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ABSTRACT

This paper deals with the approximation of a given frequencyre-
sponse by a low-order linear ARMA filter (Auto-Regressive Mov-
ing Average). The aim of this work is the audio synthesis, then
to improve the perceptual quality, a criterion based on human lis-
tening is defined and minimized. Two complementary approaches
are proposed here for solving this non-linear and non-convex prob-
lem: first, a weighted version of the Iterative Prefiltering,second,
an adaptation of the Gauss-Newton method. This algorithm is
adapted to guarantee the causality/stability of the obtained filter,
and eventually its minimum phase property. The benefit of the
new method is illustrated and evaluated.

1. INTRODUCTION

The goal of this paper is the approximation of a given frequency re-
sponse by a low-order linear ARMA filter (Auto-Regressive Mov-
ing Average), with a high sampling rate,Fs≥44.1 kHz. The con-
text of this work is the low-cost sound synthesis of musical tones
using theSource-Filterprinciple which consists of the filtering of
an excitation signal. Then, because the aim is an audio application,
the obtained filter must be as close as possible to the original one
in a perceptual sense, rather than using a physical or signal-based
criterion.

It is known that in a general case a spectral envelope has a
sparser representation with an ARMA model than a purely AR
or MA model. It is especially the case for nasal speech, and for
musical instruments. For example, even if an ARMA(q, p) filter
and an AR(q+p) filter have approximately the same complexity for
the time simulation, the ARMA modeling will be more efficientin
most of the cases. Some ARMA approximations exist, cf. e.g.:
Prony’s method [1], Shanks’s method [2], the Iterative Prefiltering
[3], Durbin’s method [4] or the Inverse Linear Prediction [5] (or
cf. e.g. [6] for a partial review). Nevertheless, with thesemethods
the cost function is adapted to facilitate the algorithm, and is never
adapted to the perception.

A usual idea is to adapt the model to the frequency resolution
of the ear. In [7, 8, 9] a warped frequency scale is used to fit the
Bark scale, cf. [10, 11], and a warped AR filter is obtained. Un-
fortunately, first we have shown in [12] that for low-orders,the
warped modeling is not satisfying in a perceptual sense. This ob-
servation can be explained because the optimization criterion is not
fully perceptually based. Moreover, the time-domain implementa-
tion of the warped AR filter is two or three times more expensive
than a linear AR filter with the same order, cf. e.g. [8].

∗ This work is funded by the Marie Curie Action project ESUS 299781.

In this work, we propose to directly estimate a linear ARMA
filter on the linear frequency scale using the minimization of a
perceptually-based criterion. In the context of the Source-Filter
principle, the target frequency response is obtained by a spectral
envelope estimation of an original sound, which can be periodic.
This estimation can be done by the DAP method of [13], the True
Envelope of [14, 15], or the True Discrete Cepstrum of [16]. Note
that it is also possible to use a post-processing, MTELPC [17]
or PCF [18], which provide a “quasi-perceptual” pre-smoothing.
These points are not detailed in this work.

This paper is organized as follows: in Sec. 2, the ARMA
model is given, and the perceptually-based criterion is defined step
by step in Sec. 3. Then, the two parts of the algorithm are given
in Sec. 4. Section 5 gives one practical example, and presents a
perceptual comparison of the proposed method with other standard
methods. Finally, section 6 concludes this paper and gives some
perspectives.

2. MODEL

Given a complex frequency responseH(f), wheref is the fre-
quency in [Hz], this work deals with its approximation by thefol-
lowing ARMA(Q,P ) filter

H̃(z) =
B(z)

A(z)
=

b0 +
∑Q

q=1 bqz
−q
)

1 +
∑P

p=1 apz−p
) , (1)

whereQ andP are the orders of the numeratorB and the denomi-
natorA respectively.z is the complex variable of thez-transform,
which is z = ej2πf/Fs on the unit circle, withf the frequency
variable andFs the sampling rate in [Hz]. The polynomial coeffi-
cientsbq andap are the variables to optimize.

