ABSTRACT In this work, we propose to directly estimate a linear ARMA
filter on the linear frequency scale using the minimizatidrao
This paper deals with the approximation of a given frequerey  perceptually-based criterion. In the context of the Soditter
sponse by a low-order linear ARMA filter (AUtO-RegreSSiVE\MO princip|el the target frequency response is obtained b)eatmj
ing Average). The aim of this work is the audio synthesisnthe epyelope estimation of an original sound, which can be pégio
to improve the perceptual quality, a criterion based on hulisa This estimation can be done by the DAP method of [13], the True
tening is deﬁned and minimized. Two Complementary appmch Enve|ope Ofm]! or the True Discrete Cepstrun@ [16}IQ\]
are proposed here for solving this non-linear and non-copweb- that it is also possible to use a post-processing, MTELPG [17
lem: ﬁrst, a Welghted version of the Iterative Prefi|tel’iBgC0nd, or PCF m]’ which provide a “quasi_perceptuaj” pre_smmh
an adaptation of the Gauss-Newton method. This algorithm is These points are not detailed in this work.
adapted to guarantee the causality/stability of the obthfilter, This paper is organized as follows: in Sed 2, the ARMA
and eventually its minimum phase property. The benefit of the ,qe| is given, and the perceptually-based criterion iséefistep
new method is illustrated and evaluated. by step in Sec[]3. Then, the two parts of the algorithm arengive
in Sec.[4. Sectiof]5 gives one practical example, and present
1. INTRODUCTION perceptual c_omparison_ of the proposed mgthod with othe_datd
methods. Finally, sectidi 6 concludes this paper and givages

The goal of this paper is the approximation of a given freqyes- perspectives.

sponse by a low-order linear ARMA filter (Auto-Regressive\Mo
ing Average), with a high sampling rat&; >44.1 kHz. The con-
text of this work is the low-cost sound synthesis of musiocaks
using theSource-Filterprinciple which consists of the filtering of
an excitation signal. Then, because the aim is an audiocatioln,
the obtained filter must be as close as possible to the ofigive&a
in a perceptual sense, rather than using a physical or sissd

2. MODEL

Given a complex frequency respongkf), where f is the fre-
quency in [Hz], this work deals with its approximation by fioé
lowing ARMA(Q, P) filter

criterion.

It is known that in a general case a spectral envelope has a ~ B(z) bo + Zqul bgz™?
sparser representation with an ARMA model than a purely AR H(z) = AG) - o (1)
or MA model. It is especially the case for nasal speech, and fo 1+ szl apZ

musical instruments. For example, even if an ARMAY) filter
and an AR{+p) filter have approximately the same complexity for where@ andP are the orders of the numeratBrand the denomi-
the time simulation, the ARMA modeling will be more efficient nator A respectively.z is the complex variable of thetransform,
most of the cases. Some ARMA approximations exist, cf. e.g.: which isz = ¢’>"#/¥s on the unit circle, withf the frequency
Prony’s method1], Shanks’s methad [2], the Iterative Regfing variable andFs the sampling rate in [Hz]. The polynomial coeffi-
[3], Durbin’s method[[4] or the Inverse Linear Predictior] [6r cientsb, anda, are the variables to optimize.
cf. e.g. [6] for a partial review). Nevertheless, with thesethods
the cost function is adapted to facilitate the algorithnd emever
adapted to the perception. 3. PERCEPTUAL CRITERION

A usual idea is to adapt the model to the frequency resolution ) o
of the ear. In[[7[B.19] a warped frequency scale is used todit th 3.1. Firstcriterion
Bark scale, cf.[[10,11], and a warped AR filter is obtained.- Un
fortunately, first we have shown ifi[12] that for low-ordetise
warped modeling is not satisfying in a perceptual senses b
servation can be explained because the optimizationicrnités not » ~ )
fully perceptually based. Moreover, the time-domain impéata- = [o(H(f), f) —a(H(f), f)]
tion of the warped AR filter is two or three times more expeasiv G = /0 o(H(f), f)? M
than a linear AR filter with the same order, cf. e[d. [8].

