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ABSTRACT

Robust Principal Component Analysis (RPCA) is a technique to
decompose signals into sparse and low rank components, and has
recently drawn the attention of the MIR field for the problem of
separating leading vocals from accompaniment, with appealing re-
sults obtained on small excerpts of music. However, the perfor-
mance of the method drops when processing entire music tracks.
We present an adaptive formulation of RPCA that incorporates
music content information to guide the decomposition. Experi-
ments on a set of complete music tracks of various genres show
that the proposed algorithm is able to better process entirepieces
of music that may exhibit large variations in the music content, and
compares favorably with the state-of-the-art.

1. INTRODUCTION

In the general context of processing high-dimensional data, a re-
current problem consists in extracting specific information from
a massive amount of related or unrelated information. Examples
include recovering documents with specific topics from a collec-
tion of Web text documents [1] or detecting moving objects from
camera recordings for video surveillance purpose [2]. Among nu-
merous existing methods, the technique of Robust PrincipalCom-
ponent Analysis (RPCA) [3, 4], has recently drawn a lot of atten-
tion. All the above-mentioned problems can be formulated assep-
arating some foreground components (the keywords in Web data,
the moving objects in video) from an underlying background (the
background corpus topic in Web data, the stable environmentin
video), that can be respectively modeled as a sparse plus a low-
rank contribution.

RPCA has been used extensively in the field of image pro-
cessing (e.g. image segmentation [5], visual pattern correspon-
dence [6], surveillance video processing [7], batch image align-
ment [8], etc.). However, its application in Music Information Re-
trieval (MIR) is much more recent. Existing applications inaudio
include audio classification, as in [9] where audio segmentsfrom
video sound files are classified into classes (applause and laugh-
ter occurrences); [10] addresses the problem of refining available
social tags obtained through social tagging websites to maximize
their quality. The main application of the RPCA framework in
music focuses on the task of separating a foreground component,
usually the singing voice, from a background accompanimentin
monaural polyphonic recordings, i.e., when only one channel of
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gram.

recording is available. This scenario is the primary focus of this
paper.

The singing voice is a complex and important music signal
attribute that has been much studied in MIR. Its separation is es-
sential for many applications, such as singer identification [11],
melody transcription [12], or query by humming [13]. We refer
the reader to [14] for a recent review of singing voice separation
methods. Recently, approaches that take advantage of repetition
in the signal have emerged. These approaches assume that the
background accompaniment has a repetitive musical structure, in
contrast to the vocal signal whose repetitions, if any, occur only
at a much larger timescale [15, 16, 17]. In [15] a simple method
for separating music and voice is proposed based on the extraction
of the underlying repeating musical structure using binarytime-
frequency masking (REPET algorithm). The methods assumes
that there is no variations in the background and is thus limited
to short excerpts. In [16], the method is generalized to permit the
processing of complete musical tracks by relying on the assump-
tion of local spectral-periodicity. Moreover, artifacts are reduced
by using soft-masks. Inspired by these approaches, [17] proposes a
model for singing voice separation based on repetition, butwithout
using the hypothesis of local periodicity. The background musi-
cal accompaniment at a given frame is identified using the nearest
neighbor frames in the whole mixture spectrogram.

Most recently, RPCA has emerged as a promising approach
to singing voice separation based on the idea that the repetitive
musical accompaniment may lie in a low-rank subspace, while
the singing voice is relatively sparse in the time-frequency do-
main [18]. The voice and the accompaniment are separated by de-
composing the Short-Time-Fourier Transform (STFT) magnitude
(i.e., spectrogram) into sparse and low-rank components. When
tested on short audio excerpts from the MIR-1K dataset1 RPCA
shows improvement over two state-of-the-art approaches [19, 15].
The decomposition is improved in [20] by adding a regularization
term to incorporate a prior tendency towards harmonicity inthe
low-rank component, reflecting the fact that background voices
can be described as a harmonic series of sinusoids at multiples
of a fundamental frequency. A post-processing step is applied to
the sparse component of the decomposition to eliminate the per-
cussive sounds. [21] addresses the problem of jointly finding a
sparse approximation of a varying component (e.g., the singing
voice) and a repeating background (e.g., the musical accompani-
ment) in the sameredundant dictionary. In parallel with the RPCA

1The MIR-1K dataset [19] is a set of 1000 short excerpts
(4 − 13s) extracted from 110 Chinese karaoke pop songs, where
accompaniment and the singing voices are separately recorded. See
https://sites.google.com/site/unvoicedsoundseparation/mir-1k.
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idea of [3], the mixture is decomposed into a sum of two com-
ponents: astructuredsparse matrix and anunstructuredsparse
matrix. Structured sparsity is enforced using mixed norms,along
with a greedy Matching Pursuit algorithm [22]. The model is eval-
uated on short popular music excerpts from the Beach Boys. [23]
proposes a non-negative variant of RPCA, termed robust low-rank
non-negative matrix factorization (RNMF). In this approach the
low-rank model is represented as a non-negative linear combina-
tion of non-negative basis vectors. The proposed frameworkal-
lows incorporating unsupervised, semi-, and fully-supervised learn-
ing, with supervised training drastically improving the results of
the separation. Other related works including [24, 25] address
singing voice separation based on low-rank representations alone
but are beyond the scope of this article.