3. PERCEPTUAL CRITERION

3.1. First criterion

Let us define the following criterion which provides a distance be-
tween the targetH(f) and the model̃H(f):

C1 =

∫ Fs
2

0

[
σ(H(f), f)− σ(H̃(f), f)

]2

σ(H(f), f)2
) M(df). (2)

This cost function is perceptually meaningful because of the fol-
lowing reasons.
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Loudness conversion First, the functionσ(X,f) is the conver-
sion of the (physical) sound pressure levelX in pascals [Pa], to
the (perceptual) loudness in sones, depending on the frequency
f . The conversionσ is here calculated with the consecutive con-
versions: σ(X, f) = s(ℓ(δ(X), f)), whereXdb = δ(X) =
20 log10(|X|/p0) is the standard scale in [dB SPL], withp0 = 2×
10−5 Pa the reference sound level,Lp = ℓ(Xdb, f) is the conver-
sion from the decibel scale to the phon scale, relative to theequal
loudness curves cf. e.g. [19, 20], andLs = s(Lp) = 2(Lp−40)/10

is the conversion to the sone scale, cf. e.g. [21].

Frequency scale Second, the measureM(df) takes the frequen-
cy resolution of the ear into account, as the standard warping men-
tioned earlier. Withm(f) the conversion from the linear frequency
scale in [Hz] to any warped scale, we writeM(df) = dm(f) =
m′(f)df . For example, with the Mel scale of [22],m(f) =
2595 log10(1 + f/700).

Relative error Third, note that the sone and the phon scales are
respectively linear and logarithmic scales in the loudnessdomain,
such as the pascal and the decibel scales in the sound level domain
respectively. Then, the relative error is computed in (2) inorder
to take into account the logarithmic sensitivity of the ear.Remark
that it would be also possible to directly defineC1 with the absolute
error in the phon scale, logarithmic, but it is equivalent upto the
first order and the denominator will be used in next section.

3.2. Modified criterion

For a numerical computation, first a new version ofC1 is derived
using a discrete sum. Second, the loudness conversion is simpli-
fied using a first-order limited development ofσ(H̃, f) aroundH .
Thenσ(H̃, f) ≈ σ(H,f)+σ′(H,f)(|H̃ |−|H |)with σ′(X, f) =
∂σ(X,f)/∂|X|, and the criterion becomes:

C2 =

M∑

m=1

(
|Hm| − |H̃m|

)2
σ′(Hm, fm)2

σ(Hm, fm)2
) m′(fm), (3)

where the frequenciesfm uniformly sample the range[0, Fs/2]
andHm = H(fm). Note that in this workσ and its derivative are
computed using the analytical expression of [23].

If the phase of the target responseH is known, we can replace
(|Hm| − |H̃m|)2 by |Hm − H̃m|2. This actually simplifies the
optimization procedure and facilitates the convergence. Note that,
only knowing |H |, its phase can be recovered assuming a mini-
mum phase system, cf. e.g. [24].

Since a sound with a level below the auditory threshold is im-
perceptible in principle, the functionσ is not defined below this
threshold which corresponds to 0 phon. Then withX0(f) the au-
ditory threshold in pascals, such thatσ(X0(f), f) = s(0) = 2−4

sons, we define the saturated function

σ(X, f) =

{
σ(X, f) if |X| ≥ X0(f)
2−4 if |X| < X0(f)

(4)

and the saturated derivativeσ′ in the same way. Finally, the crite-
rion to minimize is written as

C =
M∑

m=1

∣∣Hm − H̃m

∣∣2 W 2
m (5)

with Wm =
σ′(Hm, fm)

σ(Hm, fm)

√
m′(fm). (6)

In consequence, the criterionC is just the weighted squared sum
of the error, with a weightWm which takes into account the sensi-
tivity of the ear to the frequencies viam(f), to the sound level via
σ, and to the auditory threshold via the “saturated”σ.

