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ABSTRACT

This work presents an algorithm that is able to achieve novel spa-
tialization effects on multitrack audio signals. It relies on a cross-
adaptive framework that dynamically maps the azimuth positions
of each track’s time-frequency bins with the goal of reducing mask-
ing between source signals by dynamically separating them across
space. The outputs of this system are compared to traditional pan-
ning strategies in subjective evaluation, and it is seen that scores
indicate it performs well as a novel effect that can be used in live
sound applications and creative sound design or mixing.

1. INTRODUCTION

Recent work on adaptive digital audio effects has seen the emer-
gence of a new class of cross-adaptive systems that aim to do au-
tomatic or computer assisted mixing (see [1] for a review). The
architecture is one that allows for a mapping of all concurrent sig-
nals in a mix to determine the processing parameters on each of
the individual inputs in order to optimize either a perceptual (e.g.
loudness balance, see [2]) or objective (e.g. release from masking,
see [3]) characteristic of the mixed output signal. In the present
work we focus on panning as a tool to overcome masking prob-
lems, as done in [4] and others, but following a radically different
approach that focuses in the creation of a novel type of tool.

Previous approaches have relied on grounded theory, trying
to mimic the decisions that a human sound engineer would un-
dertake. We propose that an interesting area of exploration for
intelligent systems is to strive for processing techniques that are
prohibitively difficult to achieve with traditional means and by hu-
man practitioners. Being non-standard, there is a good chance that
results will be unconventional and careful analysis and subjective
evaluation is paramount.

The approach we are suggesting follows close on [5], which
looks at the possibilities of adaptive digital audio effects, but not
specifically the problem of mixing. In that work the authors pro-
posed a method for panning different frequency bins of a signal
into different azimuthal positions, where the mapping decisions
for panning placement may come from the analysis of a separate
signal. We extend the idea so that the azimuthal mapping opti-
mizes masking constraints arising from the need to sum multiple
individual tracks in a mix, and that this can be extended to a time-
varying system that will achieve a new approach to spatialization
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and spatial unmasking optimization. A similar approach is done
in terms of frequency-unmasking in [6], and DirAC [7] touches
on similar concepts, though it aims at ‘transparent’ reproduction,
instead of acting as a cross-adaptive effect.

In Section 2 we elaborate on the theoretical reasons for why
a spectral audio panner can be a viable tool, and the concepts on
which spatial audio is built upon. Section 3 presents a detailed de-
scription of our cross-adaptive algorithm, while Section 4 presents
an objective analysis of results in selected samples. In Section 5
we summarize a subjective evaluation performed on examples. Fi-
nally, Section 6 points to further directions and application, and
provides an overview of our results.

2. THEORETICAL MOTIVATION

Spatialization depends on Interaural Level Difference (ILD) and
Interaural Temporal Difference (ITD) cues, but the relative im-
portance of each is still not fully understood. The former works
mainly at high frequencies, where the head casts an acoustic shadow
that is large enough to attenuate the level reaching the contra-
lateral ear. On the other hand, the latter is predominantly an active
mechanism for low-mid frequencies, where the phase difference
can be resolved by the brain. At really low frequencies, sounds
seem to have an enveloping place of origin. ITDs and ILDs are
often distorted and conflicting, and the auditory mechanism uses
the most consistent cue; the one that suggests the same direction
over a broad spectral band [8].

According to Griesinger [9], with broadband sources cues are
ambiguous, and human hearing appears to simply average over the
various possible sound directions to determine the best-guess po-
sition for the source, while weighting-in past history. The brain
seems to use mechanisms other than localization to stream sounds
together and only afterward does it assign a common place of ori-
gin. Furthermore, Blauert [10] argues that in principle, within a
critical band, all sound can only be perceived as a single source of
wider or narrower character. To this extent, Pulkki [11] concludes
that spatial realism is not needed in audio for the resulting image
to have any verisimilitude.

Modern audio production relies on amplitude panning tech-
niques almost exclusively for the creation of azimuthal cues out
of monophonic source signals. In this work we shall ignore cues
stemming from signal delay, though a translation of the technique
could trivially be achieved. It is typical to distribute sound sources
among the reproduced stage, as the spatial release from masking
(SRM) that is achieved improves clarity and intelligibility. The re-
lationship of ITD and ILD to SRM is not fully studied, but it seems
level is panning is a sensible choice [12].
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3. ALGORITHM AND CONSTRAINTS

Our algorithm is based on the typical phase vocoder implementa-
tion, and can be outlined as follows:

1. Perform a Short-Time Fourier Transform (STFT) on all the
input tracks of an audio mix.

2. Pan each resulting time-frequency (t-f) bin on each track
independently, placing the heaviest (magnitude-wise) bins
of each track to non-colliding locations.