While RPCA performs well on the∼10 sec clips of MIR-1K,
the full-length Beach Boys examples of [14] give much less sat-
isfying results. When dealing with whole recordings, the musi-
cal background may include significant changes in instrumentation
and dynamics which may rival the variation in the foreground, and
hence its rank in the spectrogram representation. Further,fore-
ground may vary in its complexity (e.g., solo voice followedby a
duet) and may be unevenly distributed throughout the piece (e.g.,
entire segments with background only). Thus, the best way to
apply RPCA to separatecompletemusic pieces remains an open
question.

In this article, we explore an adaptive version of RPCA (A-
RPCA) that is able to handle complex music signals by taking
into account the intrinsic musical content. We aim to adjustthe
task through the incorporation of domain knowledge that guides
the decomposition towards results that are physically and musi-
cally meaningful. Time-frequency representations of music audio
may be structured in several ways according to their content. For
instance, the frequency axis can be segmented into regions corre-
sponding to the spectral range of each instrument of the mixture.
In the singing separation scenario, coefficients that are not in the
singing voice spectral band should not be selected in the sparse
layer. In the time dimension, music audio signals can generally
be organized into a hierarchy of segments at different scales, each
with its own semantic function (bar, phrase, entire sectionetc.),
and each having specific characteristics in terms of instrumen-
tation, leading voice, etc. Importantly, as the segments become
shorter, we expect the accompaniment to span less variation, and
thus the rank of the background to reduce.

We will show a way for this music content information to be
incorporated in the decomposition to allow an accurate processing
of entiremusic tracks. More specifically, we incorporate voice ac-
tivity information as a cue to separate the leading voice from the
background. Music pieces can be segmented into vocal segments
(where the leading voice is present) and background segments (that
can be purely instrumental or may contain backing voices). Find-
ing vocal segments (voicing detection [26]) is a subject that has
received significant attention within MIR [26, 27, 28, 29]. The de-
composition into sparse and low-rank components should be co-
herent with the semantic structure of the piece: the sparse (fore-
ground) component should be denser in sections containing the
leading voice while portions of the sparse matrix corresponding to
non-singing segments should ideally be null. Thus, while the tech-
nique remains the same as [18] at the lowest level, we consider the
problem of segmenting a longer track into suitable pieces, and how
to locally adapt the parameters of the decomposition by incorpo-
rating prior information.

2. ROBUST PRINCIPAL COMPONENT ANALYSIS VIA
PRINCIPAL COMPONENT PURSUIT

In [3] , Candèset al. show that, under very broad conditions, a data
matrix D ∈ R

m×n can be exactly and uniquely decomposed into
a low-rank componentA and a sparse componentE via a convex
program calledPrincipal Component Pursuit(RPCA-PCP) given
by:

min
A,E

‖A‖∗ + λ‖E‖1 s.t. D = A + E (1)

whereλ > 0 is a regularization parameter that trades between the
rank ofA and the sparsity ofE. The nuclear norm‖·‖∗ – the sum
of singular values – is used as surrogate for the rank ofA [30], and
the ℓ1 norm ‖·‖1 (sum of absolute values of the matrix entries)
is an effective surrogate for theℓ0 pseudo-norm, the number of
non-zero entries in the matrix [31, 32].

The Augmented Lagrange Multiplier Method (ALM) and its
practical variant, the Alternating Direction Method of Multipliers
(ADM), have been proposed as efficient optimization schemesto
solve this problem [33, 34, 35]. ALM works by minimizing the
augmented Lagrangian function of (1):

L(A, E, Y, µ) = ‖A‖∗+λ‖E‖1+〈Y, A+E−D〉+
µ

2
‖A+E−D‖2

F

(2)
whereY ∈ R

m×n is the Lagrange multiplier of the linear con-
straint that allows removing the equality constraint,µ > 0 is a
penalty parameter for the violation of the linear constraint, 〈·, ·〉
denotes the trace inner product2 and‖·‖F is the Frobenius norm3.
ALM [34] is an iterative scheme that works by repeatedly mini-
mizingA andE simultaneously. In contrast, ADM splits the min-
imization of (2) into two smaller and easier subproblems, with A
andE minimized sequentially:

Ak+1 = argmin
A

L(A,Ek, Y k, µk) (3a)

Ek+1 = argmin
E

L(Ak+1, E, Y k, µk) (3b)

Both subproblems (3a) and (3b) are shrinkage problems that have
closed-form solutions that we briefly present here. We referthe
reader to [34, 35] for more details. For convenience we introduce
the scalar soft-thresholding (shrinkage) operatorSǫ[x]:

Sǫ[x] = sgn(x) · max(|x| − ǫ, 0) =

8

<

:

x − ǫ if x > ǫ
x + ǫ if x < −ǫ

0 otherwise

wherex ∈ R andǫ > 0. This operator can be extended to matrices
by applying it element-wise.