3.3. Remarks

Because most of the time the sensitivity of the recording device
is not available, a possible way to adapt the unscaled recording
sound to the pascal scale is just by applying a gain which gives the
desired sound level. For exampleXdb = 70 dB SPL is a normal
level for a single musical instrument.

In (4),X0(f) is the absolute auditory threshold. It is also pos-
sible to combine it with the simultaneous masking threshold, cf.
e.g. [25], calculated from the target responseH(f). Neverthe-
less, this strategy seems hazardous becauseH(f) andH̃(f) are
not “concrete” spectra, but “abstract” spectral envelopes.

4. OPTIMIZATION ALGORITHM

With an ARMA modelingH̃ = B/A, the minimization of (5) is
not trivial because the error is non-linear with the coefficientsap of
the denominatorA and this optimization problem is not convex. In
this section two complementary iterative algorithms are proposed
to minimize the cost functionC. The first approach is based on the
Iterative Prefilteringof [3]. It is referred as the Mode 1 because
its result is used as initialization of the second one, the Mode 2,
which is based on the Gauss-Newton algorithm, cf. e.g. [26].

4.1. Mode 1: Weighted Iterative Prefiltering

Instead of optimizing a non-linear problem, the Iterative Prefilter-
ing method, initially proposed in [3], consists in iteratively solv-
ing linear sub-problems using the Least Mean Square optimization
(LMS). For that, the criterionC is modified at every iteration using
the previous estimation.

4.1.1. Secondary criterion

With A′ the estimated denominator of the previous iteration, the
multiplication of the errorem := (Hm −Bm/Am)Wm of (5) by
Am/A′

m, leads to the secondary criterion which follows

C′ :=

M∑

m=1

∣∣∣Am
HmWm

A′
m

−Bm
Wm

A′
m

∣∣∣
2

. (7)

SinceA′ is known, the new defined error is linear with the parame-
tersap andbq, and the minimization ofC′ can be solved using the
standard LMS. This procedure is equivalent to the IterativePre-
filtering method of Steiglitz and McBride, cf. [3, 27], with an
additional frequency weightW (f). It is important to note that at
the convergence, if it happens,A/A′ goes toward 1, consequently
the secondary criterionC′ gets closer to the primary criterionC.

4.1.2. Linear optimization

In (7), C′ is given in the frequency domain, but considering the
Hermitian symmetry ofH , H̃ , andW , and using the Parseval the-
orem, we can write it in the discrete time domain to avoid complex
numbers. Whereas the computation ofhn, the time response ofH ,
does not cause any issue, the direct inverse Fourier transform ofW
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makes a non-causal response becauseW is real. Nevertheless,C′

is invariant by adding a phase toW , then to avoid time aliasing,
we definewn as the minimum phase solution ofW , cf. e.g. [24].

With y := (h ∗ w)/A′ andx := w/A′, where the symbol∗
denotes the convolution product and./A′ denotes the prefiltering
by the AR filter1/A′, the secondary criterionC′ is written

C′ =
1

2

N−1∑

n=0

(
yn +

P∑

p=1

apyn−p −

Q∑

q=0

bqxn−q

)2
, (8)

Note that, even if the computations ofw and(h ∗w) may be quite
expensive, they are done only once before the first iteration.

Then, forn ∈ [1, N ], p ∈ [1, P ] andq ∈ [1, Q + 1], and with
the matrix transpose.T , we define the column vectorsY andµ
such thatYn = yn−1 andµ = [a1, . . . aP , b0, b1, . . . bQ]T , and
we define the block matrixΦ = [−Φy ,Φx], with the Toeplitz
matricesΦy [n, p] = yn−1−p andΦx[n, q] = xn−q . Note that
considering causal signals,yn = 0 andxn = 0 for n < 0.