Let us define the following criterion which provides a distaie-
tween the target/ (f) and the modeH (f):

@) @

This cost function is perceptually meaningful because eoffiit-

* This work is funded by the Marie Curie Action project ESUS 289. lowing reasons
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Loudness conversion First, the functionr (X, f) is the conver-
sion of the (physical) sound pressure levélin pascals [Pa], to
the (perceptual) loudness in sones, depending on the fnegue
f. The conversior is here calculated with the consecutive con-
versions: (X, f) = s(£(6(X), f)), where Xa (X)) =
201og,,(|X|/po) is the standard scale in [dB SPL], with = 2 x
10~° Pa the reference sound levél, = ¢(Xa, f) is the conver-
sion from the decibel scale to the phon scale, relative t@thal
loudness curves cf. e.d. [19.120], ahd = s(L,) = 2(Fr—40)/10

is the conversion to the sone scale, cf. €.gl [21].

Frequency scale Second, the measuid (df) takes the frequen-
cy resolution of the ear into account, as the standard waumpien-
tioned earlier. Withn( f) the conversion from the linear frequency
scale in [Hz] to any warped scale, we writé(df) = dm(f)
m'(f)df. For example, with the Mel scale df [22(f) =
25951og,,(1 4 f/700).

Relative error
respectively linear and logarithmic scales in the loudrdessain,
such as the pascal and the decibel scales in the sound levaimo
respectively. Then, the relative error is computeddn (2prider
to take into account the logarithmic sensitivity of the éaemark
that it would be also possible to directly defiewith the absolute
error in the phon scale, logarithmic, but it is equivalenttagphe
first order and the denominator will be used in next section.

3.2. Modified criterion

For a numerical computation, first a new versiorCefis derived
using a discrete sum. Second, the loudness conversion jii-sim
fied using a first-order limited developmentcﬁ(ffl, f) aroundH.
Theno(H, f) =~ o(H, f)+o'(H, f)(|H|-|H|) with o’ (X, f) =
0o (X, f)/0|X|, and the criterion becomes:

M

Co=>

m=1

(IHom| = [Hun|) ' (Hom, fim)?
o(Hum, fm)?

m'(fm), ()

where the frequencieg,, uniformly sample the rang@, F /2]
andH,, = H(f»). Note that in this works and its derivative are
computed using the analytical expression_of [23].

If the phase of the target respondes known, we can replace
(|Hm| — |Hm|)? by |Hm — Hy|?. This actually simplifies the
optimization procedure and facilitates the convergenc#e that,
only knowing |H]|, its phase can be recovered assuming a mini-
mum phase system, cf. e.f.[24].

Since a sound with a level below the auditory threshold is im-
perceptible in principle, the functios is not defined below this
threshold which corresponds to 0 phon. Then whi( f) the au-
ditory threshold in pascals, such thetXo(f), f) = s(0) =274
sons, we define the saturated function

o(X, f) I [X] = Xo(f)

9 if [X] < Xo(f) “)

2(x.0) = {

and the saturated derivative in the same way. Finally, the crite-
rion to minimize is written as

M _
o o(Hufm)
with W, o (o ) m’(fm) (6)

Third, note that the sone and the phon scales are

In consequence, the criterighis just the weighted squared sum
of the error, with a weightV,,, which takes into account the sensi-
tivity of the ear to the frequencies via( f), to the sound level via
o, and to the auditory threshold via the “saturated”

3.3. Remarks

Because most of the time the sensitivity of the recordingagev
is not available, a possible way to adapt the unscaled rewprd
sound to the pascal scale is just by applying a gain whictsgive
desired sound level. For examplg;, = 70 dB SPL is a normal
level for a single musical instrument.

In @), Xo(f) is the absolute auditory threshold. It is also pos-
sible to combine it with the simultaneous masking threshotd
e.g. [25], calculated from the target respori$éf). Neverthe-
less, this strategy seems hazardous bec&lsf) and H(f) are
not “concrete” spectra, but “abstract” spectral envelopes

4. OPTIMIZATION ALGORITHM

With an ARMA modelingf[ = B/A, the minimization of[(b) is
not trivial because the error is non-linear with the coedfitsa,, of
the denominator and this optimization problem is not convex. In
this section two complementary iterative algorithms a@ppsed
to minimize the cost functiod. The first approach is based on the
Iterative Prefilteringof [3]. It is referred as the Mode 1 because
its result is used as initialization of the second one, thel®d,
which is based on the Gauss-Newton algorithm, cf. €.. [26].