Problem (3a) is equivalent to:

Ak+1 = min
A



‖A‖∗ +
µk

2
‖A − (D − Ek +

1

µk
Y k)‖2

F

ff

(4)

that has, according to [36], a closed-from solution given by:

Ak+1 = US 1

µk
[Σ]V T

2The inner product between two matricesA and B is defined as
〈A, B〉 = trace(A∗B), ∗ being the conjugate transpose.

3The Frobenius norm of matrixA is defined as‖A‖F =

s

X

i,j

A2
ij .
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whereU ∈ R
m×r, V ∈ R

n×r andΣ ∈ R
r×r are obtained via the

singular value decomposition(U,Σ, V ) = SV D(D−Ek + Y k

µk ).

Problem (3b) can be written as:

Ek+1 = min
E



λ‖E‖1 +
µk

2
‖E − (D − Ak+1 +

1

µk
Y k)‖2

F

ff

(5)
whose solution is given by the least-absolute shrinkage andse-
lection operator (Lasso) [37], a method also known in the signal
processing community as basis pursuit denoising [38]:

Ek+1 = S λ
µk

[D − Ak+1 +
Y k

µk

]

In other words, denotingGE = D − Ak+1 + Y k

µk :

∀ i ∈ [1, m],∀ j ∈ [1, n] Ek+1

ij = sgn(GE
ij)·max(|GE

ij |−
λ

µk
, 0)

3. ADAPTIVE RPCA (A-RPCA)

As discussed in Section 1, in a given song, the foreground vo-
cals typically exhibit a clustered distribution in the time-frequency
plane relating to the semantic structure of the piece that alternates
between vocal and non-vocal (background) segments. This struc-
ture should be reflected in the decomposition: frames belonging
to singing voice-inactive segments should result in zero-valued
columns inE.

The balance between the sparse and low-rank contributions
is set by the value of the regularization parameterλ. The voice
separation quality with respect to the value ofλ for thePink Noise
PartysongTheir Shallow Singularityis illustrated in Fig. 1. As we
can observe, the bestλ differs depending on whether we process
the entire song, or restrict processing to just the singing voice-
active parts. Because the separation for the background part is
monotonically better asλ increases, the difference between the
optimumλ indicates that the global separation quality is compro-
mised between the singing voice and the background part.
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Figure 1: Variation of the estimated singing voice NSDR (seedef-
inition in Section 4) according to the value ofλ under two situa-
tions. •: NSDR when only the singing voice-active parts of the
separated signal are processed.∗: NSDR when the entire signal is
processed.

Figure 2: Waveform of the separated voice for various valuesof
λ for the songIs This Loveby Bob Marley. From top to bottom:
clean voice,λ = λ1, 2 ∗ λ1, 5 ∗ λ1, 10 ∗ λ1.

In the theoretical formulation of RPCA-PCP [3], there is no
single value ofλ that works for separating sparse from low-rank
components in all conditions. They recommendλ = max(m, n)−

1

2

but also note that the decomposition can be improved by choos-
ing λ in light of prior knowledge about the solution. In prac-
tice, we have found that the decomposition of music audio is very
sensitive to the choice ofλ with frequently no single value able
to achieve a satisfying separation between voice and instrumen-
tal parts across a whole recording. This is illustrated in Fig. 2,
which shows the waveforms of the resynthesized separated voice
obtained with the RPCA-PCP formulation for variousλ. Forλ =
λ1 = 1/

p

max(m,n) andλ2 = 2∗λ1, aroundt = 1.15 s (dashed
rectangle) there is a non-zero contribution in the voice layer but no
actual lead vocal. This is eliminated with larger values ofλ, such
asλ = 5 ∗ λ1, 10 ∗ λ1 but at the expense of a very poor quality
voice estimate: the resulting signal consists of percussive sounds
and higher harmonics of the instruments, and does not resemble
the voice. Note that similar observations have been made in the
context of video surveillance [39].

To address the problem of variations inλ, we propose an adap-
tive variant of the RPCA consisting of a weighted decomposi-
tion that incorporates prior information about the music content.
Specifically, voice activity information is used as a cue to ad-
just the regularization parameter through the entire analyzed piece
in the (3b) step, and therefore better match the balance between
sparse and low-rank contributions to suit to the actual music con-
tent. This idea is related to previous theoretical work [40,41, 42],
but to our knowledge, its application in the framework of RPCA is
new.