Consequently, the matrix form of the secondary criterion is:
C′ = 1

2
(Y − Φµ)T (Y − Φµ), and ifΦ is full rank, the optimal

solution in the LMS sense is given by solving the linear problem
(ΦTΦ)µ = (ΦTY ), which can be written, cf. e.g. [26],

µ =
(
ΦTΦ

)−1
ΦTY = Φ†Y. (9)

As it is implicitly mentioned in [3], at the first iteration, we
simply chooseA′ = 1. Note that without weightW , at the first
iterationxn = δn, the Dirac distribution, and the first estimatedB
andA are the solutions of Prony’s method.

4.1.3. Properties

Remark that the positions of the roots ofA andB are not ensured
to be inside the unit circle, which means that the causality/stability
and the minimum phase property cannot be controled. Even if this
problem occurs rarely if the targetH checks these properties, it
may be overcome by testing the desired properties at every itera-
tion, using the Jury criterion for example [28], and by recomputing
the LMS solution with lower orders,P andQ. This strategy usu-
ally leads to good properties, but with eventually a worseC′.

As mentioned in [3], the convergence of this iterative proce-
dure is not guaranteed. Nevertheless, we observed in every exper-
iment an efficient decrease in the criterionC and we observed the
convergence of the coefficients ofA. Unfortunately, first, some
conditioning problems usually appear after some iterations, when
ΦTΦ is numerically singular, and second, even ifC′ get closer to
C, the partial derivatives ofC′ are different from those ofC, which
explains why this algorithm usually does not converge to a local
minimum in the sense ofC.

In [3], a second iterative procedure, the respective Mode 2,has
been proposed to improve the estimation of the first one. Thispoint
is not detailed here, we refer the interested readers to [3].In favor-
able cases, this new mode converges to the closest local minimum,
but again, the convergence is not guaranteed, and may diverge if
its initial value is far from a local minimum. Moreover, in our ex-
periments, some conditioning problems may still appear. Finally,
as with the Mode 1, the causality/stability, and the minimumphase
property, of the obtained filter cannot be clearly guaranteed.

In the next section, we proposed another Mode 2 which is
based on the Gauss-Newton algorithm. First, this method hasa
better convergence, second, the conditionning is efficiently im-
proved, and third, this approach can guarantee the causality/stabili-
ty and the minimum phase property of the estimated filter.

4.2. Mode 2: Non-linear optimization

We propose in this section an adaptation of the iterative Gauss-
Newton algorithm, cf. e.g. [26], with constraints for the causal-
ity/stability of the filter, and eventually its minimum phase prop-
erty. Compared to the standard gradient descent, its convergence is
usually faster, and it avoids the successive 1D optimizations along
the direction of maximal descent.

4.2.1. Gauss-Newton algorithm

Newton’s algorithm is based on a second-order limited develop-
ment of the criterion. Starting from an initial parametrization of
the model, the parameters are iteratively updated by the optimum
solution of the quadratic form given by the limited development
around the previous parameters. If the cost function is quadratic,
the algorithm converges in one step, and if it is not quadratic but
sufficiently regular, it naturally converges to the nearestlocal min-
imum in some iterations.

With µk the column vector collecting the current parameters
of the model, the following parameters are given by:

µk+1 = µk − Ω−1
C (µk)∇C(µ

k), (10)

with ∇C(µ) the gradient vector andΩC(µ) the Hessian matrix:
∇C [i] = ∂C/∂µi andΩC[i, j] = ∂2C/∂µi∂µj .

The Gauss-Newton algorithm differs from the previous one
by the approximation of the Hessian matrix. This approximation
facilitates the computation and is justified by the fact thatthe cri-
terion is the squared sum of the magnitude of the errorem, cf. e.g.
[26]. With

em := (Hm − H̃m)Wm, (11)

the criterion is writtenC = EHE, whereE is the column vector
of the errorem and.H is the Hermitian transpose.