4.1. Mode 1: Weighted Iterative Prefiltering

Instead of optimizing a non-linear problem, the Iterativeffter-
ing method, initially proposed in[3], consists in iteratiy solv-
ing linear sub-problems using the Least Mean Square opiiiz
(LMS). For that, the criteriog is modified at every iteration using
the previous estimation.

4.1.1. Secondary criterion

With A’ the estimated denominator of the previous iteration, the
multiplication of the erroke,, := (Hm — B /Am) Wi, of @) by
A /A;,, leads to the secondary criterion which follows

M

¢ = Z ‘Am

m=1

Hm W
A

Wi |?
A

— Bnm, @)

SinceA’ is known, the new defined error is linear with the parame-
tersa, andb,, and the minimization of’ can be solved using the
standard LMS. This procedure is equivalent to the Iterafive-
filtering method of Steiglitz and McBride, cf.[][8.27], witma
additional frequency weight/(f). It is important to note that at
the convergence, if it happend,/A’ goes toward 1, consequently
the secondary criterioi’ gets closer to the primary criterigh

4.1.2. Linear optimization

In @), C’ is given in the frequency domain, but considering the
Hermitian symmetry ofd, fl, andWW, and using the Parseval the-
orem, we can write it in the discrete time domain to avoid clexp
numbers. Whereas the computatiorkgf the time response df ,
does not cause any issue, the direct inverse Fourier transfoll”
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makes a non-causal response becalisis real. Neverthelesg,
is invariant by adding a phase W', then to avoid time aliasing,
we definew,, as the minimum phase solution @f, cf. e.g. [24].

With y := (h* w)/A" andz := w/A’, where the symbok
denotes the convolution product andi’ denotes the prefiltering
by the AR filter1/A’, the secondary criterio’ is written

e P Q 2
EETS STONS SRS S
n=0 p=1 q=0

Note that, even if the computations@fand(h *« w) may be quite
expensive, they are done only once before the first iteration

Then, forn € [1, N], p€[1, P] andq € [1, Q@ + 1], and with
the matrix transpose’, we define the column vectoi$ and
such thatYn = Yn—1 andu = [(11, ...ap, bo, bl, . bQ]T, and
we define the block matri® = [—®,, ®,], with the Toeplitz
matrices®y [n, p] = yn—1—p and Pz [n,q] = xn—q. Note that
considering causal signalg, = 0 andz,, = 0 forn < 0.

Consequently, the matrix form of the secondary criterion
¢ =i —ew)" (Y — @u), and if @ is full rank, the optimal
solution in the LMS sense is given by solving the linear peoil
(@7 ®)p = (®7Y"), which can be written, cf. e.d._[26],

p=(e"9) o’y =o'y 9)

As it is implicitly mentioned in[[3], at the first iteration, av
simply choosed’” = 1. Note that without weightV, at the first
iterationz,, = 4, the Dirac distribution, and the first estimatBd
and A are the solutions of Prony’s method.

S

4.1.3. Properties

Remark that the positions of the roots#fand B are not ensured
to be inside the unit circle, which means that the causatpility
and the minimum phase property cannot be controled. Evéisif t
problem occurs rarely if the targéf checks these properties, it
may be overcome by testing the desired properties at evenyr it
tion, using the Jury criterion for example]28], and by reporing
the LMS solution with lower orderg? and@. This strategy usu-
ally leads to good properties, but with eventually a watse

As mentioned in[[B], the convergence of this iterative proce
dure is not guaranteed. Nevertheless, we observed in expey-e
iment an efficient decrease in the criteri@rmand we observed the
convergence of the coefficients df. Unfortunately, first, some
conditioning problems usually appear after some iteratiorhen
®T @ is numerically singular, and second, evedifget closer to
C, the partial derivatives af’ are different from those af, which
explains why this algorithm usually does not converge tocallo
minimum in the sense af.