We consider a time segmentation of the magnitude spectro-
gram intoNblock consecutive (non-overlapping) blocks of vocal /
non-vocal (background accompaniment) segments. We can rep-
resent the magnitude spectrogram as a concatenation of column-
blocksD = [D1D2 · · ·DNblock], the sparse layer asE = [E1 · · ·ENblock]
andGE = [GE

1 · · ·GE
Nblock

].
We can minimize the objective function with respect to each

column-block separately. To guide the separation, we aim atset-
ting a different value ofλl, l ∈ [1, Nblocks] for each block ac-
cording to the voice activity side information. For each block, the
problem is equivalent to Eq. (5) and accordingly, the solution to
the resulting problem:

Ek+1

l = min
El



λl‖El‖1 +
µk

2
‖El − GE

l ‖2
F

ff

is given by:
Ek+1

l = S λl
µk

[GE
l ] (6)
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Algorithm 1 Adaptive RPCA (A-RPCA)

Input: spectrogramD, blocks,λ, λ1, . . . , λNblocks

Output: E, A
Initialization: Y 0 = D/J(D) where J(D) =
max(‖D‖2, λ

−1‖D‖∞); E0 = 0; µ0 > 0; ρ > 1;
k = 0
while not convergeddo

update A:
(U, Σ, V ) = SV D(D −Ek + Y k

µk ); Ak+1 = US 1

µk
[Σ]V T

update E:
for each blockl do

λ = λl;

Et+1

l = S λl
µk

[Dl − Ak+1

l +
Y k

l

µk ]

end for
Et+1 = [Et+1

1 Et+1

2 · · ·Et+1

Nblock
]

update Y , µ:
Y k+1 = Y k − µk(Ak+1 + Ek+1 − D)
µk+1 = ρ · µk

k = k + 1
end while

Denoteλv the constant value of the regularization parameterλ
used in the basic formulation of RPCA for voice separation [18].
To guide the separation, in the A-RPCA formulation we assign
to each block a valueλl in accordance with the considered prior
music structure information. Using a largeλl in blocks without
leading voice will favor retaining non-zero coefficients inthe ac-
companiment layer. Denoting byΩV the set of time frames that
contain voice, the values ofλl are set as:

∀ l ∈ [1, Nblock]



λl = λv if El ⊂ ΩV

λl = λnv otherwise
(7)

with λnv > λv to enhance sparsity ofE when no vocal activity
is detected. Note that instead of two distinct values ofλl, fur-
ther improvements could be obtained by tuningλl more precisely
to suit the segment characteristics. For instance, vibratoinforma-
tion could be used to quantify the amount of voice in the mixture
within each block and to set a specific regularization parameter ac-
cordingly. The update rules of the A-RPCA algorithm are detailed
in Algorithm 1.

In Section 4, we investigate the results of adaptive-RPCA with
both exact (ground-truth) and estimated vocal activity information.
For estimating vocal activity information, we use the voicing de-
tection step of the melody extraction algorithm implemented in
the MELODIA Melody Extraction vamp plug-in4, as it is freely
available for people to download and use. We refer the readerto
[26] and references therein for other voicing detection algorithms.
The algorithm for the automatic extraction of the main melody
from polyphonic music recordings implemented in MELODIA is
a salience-based model that is described in [43]. It is basedon
the creation and characterization of pitch contours grouped using
auditory streaming cues, and includes a voice detection step that
indicates when the melody is present; we use this melody location
as an indicator of leading voice activity. Note that while melody
can sometimes be carried by other instruments, in the evaluation
dataset of Section 4 it is mainly singing.

4http://mtg.upf.edu/technologies/melodia

4. EVALUATION

In this section, we present the results of our approach evaluated on
a database of complete music tracks of various genres. We com-
pare the proposed adaptive method with the baseline method [18]
as well as another state-of-the-art method [16]. Sound examples
discussed in the article can be found at:
http://papadopoulosellisdafx14.blogspot.fr.

4.1. Parameters, Dataset and Evaluation Criteria

To evaluate the proposed approach, we have constructed a database
of 12 complete music tracks of various genres, with separated vo-
cal and accompaniment files, as well as mixture versions formed
as the sum of the vocal and accompaniment files. The tracks, listed
in Tab. 1, were created from multitracks mixed in Audacity5, then
exported with or without the vocal or accompaniment lines.

Following previous work [18, 44, 15], the separations are eval-
uated with metrics from the BSS-EVAL toolbox [45], which pro-
vides a framework for the evaluation of source separation algo-
rithms when the original sources are available for comparison.
Three ratios are considered for both sources: Source-to-Distortion
(SDR), Sources-to-Interference (SIR), and Sources-to-Artifacts (SAR).
In addition, we measure the improvement in SDR between the
mixtured and the estimated resynthesized singing voiceê by the
Normalized SDR (NSDR, also known asSDR improvement, SDRI),
defined for the voice as NSDR(ê, e, d) = SDR(ê, e)−SDR(d, e),
wheree is the original clean singing voice. The same measure is
used for the evaluation of the background. Each measure is com-
puted globally on the whole track, but also locally according to the
segmentation into vocal/non-vocal segments. Higher values of the
metrics indicate better separation.