Now, definingJe(µ) as the Jacobian matrix ofE, such that
Je[m, i] = ∂em/∂µi, the gradient vector ofC becomes∇C(µ) =
2Je(µ)

HE(µ), and the approximated Hessian matrix is written
ΩC(µ) = 2Je(µ)

HJe(µ). Consequently

Ω−1
C ∇C =

(
JH
e Je

)−1
JH
e E = J†

eE. (12)

Nevertheless, with (10), the algorithm may diverge in some
cases. Then, it is usual to introduce a relaxation factorλk ≤ 1,
and the algorithm becomes

µk+1 = µk − λkΩ
−1
C (µk)∇C(µ

k). (13)

A simple strategy for the choice ofλk is to successively reduce
its value untilC(µk+1) < C(µk). Note that if the Hessian ma-
trix is positive-definite, there always exists aλk > 0 providing a
decreasing criterion. Here, we first testλ = 1 to accelerate the
convergence, and we divide it by 2 ifC does not decrease.

4.2.2. Optimization of the ARMA model

Starting from the standard ARMA modeling of (1), to improve
the conditioning we introduce a gaing and we forceb0 = 1,
without loss of generality. The model is then given byH̃(z) =
gB(z)/A(z), and the parameters to identify are the gaing and the
coefficientsap andbq of the polynomialsA(z) andB(z) respec-
tively, with p ∈ [1, P ] andq ∈ [1, Q]. Moreover, to avoid the
singular case ing = 0, we do the change of variableg = ζ eγ ,
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whereζ is the sign of the initial gain, and we optimizeγ on R

instead ofg.

With zm = ej2πfm/Fs andµ = [γ, a1, . . . aP , b1, . . . bQ]
T ,

the Jacobian matrixJe(µ) is given by





∂em
∂γ

= −ζ
B(zm)

A(zm)

∂ eγ

∂γ
Wm = −H̃(zm)Wm,

)

∂em
∂ap

= g
B(zm)

A(zm)2
∂A(zm)

∂ap
Wm = z−p

m
H̃(zm)

A(zm)
Wm,

)

∂em
∂bq

=
−g

A(zm)

∂B(zm)

∂bq
Wm = z−q

m
−g

A(zm)
Wm.

)

Remark that in (2) and (5), we only have considered unilateral
spectra forf ∈ [0, Fs/2]. Then the solution given by (13) could
lead to complex coefficientsg, ap andbq, with no consideration
of the range[Fs/2, Fs]. Instead of summing the error on the full
range[0, Fs], we prove the equivalence of the following update
equation

µk+1 = µk − λkRe{ΩC(µ
k)}−1Re{∇C(µ

k)}. (14)

where Re{.} is the real part operator, and whereΩC and∇C are
still computed on the frequency range[0, Fs/2]. This equation can
be fastly computed by splitting the real parts and the imaginary
parts ofJe andE, cf. (12).

Concerning the causality/stability of the obtained filter,and
eventually its minimum phase property, it is necessary to add this
constraint in the algorithm. Remind that an ARMA filter is a min-
imum phase system if and only if both poles and zeros are strictly
inside the unit circle. To guarantee the desired property atevery
iteration, we adapt the choice of the relaxation factorλk as it is
done in Sec. 4.2.1 for the convergence. To study the locationof
the roots of the polynomialsA andB, we use the Jury stability
criterion. Note that at some iterations, at the pointµk, the local
properties ofC may attract the algorithm outside the constraint do-
main, even if the nearest local minimum is inside. Then, choosing
a smallλk allows to stay inside the domain, and most of the time,
from the new positionµk+1 the algorithm naturally reconverges to
the minimum.