In [3], a second iterative procedure, the respective Modag,
been proposed to improve the estimation of the first one. Jdirgt
is not detailed here, we refer the interested readels tdr{3qvor-
able cases, this new mode converges to the closest locahonimi
but again, the convergence is not guaranteed, and may divlerg
its initial value is far from a local minimum. Moreover, in 0ex-
periments, some conditioning problems may still appeanalF,
as with the Mode 1, the causality/stability, and the mininpmse
property, of the obtained filter cannot be clearly guarathtee

In the next section, we proposed another Mode 2 which is
based on the Gauss-Newton algorithm. First, this methodahas
better convergence, second, the conditionning is effigiant-
proved, and third, this approach can guarantee the caustibili-
ty and the minimum phase property of the estimated filter.

DAFX-

4.2. Mode 2: Non-linear optimization

We propose in this section an adaptation of the iteratives&au
Newton algorithm, cf. e.g.[]26], with constraints for theusal-
ity/stability of the filter, and eventually its minimum pleprop-
erty. Compared to the standard gradient descent, its cgenee is
usually faster, and it avoids the successive 1D optiminataiong
the direction of maximal descent.

4.2.1. Gauss-Newton algorithm

Newton’s algorithm is based on a second-order limited agprel
ment of the criterion. Starting from an initial paramettiaa of
the model, the parameters are iteratively updated by tHenapt
solution of the quadratic form given by the limited develarh
around the previous parameters. If the cost function is iguid
the algorithm converges in one step, and if it is not quadtadit
sufficiently regular, it naturally converges to the nealesal min-
imum in some iterations.

With ;* the column vector collecting the current parameters
of the model, the following parameters are given by:

pr = =g (W) Ve (i),

with V¢ (u) the gradient vector anfc(u) the Hessian matrix:
Veli] = 8C/0u; andQcli, 5] = 9*°C/Ouidp;.

The Gauss-Newton algorithm differs from the previous one
by the approximation of the Hessian matrix. This approxiomat
facilitates the computation and is justified by the fact that cri-
terion is the squared sum of the magnitude of the ersgrcf. e.g.

[26]. With

(10)

em = (Hm — Hop) W, (11)

the criterion is writterC = E* E, whereE is the column vector
of the errore,,, and.” is the Hermitian transpose.

Now, definingJ. () as the Jacobian matrix df, such that
Je[m, i] = Oenm /Oui, the gradient vector af becomesVe (u) =
2J. (1) E(1), and the approximated Hessian matrix is written
Qc(p) = 2Je (1) Je (). Consequently

O 'Ve = (JEI) T I E=JE. (12)

Nevertheless, witi (10), the algorithm may diverge in some
cases. Then, it is usual to introduce a relaxation faggor< 1,
and the algorithm becomes

P = = N0 (W) Ve (b). (13)
A simple strategy for the choice of, is to successively reduce
its value untilC(x"**) < C(u*). Note that if the Hessian ma-
trix is positive-definite, there always exists\a > 0 providing a
decreasing criterion. Here, we first tést= 1 to accelerate the
convergence, and we divide it by 2dfdoes not decrease.

4.2.2. Optimization of the ARMA model

Starting from the standard ARMA modeling ¢l (1), to improve
the conditioning we introduce a gain and we forceby, = 1,
without loss of generality. The model is then given Hyz)
gB(z)/A(z), and the parameters to identify are the gaend the
coefficientsa, andb, of the polynomialsA(z) and B(z) respec-
tively, with p € [1, P] andgq € [1,Q]. Moreover, to avoid the
singular case iy = 0, we do the change of variable = (e”,
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where( is the sign of the initial gain, and we optimizeon R
instead ofy.

With z,, = e/?™/m/Fs andy = [v,a1,...ap,b1,...00]",
the Jacobian matri{. (x) is given by

dem B B(zm)y &

oy = A oy V= HER) W,
dem  Blzwm) 0A(zm) L H(zw)
day 7gA(zm)2 day Win = 2m A(zm) W,
dem  —g O0B(zm) ¢ —g

Doy~ Am) Bby ' T Em g, 5 Wm

Remark that in[{R) and]5), we only have considered unilatera
spectra forf € [0, F5/2]. Then the solution given by (1L3) could
lead to complex coefficients, a, andb,, with no consideration
of the rang€ F /2, Fs]. Instead of summing the error on the full
range[0, Fi], we prove the equivalence of the following update
equation

P =" — \eRe{Qe (1)} T 'Re{Ve (1)} (14)

where R¢€.} is the real part operator, and whebe andV¢ are
still computed on the frequency ranfie F /2]. This equation can
be fastly computed by splitting the real parts and the imeagin
parts ofJ. and E, cf. (I2).