We compare the results of the A-RPCA with musically-informed
adaptiveλ and the baseline RPCA method [18] with fixedλ, us-
ing the same parameter settings in the analysis stage: the STFT of
each mixture is computed using a Hanning window of1024 sam-
ples length with75% overlap at a sampling rate of11.5KHz. No
post-processing (such as masking) is added. After spectrogram de-
composition, the signals are reconstructed using the inverse STFT
and the phase of the original signal.

The parameterλ is set to1/
p

max(m, n) in the baseline method.
Two different versions of the proposed A-RPCA algorithm are
evaluated. First, A-RPCA with exact voice activity information,
using manually annotated ground-truth (A-RPCA_GT), andλl =
λ for singing voice regions andλl = 5∗λ for background only re-
gions. In the other configuration, estimated voice activitylocation
is used (A-RPCA_est), with same settings for theλl.

We also compare our approach with the REPET state-of-the-
art algorithm based on repeating pattern discovery and binary time-
frequency masking [16]. Note that we use for comparison the ver-
sion of REPET that is designed for processing complete musical
tracks (as opposed to the original one introduced in [15]). This
method includes a simple low pass filtering post-processingstep
[46] that consists in removing all frequencies below100Hz from
the vocal signal and adding these components back into the back-
ground layer. We further apply this post-processing step toour
model before comparison with the REPET algorithm.

Paired sample t-tests at the 5% significance level are performed
to determine whether there is statistical significance in the results
between various configurations.

5http://audacity.sourceforge.net
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Table 1: Sound excerpts used for the evaluation;back. proportion of background (no leading voice) segments (in% of the whole excerpt
duration); RecallRec.and False AlarmF.A.voicing detection rate.

Name % back. Rec. F.A. Name % back. Rec. F.A.
1- BeatlesSgt Pepper’s Lonely Hearts Club Band 49.3 74.74 45.56 8 - Bob MarleyIs This Love 37.2 66.22 36.84
2 - BeatlesWith A Little Help From My Friends 13.5 70.10 14.71 9 - Doobie BrothersLong Train Running 65.6 84.12 58.51
3 - BeatlesShe’s Leaving Home 24.6 77.52 30.17 10 -Marvin GayeHeard it Through The Grapevine 30.2 79.22 17.90
4 - BeatlesA Day in The Life 35.6 61.30 63.96 11 -The EaglesTake it Easy 35.5 78.68 30.20
5,6 -Puccinipiece for soprano and piano 24.7 47.90 27.04 12 -The PoliceMessage in aBottle 24.9 73.90 20.44
7 - Pink Noise PartyTheir Shallow Singularity 42.1 64.15 61.83

4.2. Results and Discussion

Results of the separation for the sparse (singing voice) andlow-
rank (background accompaniment) layers are presented in Tables
2, 3, 4 and 5. To have a better insight of the results we present
measures computed both on the entire song and on the singing
voice-active part only, that is obtained by concatenating all seg-
ments labeled as vocal segments in the ground truth.

• Global separation results. As we can see from Tables 2 and
3, using a musically-informed adaptive regularization parameter
allows improving the results of the separation both for the back-
ground and the leading voice components. Note that the larger the
proportion of purely-instrumental segments in a piece (seeTab. 1),
the larger the results improvement (see in particular pieces 1, 7, 8
and 9), which is consistent with the goal of the proposed method.
Statistical tests show that the improvement in the results is signifi-
cant.

As discussed in Section 3, the quality of the separation with
the baseline method [18] depends on the value of the regulariza-
tion parameter. Moreover, the value that leads to the best separa-
tion quality differs from one music excerpt to another. Thus, when
processing automatically a collection of music tracks, thechoice of
this value results from a trade-off. We report here results obtained
with the typical choiceλv = 1/

p

max(m, n) in Eq. (7). Note that
for a given value ofλv in the baseline method, the separation can
always be further improved by the A-RPCA algorithm using a reg-
ularization parameter that is adapted to the music content based on
prior music structure information: in all experiments, fora given
constant valueλv in the baseline method, settingλnv > λv in Eq.
(7) improves the results.

For the singing voice layer, improved SDR (better overall sep-
aration performance) and SIR (better capability of removing music
interferences from the singing voice) with A-RPCA are obtained
at the price of introducing more artifacts in the estimated voice
(lower SARvoice). Listening tests reveal that in some segments
processed by A-RPCA, as for instance segment[1′00′′ − 1′15′′]
in Fig. 3, one can hear some high frequency isolated coefficients
superimposed to the separated voice. This drawback could bere-
duced by including harmonicity priors in the sparse component of
RPCA, as proposed in [20]. This performance trade-off is com-
monly encountered in music/voice separation [14, 47]. However,
we can notice that all three measures are significantly improved
with A-RPCA for the background layer.