4.2.3. Summary of the algorithm

To summarize the complete algorithm, first the Mode 1 iterations,
weighted Iterative Prefiltering, are computed using the initializa-
tion A′ = 1. As mentioned above, even if the Mode 1 usually
converges, the primary criterionC may not be strictly decreasing,
which means that with a finite number of iterations, the last re-
sult may not be the best one in the sense ofC. Then, to initialize
the Mode 2, the Gauss-Newton algorithm, among all successive re-
sults of the Mode 1, we retain this one which minimizesC. Finally,
since the convergence of the Gauss-Newton is well-defined, we
can use standard stop criteria. Here the algorithm is stopped when
the maximal number of iterations is attained, or when the relative
difference of two consecutive criteria is smaller than a threshold
defined in[%].

5. EXPERIMENTATIONS

5.1. Illustration

The proposed method, which we call thePerceptual Linear Filter
(PLF), is illustrated in Fig. 1. Using an Oboe tone, B3 (∼ 247
Hz), first the spectral envelope has been estimated with the True
Envelope (TE) of [14] and has been slightly smoothed using the
PCF approach of [18]. Then, from the magnitude of the obtained
frequency response, the phase has been recovered assuming amin-
imum phase system, cf. e.g. [24]. Finally, the PLF is computed
by the algorithm presented in Sec. 4, Mode 1 and 2, using an
ARMA(8,8) model, and is compared to Prony’s method with the
same orders. All frequency responses are displayed in the dBSPL
scale, together with the auditory threshold.

As a general trend, we observe that the PLF method focuses
the approximation at the lower frequencies, as the standardwarp-
ing technique (cf. [8, 9]), but especially to those frequencies where
the target responseH(f) is above the auditory threshold. We can
observe that Prony’s estimatẽH1(f) does not fitH(f) around 4.5
kHz, but it fits the last formant after 14 kHz which is imperceptible
in principle. On the contrary, thanks to the perceptual weighting
W (f), cf. (6), the PLF filterH̃2(f) fits H(f) when it is audible,
and it strongly smooths it when it is imperceptible.
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Figure 1: Illustration of the Perceptual Linear Filter (PLF). The
orders of the ARMA model areQ = 8 andP = 8.

5.2. Perceptual evaluation

This section proposes a perceptual evaluation by comparingthe
PLF method and other methods, using periodic signals imitating
instrument sounds. We prefer to perform automatic and objective
perceptual tests in order to have an exhaustive evaluation;with
many orders, fundamental frequencies, and instruments. A listen-
ing test would have required too much time to be done in practice.

First, we define the perceptual measure of the approximation
error following some concepts of the PEAQ method, cf. [29, 30].
Then we describe the procedure of the objective tests, and finally
the results are presented. Note that to use a neutral evaluation,
which does not favor the PLF method, we have to choose an error
measure which is as different as possible from the criterionC.

5.2.1. Perceptual Mean Square Error

Let Gref
m andGtest

m be the magnitudes in [Pa] of them-th harmonic
of the reference and the test sounds, with the frequenciesfm =
mF0 in [Hz] with F0 the fundamental frequency. Because the ap-
proximation is evaluated here,Gref

m andGtest
m sample the responses

of the targetH(f) and the estimatẽH(f), at the frequenciesfm.
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First, the effect of the middle-ear response is taken into ac-
count by multiplying the magnitudes byΓ(f) = 10γ(f)/20 where

γ(f) = −3.6

(
f

1000

)−0.8

− 0.001

(
f

1000

)4

+6.5 e−0.6( f
1000

−3.3)
2

(15)

The functionγ(f), which is similar to the middle-ear modeling of
[29], is actually the inversion of the auditory threshold modeling
given in [31]. Hence, the auditory threshold just corresponds to
Γ(fm)Gm = p0 with p0= 2×10−5 Pa the reference sound level.

Then, to imitate the auditory system’s critical bands, the power
of the corrected harmonics,(Γ(fm)Gm)2, is summed by process-
ing a filter bank as done with the PEAQ or the MFCC computation,
cf. e.g. [32]. We use here a triangular window with a single over-
lapping, and 100 filters uniformly spaced in the Bark scale of[10].