Concerning the causality/stability of the obtained filtend
eventually its minimum phase property, it is necessary tbthis
constraint in the algorithm. Remind that an ARMA filter is awmi
imum phase system if and only if both poles and zeros arelgtric
inside the unit circle. To guarantee the desired propergvaty
iteration, we adapt the choice of the relaxation factgras it is
done in Sec[[4.211 for the convergence. To study the location
the roots of the polynomialsl and B, we use the Jury stability
criterion. Note that at some iterations, at the pgifit the local
properties o may attract the algorithm outside the constraint do-
main, even if the nearest local minimum is inside. Then, shap
a small)\, allows to stay inside the domain, and most of the time,
from the new position/**! the algorithm naturally reconverges to
the minimum.

4.2.3. Summary of the algorithm

To summarize the complete algorithm, first the Mode 1 iteresj
weighted lIterative Prefiltering, are computed using théaliza-
tion A’ = 1. As mentioned above, even if the Mode 1 usually
converges, the primary criteridhmay not be strictly decreasing,
which means that with a finite number of iterations, the last r
sult may not be the best one in the sens€ .offhen, to initialize
the Mode 2, the Gauss-Newton algorithm, among all sucaessiv
sults of the Mode 1, we retain this one which minimizeg-inally,
since the convergence of the Gauss-Newton is well-defined, w
can use standard stop criteria. Here the algorithm is stbpyben
the maximal number of iterations is attained, or when thatined
difference of two consecutive criteria is smaller than ashold
defined in[%)].

5. EXPERIMENTATIONS

5.1. lllustration

The proposed method, which we call therceptual Linear Filter
(PLF), is illustrated in Fig[Jl. Using an Oboe tone, B3 @47
Hz), first the spectral envelope has been estimated with the T
Envelope (TE) of[[14] and has been slightly smoothed usireg th
PCF approach of [18]. Then, from the magnitude of the obthine
frequency response, the phase has been recovered assumiimg a
imum phase system, cf. e.d._[24]. Finally, the PLF is comgute
by the algorithm presented in S¢d. 4, Mode 1 and 2, using an
ARMA(8,8) model, and is compared to Prony’s method with the
same orders. All frequency responses are displayed in tt&RIB
scale, together with the auditory threshold.

As a general trend, we observe that the PLF method focuses
the approximation at the lower frequencies, as the standarp-
ing technique (cf.[[8.19]), but especially to those freqliesevhere
the target responsH (f) is above the auditory threshold. We can
observe that Prony’s estimat& (f) does not fitH ( f) around 4.5
kHz, but it fits the last formant after 14 kHz which is impertbje
in principle. On the contrary, thanks to the perceptual Wiy
W (f), cf. (@), the PLF filterH(f) fits H(f) when it is audible,
and it strongly smooths it when it is imperceptible.

80

T T T T
X(f) (spectrum)
—— H(f) (TE+PCF)
- = = Hi(f) (Prony’s method)H
Ha(f) (PLF method)
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Figure 1: lllustration of the Perceptual Linear Filter (BLFhe
orders of the ARMA model ar® = 8 andP = 8.

5.2. Perceptual evaluation

This section proposes a perceptual evaluation by compdhiag
PLF method and other methods, using periodic signals imgat
instrument sounds. We prefer to perform automatic and tibsgec
perceptual tests in order to have an exhaustive evaluatiith;
many orders, fundamental frequencies, and instrumentstént
ing test would have required too much time to be done in macti
First, we define the perceptual measure of the approximation
error following some concepts of the PEAQ method, cfl [29, 30
Then we describe the procedure of the objective tests, aalflyfin
the results are presented. Note that to use a neutral eicalyat
which does not favor the PLF method, we have to choose an error
measure which is as different as possible from the critefion

5.2.1. Perceptual Mean Square Error

Let G'" and G be the magnitudes in [Pa] of the-th harmonic

of the reference and the test sounds, with the frequenfies=
mFy in [Hz] with F, the fundamental frequency. Because the ap-
proximation is evaluated her&s" and G'** sample the responses
of the targetH (f) and the estimatél ( f), at the frequencieg,.
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First, the effect of the middle-ear response is taken into ac Remark that a warped AR filter can be converted in principle

count by multiplying the magnitudes By /) = 1079720 where into a linear ARMAG,q) filter. Because the purpose of this paper
is the low-cost simulation, we prefer to compare the methatts
fo\0® f\* equal simulation complexity, even if the warped methodsHass
V(f) —3. <m> —0.001 <m> degrees of freedom.