• Ground truth versus estimated voice activity location. Im-
perfect voice activity location information still allows an improve-
ment, although to a lesser extent than with ground-truth voice ac-
tivity information. In table 1, we report the accuracy results of the
voicing detection step. Similarly to the measures used for melody

Figure 3: Separated voice for various values ofλ for thePink Noise
Party songTheir Shallow Singularity. From top to bottom: clean
voice, constantλ1 = 1/

p

max(m, n), constantλ = 5∗λ1, adap-
tive λ = (λ1, 5 ∗ λ1).

detection in [48, 12], we consider theVoicing Recall Rate, defined
as the proportion of frames labeled voiced in the ground truth that
are estimated as voiced frames by the algorithm, and theVoicing
False Alarm Rate, defined as the proportion of frames labeled as
unvoiced in the ground truth that are mistakenly estimated to be
voiced by the algorithm. The decrease in the results mainly comes
from background segments classified as vocal segments. However,
statistical tests show that the improvement in the results between
RPCA and A-RPCA_est is still significant.

• Local separation results. It is interesting to note that using
an adaptive regularization parameter in a unified analysis of the
whole piece is different from separately analyzing the successive
vocal/non-vocal segments with different but constant values ofλ
(see for instance the dashed rectangles areas in Fig. 3).

• Analysis of the results on vocal segments: We expect the sep-
aration on background-only parts of the song to be improved with
the A-RPCA algorithm. Indeed the side information directlyin-
dicates these regions where the foreground (sparse) components
should be avoided; this can be clearly seen in Fig. 3. However, the
improvements under the proposed model are not limited to non-
vocal regions only. Results measured on the vocal segments alone
indicate that by using the adaptive algorithm, the voice is also bet-
ter estimated, as shown in Table 3. The improvement over RPCA
is statistically significant, both when using ground truth and esti-
mated voice activity location information. This indicatesthat side
information helps not only to better determine the background only
segments, but also enables improved recovery of the singingvoice,
presumably because the low-rank background model is a better
match to the actual background.

Side information could have been added as a pre- or post-
processing step to the RPCA algorithm. The adaptive-RPCA algo-
rithm presents advantages over such approaches. To analyzethis,
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Table 2: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the whole
song, for all models, averaged across all the songs. RPCA is the base-
line system, A-RPCA_GT is the adaptive version using groundtruth
voice activity information, and A-RPCA_est uses estimatedvoice ac-
tivity.

Entire song
RPCA A-RPCA_GT A-RPCA_est

Voice

SDR (dB) -4.66 -2.16 -3.18
SIR (dB) -3.86 0.74 -0.46
SAR (dB) 8.99 4.81 3.94

NSDR 1.70 4.20 3.18

Back.

SDR (dB) 4.14 6.52 6.08
SIR (dB) 11.48 13.30 12.07
SAR (dB) 5.51 8.03 7.83

NSDR -2.35 0.03 -0.41

Table 3: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the vocal seg-
ments only, for all models, averaged across all the songs. RPCA
is the baseline system, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses esti-
mated voice activity.

Vocal segments
RPCA A-RPCA_GT A-RPCA_est

Voice

SDR (dB) -3.19 -2.00 -1.96
SIR (dB) -2.33 -0.39 0.74
SAR (dB) 9.44 7.27 4.64

NSDR 1.67 2.85 2.90

Back.

SDR (dB) 3.63 5.18 5.28
SIR (dB) 9.95 10.64 10.41
SAR (dB) 5.39 7.32 7.54

NSDR -1.37 0.18 0.29

Table 4: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the whole
song, for all models, averaged across all the songs. RPCA is the base-
line system, A-RPCA_GT is the adaptive version using groundtruth
voice activity information, and A-RPCA_est uses estimatedvoice ac-
tivity. Low-pass filtering post-processing is applied. REPET is the
comparison algorithm [16].

Entire song
RPCA A-RPCA_GT A-RPCA_est REPET

Voice

SDR (dB) -2.76 -0.72 -2.11 -2.20
SIR (dB) -0.17 4.03 2.22 1.34
SAR (dB) 4.33 3.33 2.32 3.19

NSDR 3.60 5.64 4.25 4.16

Back.

SDR (dB) 5.16 7.61 6.81 5.01
SIR (dB) 14.53 14.49 12.99 16.83
SAR (dB) 5.96 9.02 8.44 5.47

NSDR -1.32 1.12 0.33 -1.48

Table 5: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the vocal seg-
ments only, for all models, averaged across all the songs. RPCA
is the baseline system, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses esti-
mated voice activity. Low-pass filtering post-processing is applied.
REPET is the comparison algorithm [16].

Vocal segments only
RPCA A-RPCA_GT A-RPCA_est REPET

Voice

SDR (dB) -1.25 -0.53 -0.83 -0.70
SIR (dB) 1.49 3.04 3.62 3.02
SAR (dB) 5.02 4.46 3.12 4.02

NSDR 3.60 4.32 4.02 4.15

Back.