3. Perform the Inverse Fourier Transform to reconstruct the
time-domain signals of the mix.

An audio mix is the result of a summation of an arbitrary num-
ber J of input tracks. Let us call each individual track xj and as-
sume out of simplicity that it is monophonic (single-channel) and
that all tracks are equal in length. Let us define our notation and
establish that the mix’s time-frequency representation is then given
by the STFT [13]:

Xj (n, k) =

∞∑
m=−∞

xj (m)h (n−m) e−i2πkm/N , (1)

with n indexing discrete time, k the discrete frequency bin and
h(n −m) a window function of length N . This results in a com-
plex number at each element, which can then be decomposed into
magnitude and phase angle. Consider:

Xmagj (n, k) =

√
Re[Xj (n, k)]

2 + Im[Xj (n, k)]
2 (2)

to be the 3-dimensional matrix of individual magnitudes for each
t-f bin n-k of each track j. The phase angle will actually not be
important for our application, but it is given by the inverse tan-
gent of the ratio of imaginary to real part, for each element of the
matrix. It is both prohibitive and irrelevant to perform the STFT
at every point in discrete time, so one uses a fixed window length
(N ) overlapping with a hop size (I) which is a subdivision of N ,
and uses time frames that start at nI and are N samples long.
A Hamming-windowed STFT with a hop size of N/2 will yield
perfect reconstruction upon performing the inverse transform and
adding all the individual frames. It is now clear that the matrix
whose elements are described by equation 1 is J × G × N ele-
ments long, where G is the signal length zero-padded to the next
multiple of I and divided by I , and N , being the window length,
is also the number of bins in the spectral domain.

Prior to reconstruction, our goal in the spectral domain is to
perform a readjustment of each bin so that it yields two different
results for a left (L) and a right (R) channel:

Xj (n, k) −−−→
{
Yj

(L) (r, k)

Yj
(R) (r, k)

. (3)

with r the outbound time-frame. For all practical purposes, we
shall have r = n, since our analysis hop size is equal to the syn-
thesis hop size. Reconstruction of channel Z (either L or R) can
then be performed by overlap-adding the windows [13]:

yj
(Z) (n) =
∞∑

r=−∞
h (n− r) 1

N

N−1∑
k=0

[
ei2πrk/NYj

(Z) (r, k)
]
ei2πnk/N

,

(4)

and scaling the output so that the overlap of a large number of
hops does not increase the synthesized amplitude too much. Note
that while the notation quickly becomes heavy, this is simply the
strategy behind the well-known phase vocoder approach to spectral
domain processing and equation 4 simply represents the summa-
tion of the Inverse Fourier Transform of all individual time-frames.
The core part of our research is not the analysis-synthesis process,
but how to implement the mapping in (3).

A viable reconstruction of a spectrally processed signal de-
pends upon a careful choice of windowing parameters. For our
case, with a short window one would likely encounter amplitude
modulation artifacts, while a long window would cause temporal
aliasing and smearing. A similar balance results from the hop size;
allowing for no overlap or little overlap results in clicking noises
and too much overlap will cancel out the desired effect, restrict-
ing panning azimuth to a very narrow area. An heuristic approach
convinced us that a window length of 216 (working at a 44.1 kHz
sample rate; one update approximately every 1.49 seconds) with
a hop size of one sixteenth the window length yields sonically ac-
ceptable results. There is temporal smearing that makes signals
sound as if they had been put through a nonlinear reverb, but the
amount is subtle enough so that it is still pleasing.

Each track’s t-f bins can now be placed at position pj(n, k) ∈
[−1, 1], where−1 represents full left and 1 full right. This position
will then be converted to a specific azimuthal angle dependent on
the position of the speakers (the standard stereophonic situation is
defined by speakers at ±30◦ from the median plane). The sine-
cosine rule for amplitude panning states that we should have gains
for the left and the right channel that follow:

g(L) = cos

(
(1 + pj(n, k))π

4

)
, (5)

g(R) = sin

(
(1 + pj(n, k))π

4

)
. (6)