e 5 To cancel the effect of the fundamental frequency, the tesul
+6.5 ¢~ 0-6( w00 —33) (15) of the perceptual tests are printed as a function of the atioral
ordera = ¢/nn, wheren;, = 0.5F,/Fy is the number of har-
The functiony( f), which is similar to the middle-ear modeling of  monics betweei and F /2. We tested the adimensional orders
[29], is actually the inversion of the auditory thresholddabng a € {0.1,0.2,0.3}. Tablel summarizes the used ordefsr the

given in [31]. Hence, the auditory threshold just corresjsoto lower and the higher fundamental frequenciz2) and440 Hz.
T'(fm)Gm = po With po= 2x10~° Pa the reference sound level.
Then, to imitate the auditory system’s critical bands, toeer a=01]la=02]a=03

of the corrected harmonicl( f..)G:)?, is summed by process-
ing a filter bank as done with the PEAQ or the MFCC computation,
cf. e.g. [32]. We use here a triangular window with a singlerev Fy = 440 Hz 5 10 15
lapping, and 100 filters uniformly spaced in the Bark scal6f.

Finally, with L, the outputs of the filter bank, the measure of Table 1: Value of the ordey as a function of the adimensional

Fo =220 Hz 10 20 30

the perceptual erraris given by ordera and the fundamental frequenéy, for Fs = 44.1 kHz.
1 ~
1 (& (L' — L‘,fs")2 2 For all targetH (f) and all approximationg? ( f), we derive
T r Z Iref T fest (16) five harmonic spectra which uniformly sample the associated
b1 (L + po) (L™ + po)

sponses. The fundamental frequendi&sare chosen on a range

Here, the auditory threshold is implicitly taken into acabbe- of two half-tones around the original fundamental frequefis,

A
cause ofpo which imitates the presence of an inner-ear noise, as Which meanst, = Fo 2212, with —2 <k <2. This procedure
with the PEAQ method. Moreover, a relative difference isduse allows to have a refined evaluation of the response apprdidma
here in order to take account for the logarithmic sensjtiuitthe _ Finally, every test spectrum, which samples the approxenat
ear to the sound level. Note that this choice is similar te tmie of H(f), is compared with its associated reference spectrum, which
Sec[3B, but it does not favor the PLF method because all thes oth samplesH ( f). The perceptual measure of the distance is detailed
methods also minimize a relative error in frequency, as tA€ L in Sec[5.211.
cf. [B].

Even if the error measure and the criteriorC are based on
similar concepts, they are different. This fact allows ased re-

sults, which does not favor the PLF method. The results of the objective evaluation are printed in EigThe
original musical sounds come from the sound databasg of [34]
Since for all the 13 estimations (half-tones between 22041
Hz), 5 discrete spectra have been synthesized and comtheed,
For every half-tone between 220 and 440 Hz, the spectrum enve mean and the standard deviation of Hif). 2 are computed using
lope of a frame is estimated using the True Envelop& df [14isT 65 computations of the perceptual distance, separatelgdoh
frame is chosen around the middle of the sustain part. Then, a method, each tested instrument, and each ardétere the tested
accurate AR modeling is done using the TELPC method df [33]. instruments are: clarinet, horn, trumpet and violin; we désted
This high-order modeling of the spectral envelope givesdnget other sustained instruments, such as: trombone, cellopbaxe,

5.2.3. Results

5.2.2. Experimental procedure

response (f). flute, and similar results are obtained.