SDR (dB) 4.85 6.03 6.11 4.80
SIR (dB) 13.07 12.38 11.41 15.33
SAR (dB) 5.91 7.69 8.20 5.41

NSDR -0.14 1.03 1.11 -0.20

we compare the A-RPCA algorithm with two variants of RPCA in-
corporating side information either as a pre- or a post-processing
step:

• RPCA_OV pre: Only the concatenation of segments clas-
sified as vocal is processed by RPCA (the singing voice
estimate being set to zero in the remaining non-vocal seg-
ments).

• RPCA_OV post: The whole song is processed by RPCA
and non-zeros coefficients estimated as belonging to the
voice layer in non-vocal segments are transferred to the
background layer.

Results of the decomposition computed across the vocal seg-
ments only are presented in Table 6. Note that the RPCA_OV post

results reduce to the RPCA results in Table 3 since they are com-
puted on vocal segments only. There is no statistical difference be-
tween the estimated voice obtained by processing with RPCA the
whole song and the vocal segments only. Results are significantly
better using the A-RPCA algorithm than using RPCA_OV pre and
RPCA_OV post. This is illustrated in Figure 4, which shows an
example of the decomposition on an excerpt of theDoobie Broth-
ers songLong Train Runningcomposed of a non-vocal followed
by a vocal segment. We can see that there are misclassified partials
in the voice spectrogram obtained with the baseline RPCA that are
removed with A-RPCA. Moreover, the gap in the singing voice
around frame 50 (breathing) is cleaner in the case of A-RPCA than
in the case of RPCA. Listening tests confirm that the background

Table 6: SDR, SIR and SAR (in dB) and NSDR results
for the voice (Voice) and background layer (Back.), com-
puted across the vocal segments only, averaged across all the
songs. RPCA_OV post is when using the baseline system and
set the voice estimate to zero in background-only segments,
RPCA_OV pre is when processing only the voice segments with
the baseline model, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses es-
timated voice activity.

RPCA_OV post RPCA_OV pre A-RPCA_GT A-RPCA_est

Voice

SDR -3.19 -3.28 -2.00 -1.96
SIR -2.33 -2.31 3.62 0.74
SAR 9.44 8.97 7.27 4.64

NSDR 1.67 1.57 2.85 2.90

Back.

SDR 3.63 3.72 5.18 5.28
SIR 9.95 9.22 10.64 10.41
SAR 5.39 5.85 7.32 7.54

NSDR -1.37 -1.28 0.18 0.29

is better attenuated in the voice layer when using A-RPCA.

• Comparison with the state-of-the-art. As we can see from Ta-
ble 4, the results obtained with the RPCA baseline method arenot
better than those obtained with the REPET algorithm. On the con-
trary, the REPET algorithm is significantly outperformed bythe
A-RPCA algorithm when using ground truth voice activity infor-
mation, both for the sparse and low-rank layers. However, note
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Figure 4: [Top Figure] Example decomposition on an excerpt of
the Doobie BrotherssongLong Train Runningand [Bottom Fig-
ure] zoom between frames [525-580] (dashed rectangle in theTop
Figure). For each figure, the top pane shows the part between0 and
500Hz of the spectrogram of the original signal. The clean sign-
ing voice appears in the second pane. The separated signing voice
obtained with baseline model (RPCA), with the baseline model
when restricting the analysis to singing voice-active segments only
(RPCA_OV pre), and with the proposed A-RPCA model are rep-
resented in panes 3 to 5. For comparison, the sixth pane showsthe
results obtained with REPET [16].

that when using estimated voice activity information, the differ-
ence in the results between REPET and A-RPCA is not statistically
significant for the sparse layer. If we look closer at the results, it
is interesting to note that the voice estimation improvement by A-
RPCA_GT over REPET mainly comes from the non-vocal parts
where the voice estimated is favored to be null. Indeed, Table 5
indicate that the voice estimates on vocal segments obtained with
A-RPCA_GT and REPET are similar. This is illustrated by the
two last panes in the [bottom] Figure 4, which show similar spec-
trograms of the voice estimates obtained with the A-RPCA and
REPET algorithms on the vocal part of the excerpt.

5. CONCLUSION

We have explored an adaptive version of the RPCA technique that
allows the processing of entire pieces of music including local
variations in the music structure. Music content information is
incorporated in the decomposition to guide the selection ofcoeffi-
cients in the sparse and low-rank layers according to the semantic
structure of the piece. This motivates the choice of using a regu-
larization parameter that is informed by musical cues. Results in-
dicate that with the proposed algorithm, not only the background
segments are better discriminated, but also that the singing voice is
better estimated in vocal segments, presumably because thelow-
rank background model is a better match to the actual background.
The method could be extended with other criteria (singer identi-
fication, vibrato saliency. etc.). It could also be improvedby in-
corporating additional information to set differently theregulariza-
tion parameters foreachtrack to better accommodate the varying
contrast of foreground and background. The idea of an adaptive
decomposition could also be improved with a more complex for-
mulation of RPCA that incorporates additional constraints[20] or
a learned dictionary [49].