We know from [10] that azimuthal discrimination is more ac-
curate near the origin at the median plane than when we drift to the
sides. It is thus sensible to envisage a position distribution scheme
that mimics this perceptual phenomenon. We chose to allow for
J discrete possible placements (as many as the track count) and
balance them according to a variation on the roots of the first order
Chebyshev polynomials, which gives us a well-behaved distribu-
tion. The root calculation is done through:

Pg = sign

[
cos

(
2g − 1

n
π

)]
− cos

(
2g − 1

n
π

)
, g = 1, 2...n,

(7)
Notice we are shifting the nodes so that they are center-heavy

instead of tail heavy (the sign function is -1 for negative values, 1
for positive values and 0 for the value zero). We then transform
{P1, P2, ..., PJ} −→ {P1:n, P2:n, ..., PJ:n} by simply sorting the
results, where tk:n denotes the k-th ascending order statistic. This
gives us fixed position to which we shall map our J tracks differ-
ently for each t-f bin.

Figure 1 shows the constrained positions for four possible track
counts. Notice that positions at the extreme left or right are never
allowed, something that is considered a good practice by some
sources [14]. Two other possible positional distributions were con-
sidered: equidistant spacing and the non-constrainment to discrete
angles (relying instead on the energy distribution of each bin to
achieve symmetrical balance). Informal testing showed that our
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choice yields better perceptual envelopment than equidistant spac-
ing and more stability than not having fixed discrete points (pan-
ning positions are less prone to large changes from frame to frame).
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Figure 1: Allowable azimuthal positions P for four possible track
counts J , according to our Chebyshev-roots based constraint.

The decision regarding which position to choose for each bin
must be bound by some constraints, following [4, 14, 15]:

1. For each bin the sum of the individual track amplitudes con-
tributing to the left and right signal must be balanced in
terms of magnitude:

J∑
j=1

pj(n, k) |Xj (n, k)| = 0, ∀n, k. (8)

2. The sum of the magnitudes of all weighted frequency bins
for a fixed time-frame must be equal at all chosen azimuthal
steps:

N−1∑
k=0

pj(n, k) |Xj (n, k)| = α,∀j, n, (9)

where α is a time-frame-varying constant.

3. Successive time frames cannot allow for a frequency-azimuth
pair to shift more than a maximum azimuthal step-size. We
have restricted the step size to two after some informal lis-
tening tests.

4. Bins representing frequencies below a cut-off point should
be centrally panned, in keeping with most industry prac-
tices. We have chosen that frequency to lie in the vicinity
of 150Hz.

It is impossible to enforce constraints 1 and 2 when bounded
by discrete positions and the need to fulfill constraint 3, so we
use those as lax rules that provide a per-frame platonic ideal, that
is then revised by the need to restrict sudden movement. We es-
tablish the positions for the first time-frame by applying a palin-
dromic Siegel-Tukey type ordering [16] to each bin across tracks,
according to ordered magnitude, and continue in the following
time-frames with a greedy algorithm. The starting point choice
and iterative proceeding rules are best explained by example:

Suppose we have a five track mix and that the first time-frame
results in the following magnitude vectors:

Xmag1 (1, k) = {0.2, 0.3, 0.25...}
Xmag2 (1, k) = {0.3, 0.2, 0.15...}
Xmag3 (1, k) = {0.4, 0.1, 0.35...}
Xmag4 (1, k) = {0.6, 0.02, 0.6...}
Xmag5 (1, k) = {0.8, 0.01, 0.5...}

(10)

For the first bin (ignoring the fact that constraint 4 would force
us not to use panning) track 5 has the highest magnitude value,
followed by 4, 3, 2, 1. These would then be panned respectively

to p1, p5, p4, p2, p3. This ordering would place heavier track-bins
towards the extremes, yet would tend to enforce constraint 1.

For the second bin, track 1 has the highest magnitude value,
followed by 2, 3, 4, 5. They would be panned respectively to p3,
p2, p4, p5 and p1. This reverse Siegel-Tuckey ordering will help
enforce constraint 2. We can move to bin 3 and simply shift the
order so that it starts with the heaviest bin at p5 and bin 4 will
start with p3 but move to p4 and bin 5 will have equal positioning
possibilities to bin 1. Thus, this part of the algorithm works as a
4-step mapping climbing up the frequency bins.