All tested ARMA methods are computed for the obtained fre- As a general trend, we observe that the proposed PLF method
quency responsdg of all half-tones. They provide an ARMA(g) is among the best methods in all cases, whereas the other meth
approximation in the linear frequency scale. The testedhaukst ods fail at least once. In consequence, even if the PLF method
are the following: is not clearly the best method in all cases, it is signifigattie

more robust. Moreover, comparing with the PLF Mode 1 alone,

we observe a slight improvement due to the Mode 2 as expected.

e StMcB: The Iterative Prefiltering of Steiglitz and McBride, Additionally, the behavior of the warped methods has been al
cf. [3], Mode 1 and 2. ready observed i [12] using a listening test. With the optim

. . . warping factor\* = 0.7564, in the sense of [11], for the lower
¢ Yr\{le; SVAr;;Ii—rr:g gz:gg\d* Ii_SPtCrii;n gg:llvr\;ﬁi’cﬁfa[)n?a]"u;ofrit\g?;]%h orders the results are sometimes worse than the results=06.6.

Bark scale, cf[[T1]. FOF, — 44.1 kHz, \* = 0.7564. This phenomenon ha§ been explameq by analy;mg th'e freguen
responses. Indeed, with a strong warping, the high fredesmace

e WLP.6: The warped LPC modeling with = 0.6. compressed around, /2, and the natural slope of the spectrum

. — becomes stronger in the warped frequency scale. As a résult,

* PLF1: The Mode 1 of the proposed PLF method, cf. 4. 4'1'(:ause of the properties of the LPC, ¢fi [5], the frequencpaase

e PLF1&2: The proposed PLF method, Mode 1 and Mode 2 at high frequencies is overestimated. One solution is theaduce

of Secs[ 411 and4.2. the value of\.

e Prony: The well-known Prony method dfi[1].
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Figure 2: Results of the perceptual evaluation of six ARMAmpimation methods, for four instruments and three adBsiteral ordersy.
The mean of the perceptual square error (PMSE) is displayteidecibel scale together with the standard deviatiop.t&sted methods
are: Prony’s method (Prony), the Iterative Prefiltering ®d and 2 of Steiglitz and McBride (StMcB), the optimal warh&®C (WLF'),
the warped LPC with\ = 0.6 (WLP.6), the PLF method Mode 1 (PLF1) and the PLF method Modedl2 (PLF1&2).

6. CONCLUSION

In this paper, a novel ARMA approximation for audio signas i
presented. Itis based on a perceptually meaningful aiteshich
takes into account the sensitivity of the ear to the fregigsnand
to sound level via the loudness conversion. The solvingrilgo

is split into 2 consecutive modes: the first one is a weighted v
sion of thelterative Prefilteringof [3], and the second one is an
adaptation of the Gauss-Newton algorithm.

Let’s remark that the perceptually-based criterion andbtioe
posed algorithm are two independent contributions of thisep.
First the proposed criterion may be optimized using anatiedel
or method, second the proposed algorithm can be used with a di
ferent frequency weighting. Moreover, even without weiigipt
for the reasons mentioned earlier (convergence, stalutityrol
and conditioning), the proposed Mode 2, is preferable coatha
to the original Mode 2 of 3].

As illustrated in Fig[dL, this method efficiently focuses thie
terion where the original frequency response is audibld, @o-
vides less accurate fitting where it is inaudible but with ereimt
results. A perceptual evaluation is given in 9ec] 5.2. Ef¢hei
proposed approach does not lead to outstanding results,owe n
tice its stronger robustness. Whereas the other methoddaitay

in some cases, the PLF method always provides one of the best

results.

As a possible improvement of the proposed method, we en-
visage to apply it with a warped ARMA modeling, cf.J11]. For
example, we can notice that a warped ARM#) filter can be

DAFX-

directly converted to an equivalent linear ARMA{) filter. The
benefit is to better adapt the model to the critedoitogether with
the same number of degrees of freedom, and the same sinmulatio
cost. Unfortunately, with a high warping factaror high orderg,
some numerical problems usually occur. In this case, evéeif
equivalent linear ARMA filter is stable in theory, the finiteepi-
sion of the floating numbers makes the filter numerically ainist
For example, witlhy = 15, these problems might appeanif> 0.4
with the single-precision floating-point.

Unfortunately, this approach may not be suitable in the o&se
a frame-by-frame analysis-synthesis framework. Indeedyusu-
ally observe strong discontinuities between the estimgpedtra
of two consecutive frames, which leads to annoying effedtste
that it is also the case in many other ARMA approximation meth
ods. Nevertheless, in the case of the synthesis of a quagi-st
spectral envelope, which is under interest in the contexbwof
work, cf. e.g. [35], the proposed PLF method is fully satfisfy
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