Finally, withLk the outputs of the filter bank, the measure of
the perceptual errorε is given by

ε =
1

K

(
K∑

k=1

(
Lref

k − Ltest
k

)2

(Lref
k + p0)(Ltest

k + p0)

) 1

2

(16)

Here, the auditory threshold is implicitly taken into account be-
cause ofp0 which imitates the presence of an inner-ear noise, as
with the PEAQ method. Moreover, a relative difference is used
here in order to take account for the logarithmic sensitivity of the
ear to the sound level. Note that this choice is similar to this one of
Sec. 3, but it does not favor the PLF method because all the other
methods also minimize a relative error in frequency, as the LPC,
cf. [5].

Even if the error measureε and the criterionC are based on
similar concepts, they are different. This fact allows unbiased re-
sults, which does not favor the PLF method.

5.2.2. Experimental procedure

For every half-tone between 220 and 440 Hz, the spectrum enve-
lope of a frame is estimated using the True Envelope of [14]. This
frame is chosen around the middle of the sustain part. Then, an
accurate AR modeling is done using the TELPC method of [33].
This high-order modeling of the spectral envelope gives thetarget
responseH(f).

All tested ARMA methods are computed for the obtained fre-
quency responsesH of all half-tones. They provide an ARMA(q,q)
approximation in the linear frequency scale. The tested methods
are the following:

• Prony: The well-known Prony method of [1].

• StMcB: The Iterative Prefiltering of Steiglitz and McBride,
cf. [3], Mode 1 and 2.

• WLP∗: The warped LPC modeling, cf. [7, 9], for which
the warping factorλ∗ is this one which optimally fits the
Bark scale, cf. [11]. ForFs = 44.1 kHz,λ∗ = 0.7564.

• WLP.6: The warped LPC modeling withλ = 0.6.

• PLF1: The Mode 1 of the proposed PLF method, cf. Sec. 4.1.

• PLF1&2: The proposed PLF method, Mode 1 and Mode 2
of Secs. 4.1 and 4.2.

Remark that a warped AR(q) filter can be converted in principle
into a linear ARMA(q,q) filter. Because the purpose of this paper
is the low-cost simulation, we prefer to compare the methodswith
equal simulation complexity, even if the warped methods have less
degrees of freedom.

To cancel the effect of the fundamental frequency, the results
of the perceptual tests are printed as a function of the adimensional
orderα = q/nh, wherenh = 0.5Fs/F0 is the number of har-
monics between0 andFs/2. We tested the adimensional orders
α ∈ {0.1, 0.2, 0.3}. Table 1 summarizes the used ordersq for the
lower and the higher fundamental frequencies,220 and440 Hz.

α = 0.1 α = 0.2 α = 0.3

F0 = 220 Hz 10 20 30

F0 = 440 Hz 5 10 15

Table 1: Value of the orderq as a function of the adimensional
orderα and the fundamental frequencyF0, for Fs = 44.1 kHz.

For all targetH(f) and all approximations̃H(f), we derive
five harmonic spectra which uniformly sample the associatedre-
sponses. The fundamental frequenciesFk are chosen on a range
of two half-tones around the original fundamental frequency F0,

which meansFk = F0 2
k

2×12 , with −2≤ k≤ 2. This procedure
allows to have a refined evaluation of the response approximation.

Finally, every test spectrum, which samples the approximation
H̃(f), is compared with its associated reference spectrum, which
samplesH(f). The perceptual measure of the distance is detailed
in Sec. 5.2.1.

5.2.3. Results

The results of the objective evaluation are printed in Fig. 2. The
original musical sounds come from the sound database of [34].
Since for all the 13 estimations (half-tones between 220 and440
Hz), 5 discrete spectra have been synthesized and compared,the
mean and the standard deviation of Fig. 2 are computed using
65 computations of the perceptual distance, separately foreach
method, each tested instrument, and each orderα. Here the tested
instruments are: clarinet, horn, trumpet and violin; we also tested
other sustained instruments, such as: trombone, cello, saxophone,
flute, and similar results are obtained.