The second time-frame is first planned in a similar fashion, but
we do not allow for individual bin shifts of more than two positions
between consecutive time-frames. The target goal will sometimes
become unattainable, and in such cases we try to minimize the
least square errors between the intended position vector and the
possible position vector. There is one special feature that we can
use to optimize which is the symmetry of ordering: symmetrical
azimuths about zero are equal terms of weight for our constraints 1
and 2. So if we see an intended shift of a specific bin from p1 to p4
in two successive time frames, constraint 3 would tell us to move
no farther than p3 (two steps), but given that p4 is symmetrical to
p2, thus p2 would present a better move. The programmatic imple-
mentation of the greedy algorithm is consequently messy and more
prone to be described then notated. Since for each new frame we
always calculate our pseudo-optimal positions, the actual overall
placement never diverges too far from the intended one.

Finally, with the intended position for each t-f bin in mind,
there are two possible approaches to performing the calculations:
multiplying Xj(n, k) (the complex spectrum as a whole, not the
individual magnitudes) by the gains that were obtained (g(L) and
g(R)) or zeroing all t-f bins that are not going to be panned to a spe-
cific position for each track, doing the Inverse Fourier Transform
of the result, and panning on the time domain. We chose to do the
former for our examples, but the latter will be explored in the fu-
ture. There are some audible examples of the algorithm’s working
at http://www.stereosonic.org/phd/specPanning/, alongside spec-
trograms that illustrate the change it brings about.

4. RESULT ANALYSIS

Figure 2 shows the intended positions for a segment of a five-track
mix. The five discrete azimuthal positions are described in shades
of gray from maximum-left (white) to maximum-right (black).

This is an illustrative example of something that is quite hard
to visualize but serves to show 1) that pan position is different
for each frequency bin of each track, when considering a fixed
time-frame (if one looks at any column on any track), 2) that pan
positions of each bin change over time (if one looks at any row
on any track), 3) that there is some degree of inertia for each time
frame, frequency bin (i.e, a row or column will not change position
too drastically) and 4) Drums and Synth tend to be either full-left
or full-right, the other tracks are much more inert.

An algorithm that proposes to work as a novel audio effect is
quite hard to assess objectively. It is important to understand how
closely the constraints 1 and 2 are met, in light of the fact that our
rules are lax. We have looked at four multitrack songs in order
to understand deviations from what is expected. We are dealing
with multi-dimensional phenomena so there is little tangible feel-
ing for how big a deviation can be and how to measure it. We
use the following two metrics to determine how well we match the
constraints. For constraint 1, we find the discrete frequency and
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Figure 2: Intended pan positions for 5 tracks (front-to-back: bass,
drums, guitar, vocals, synth. The time segments are always the
same 5-seconds. White means left and black right.

discrete time mean of the absolute weighted azimuth deviations
from zero: ∑

n

∑
k

∣∣∣∣∣∑j pj (n, k) |Xj (n, k)|
∣∣∣∣∣

G×N , (11)

where, as before,N represents the window length, and here is used
as the number of bins, and G is the number of time windows used
on the STFT.

For constraint 2, we find the mean over discrete time of the
standard deviation between azimuthal magnitudes:

∑
n

sdev

(∑
k

|Xj (n, k)||pj(n,k)=Pg

)
G

(12)

Table 1 shows the results for the four song segments (≈ 20 s),
for three different approaches. The benchmark approach is ran-
dom panning of the t-f bins. We compare that with following our
algorithm with a window length of 215 and a hop size of 1/16 and
a window length of 210 with a hop size of 1/2.

Approach Song #1 Song #2 Song #3 Song #4
Random panning 4.957 6.148 4.469 6.065
Window 215, hop 1/16 0.024 0.019 0.018 0.024
Window 210 hop 1/2 0.077 0.101 0.992 0.140

Approach Song #1 Song #2 Song #3 Song #4
Random panning 1.664 2.167 1.857 1.935
Window 215, hop 1/16 0.325 0.143 0.464 0.656
Window 210 hop 1/2 1.431 0.542 1.161 1.548

Table 1: Approximation to constraints 1 (top) and 2 (bottom). Top
table values are multiplied by 103, bottom table by 1016.

The values show that constraint 2 will always be approached
as a result of the law of large numbers, even for the case of random
panning. However, both our approaches achieve a better result than
a random strategy. A large window size will yield more frequency
bins, which will likely smooth the variations at each position, so
its relatively better score comes as no surprise. As for constraint 1,

the algorithm shows a clear improvement against random panning.
Here the larger window also seems to work consistently better,
most likely because of the larger overlap, stemming from the hop
size.