As a general trend, we observe that the proposed PLF method
is among the best methods in all cases, whereas the other meth-
ods fail at least once. In consequence, even if the PLF method
is not clearly the best method in all cases, it is significantly the
more robust. Moreover, comparing with the PLF Mode 1 alone,
we observe a slight improvement due to the Mode 2 as expected.

Additionally, the behavior of the warped methods has been al-
ready observed in [12] using a listening test. With the optimal
warping factorλ∗ = 0.7564, in the sense of [11], for the lower
orders the results are sometimes worse than the results ofλ = 0.6.
This phenomenon has been explained by analyzing the frequency
responses. Indeed, with a strong warping, the high frequencies are
compressed aroundFs/2, and the natural slope of the spectrum
becomes stronger in the warped frequency scale. As a result,be-
cause of the properties of the LPC, cf. [5], the frequency response
at high frequencies is overestimated. One solution is then to reduce
the value ofλ.
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Figure 2: Results of the perceptual evaluation of six ARMA approximation methods, for four instruments and three adimensional ordersα.
The mean of the perceptual square error (PMSE) is displayed in the decibel scale together with the standard deviation. The tested methods
are: Prony’s method (Prony), the Iterative Prefiltering Modes 1 and 2 of Steiglitz and McBride (StMcB), the optimal warped LPC (WLP∗),
the warped LPC withλ = 0.6 (WLP.6), the PLF method Mode 1 (PLF1) and the PLF method Mode 1and 2 (PLF1&2).

6. CONCLUSION

In this paper, a novel ARMA approximation for audio signals is
presented. It is based on a perceptually meaningful criterion which
takes into account the sensitivity of the ear to the frequencies and
to sound level via the loudness conversion. The solving algorithm
is split into 2 consecutive modes: the first one is a weighted ver-
sion of theIterative Prefilteringof [3], and the second one is an
adaptation of the Gauss-Newton algorithm.

Let’s remark that the perceptually-based criterion and thepro-
posed algorithm are two independent contributions of this paper.
First the proposed criterion may be optimized using anothermodel
or method, second the proposed algorithm can be used with a dif-
ferent frequency weighting. Moreover, even without weighting,
for the reasons mentioned earlier (convergence, stabilitycontrol
and conditioning), the proposed Mode 2, is preferable compared
to the original Mode 2 of [3].

As illustrated in Fig. 1, this method efficiently focuses thecri-
terion where the original frequency response is audible, and pro-
vides less accurate fitting where it is inaudible but with coherent
results. A perceptual evaluation is given in Sec. 5.2. Even if the
proposed approach does not lead to outstanding results, we no-
tice its stronger robustness. Whereas the other methods mayfail
in some cases, the PLF method always provides one of the best
results.

As a possible improvement of the proposed method, we en-
visage to apply it with a warped ARMA modeling, cf. [11]. For
example, we can notice that a warped ARMA(q,q) filter can be

directly converted to an equivalent linear ARMA(q,q) filter. The
benefit is to better adapt the model to the criterionC, together with
the same number of degrees of freedom, and the same simulation
cost. Unfortunately, with a high warping factorλ or high orderq,
some numerical problems usually occur. In this case, even ifthe
equivalent linear ARMA filter is stable in theory, the finite preci-
sion of the floating numbers makes the filter numerically unstable.
For example, withq = 15, these problems might appear ifλ > 0.4
with the single-precision floating-point.

Unfortunately, this approach may not be suitable in the caseof
a frame-by-frame analysis-synthesis framework. Indeed, we usu-
ally observe strong discontinuities between the estimatedspectra
of two consecutive frames, which leads to annoying effects.Note
that it is also the case in many other ARMA approximation meth-
ods. Nevertheless, in the case of the synthesis of a quasi-static
spectral envelope, which is under interest in the context ofour
work, cf. e.g. [35], the proposed PLF method is fully satisfying.
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