5. SUBJECTIVE EVALUATION

In order to understand whether the approach is worthwhile we
performed a subjective multi-stimulus evaluation. Twenty sub-
jects of moderate experience with audio engineering took place.
The test signals were presented via headphones at a consistent lis-
tening level (83 dB) through a steady signal chain. The use of
headphones was a compromise, as the technique is better suited
for a loudspeaker test; however, repeatability in different settings
was important, so a compromise was chosen. Tests were double
blind, using 4 different versions of 4 different songs (20 second
segments). Versions of one such song can be heard online at
http://www.stereosonic.org/phd/specPanning/. Procedures followed
closely [17] and the different stimuli were:

1. A monophonic version that served as the base for the algo-
rithm. Loudness balance done by a mixing engineer. This
balance choice was kept throughout (M).

2. A traditional static stereophonic version, where panning de-
cisions were done by a professional mixing engineer (S).

3. A spectrally panned version with our best time constants:
window length of 215 with a 1/16th hop (Lg, for ‘long win-
dow’).

4. An anchor, a spectrally panned version with a time constant
that some preliminary tests had shown problematic: win-
dow length of 210 with a 1/2 hop (Sh, for ‘short window’).

The order of presentation was randomized, a fact that was ex-
plained to the listeners in advance. Subjects were asked to rank
the versions according to three parameters (one per listening run
for a total of 3 × 4 runs with 4 versions per run): ‘clarity’, ‘pro-
duction value’ and ‘excitement’. The concept of clarity should be
associated with the ability to segregate sources, thus with release
from masking. Production value is inherently ambiguous and sub-
jective, but because subjects were studying or had studied audio
engineering, the meaning should be clear: technical quality of the
mix. Excitement was expected to reveal a dimension that is not
coupled to the evaluation of quality but of a rawer reaction to the
mix.

Results are summarized in Figure 3, showing mean and con-
fidence interval bounds for the three parameters. The professional
version is superior in terms of production value perception, yet our
algorithm competes in terms of clarity. This is an encouraging re-
sult, as we are comparing a trained professional approach to an
experimental algorithm that goes dangerously against what would
be considered accepted by traditional standards. Our algorithm
also yields the best score for excitement, beyond the error bounds,
which validates the hypothesis of using it on a mix for its ’special
effect’ character. The anchor version is perceived as unpleasing,
yet it scores fairly well in terms of excitement. A Friedman test for
evaluation consistency among users only finds evidence for ran-
domness in terms of production value, which might be explainable
by the difficulty in having consensus on what "Production Value"
means. Further investigation reveals that subjects are evaluating
songs differently in that case. Separating by song, our algorithm
is perceived as excelling in production value for one of the four
examples (exactly the one that can be found online).

DAFX-4



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

M S Lg Sh M S Lg Sh M S Lg Sh

4

3

2

1

Condition

R
an

k

Production Value ExcitementClarity

Figure 3: Evaluation results for Clarity (left), Production Value
(middle) and Excitement (right), averaging both in terms of songs
and subjects. See main text for conditions.

6. CONCLUSIONS AND FURTHER WORK

A technique of spectral unmasking through cross-adaptive dynamic
panning is explored. It is to be understood as an experimental ef-
fect and not a method that can be used in traditional mixing. An
absolute constraint equilibrium cannot be met constantly, and slow
variations through time are shown to produce better results. Sub-
jective evaluation confirms the algorithm can be used as a novel
effect, resulting in an appreciated level of excitement. It is shown
to compete with a professional mix in terms of clarity, so the pur-
pose of unmasking is to some degree accomplished (particularly
if one remembers the evaluators will always understand the algo-
rithm as "strange"). Such a radical panning strategy could very
well be understood as nonsensical, but results show otherwise, at
least when considering the longer time-constant version. It is safe
to assume that a listener will not understand that there is an explo-
sion of panned events, and is still very much able to identify each
sound source as being one.

A technique such as this can be useful in several scenarios:

1. Whenever amplitude panning of whole sources is frowned
upon, such as large outdoor live shows, where elements are
kept in the middle. The algorithm would allow audience
members on the center to feel a sense of spaciousness while
allowing everyone to still have the perception of a full mix.

2. In song sections, where the producer wishes to add a subtle
other-worldly feeling to a part.

3. In excessively dense mixes, where the mixing engineer is
struggling for clarity.

Several extensions of the idea can be researched in the future
if one considers that the azimuthal positional choices on this work
were mainly heuristic. There are many explorations on the nature
of the constraints, and the reasons for their choice, that can result
in clearer and more effective results. The research for a real-time
strategy is in the works. A comparison with techniques involving
filter-bank methods either in the analysis or synthesis is also an
important step.
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