6. REFERENCES

[1] K. Min, Z. Zhang, J. Wright, and Y. Ma, “Decomposing
background topics from keywords by principal component
pursuit,” inCIKM, 2010.

[2] S. Brutzer, B. Hoferlin, and G. Heidemann, “Evaluation of
background subtraction techniques for video surveillance,”
in CCVPR, 2011, pp. 1937–1944.

[3] E.J. Candès, X. Li, and J. Ma, Y. andb Wright, “Robust
principal component analysis?,”Journal of the ACM, vol.
58, no. 3, Article 11, 2011.

[4] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Will-
sky, “Sparse and low-rank matrix decompositions,” inSysid,
2009.

[5] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-
task low-rank affinity pursuit for image segmentation,” in
ICCV, 2011, pp. 2439–2446.

[6] Z. Zeng, T.H. Chan, K. Jia, and D. Xu, “Finding correspon-
dence from multiple images via sparse and low-rank decom-
position,” inECCV, 2012, pp. 325–339.

[7] F. Yang, H. Jiang, Z. Shen, W. Deng, and D.N. Metaxas,
“Adaptive low rank and sparse decomposition of video using
compressive sensing,”CoRR, vol. abs/1302.1610, 2013.

[8] Y. Peng, A. Ganesh, J. Wright, and Y. Xu, W. andMa, “Rasl:
Robust alignment by sparse and low-rank decomposition for
linearly correlated images,”IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 11, pp. 2233–2246, 2012.

[9] Z. Shi, J. Han, T. Zheng, and S. Deng, “Online learning
for classification of low-rank representation features andits
applications in audio segment classification,”CoRR, vol.
abs/1112.4243, 2011.

[10] Y.H. Yang, D. Bogdanov, P. Herrera, and M. Sordo, “Music
retagging using label propagation and robust principal com-
ponent analysis,” inWWW, New York, NY, USA, 2012, pp.
869–876.

[11] W. Cai, Q. Li, and X. Guan, “Automatic singer identification
based on auditory features,” 2011.

DAFX-7



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

[12] J. Salamon, E. Gómez, D.P.W. Ellis, and G. Richard,
“Melody extraction from polyphonic music signals: Ap-
proaches, applications and challenges,”IEEE Signal Pro-
cess. Mag., 2013.

[13] R.B. Dannenberg, W.P. Birmingham, B. Pardo, N. Hu,
C. Meek, and G. Tzanetakis, “A comparative evaluation of
search techniques for query-by-humming using the musart
testbed,” J. Am. Soc. Inf. Sci. Technol., vol. 58, no. 5, pp.
687–701, 2007.

[14] B. Zhu, W. Li, R. Li, and X. Xue, “Multi-stage non-negative
matrix factorization for monaural singing voice separation,”
IEEE Trans. Audio, Speech, Language Process., vol. 21, no.
10, pp. 2096–2107, 2013.

[15] Z. Rafii and B. Pardo, “A simple music/voice separation
method based on the extraction of the repeating musical
structure,” inICASSP, 2011.

[16] A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, and G. Richard,
“Adaptive filtering for music/voice separation exploitingthe
repeating musical structure,” inICASSP, 2012.

[17] D. FitzGerald, “Vocal separation using nearest neighbours
and median filtering,” inISSC, 2012.

[18] P.S. Huang, S.D. Chen, P. Smaragdis, and M. Hasegawa-
Johnson, “Singing voice separation from monaural record-
ings using robust principal component analysis,” inICASSP,
2012.

[19] C.L. Hsu and J.S.R. Jang, “On the improvement of singing
voice separation for monaural recordings using the mir-1k
dataset,” IEEE Trans. Audio, Speech, Language Process.,
vol. 18, no. 2, pp. 310–319, 2010.

[20] Y.H. Yang, “On sparse and low-rank matrix decomposition
for singing voice separation,” inMM, 2012, pp. 757–760.

[21] M. Moussallam, G. Richard, and L. Daudet, “Audio source
separation informed by redundancy with greedy multiscale
decompositions,” inEUSIPCO, 2012, pp. 2644–2648.

[22] S.G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,”IEEE Trans. Audio, Speech, Lan-
guage Process., vol. 41, no. 12, pp. 3397–3415, 1993.

[23] P. Sprechmann, A. Bronstein, and G. Sapiro, “Real-timeon-
line singing voice separation from monaural recordings using
robust low rank modeling,” inISMIR, 2012.

[24] A. Lefévre, F. Glineur, and P.A. Absil, “A nuclear-norm
based convex formulation for informed source separation,”
in ESANN, 2013.

[25] Y.H. Yang, “Low-rank representation of both singing voice
and music accompaniment via learned dictionaries,” inIS-
MIR, 2013.

[26] J. Salamon,Melody Extraction from Polyphonic Music Sig-
nals, Ph.D. thesis, Department of Information and Commu-
nication Technologies Universitat Pompeu Fabra, Barcelona,
Spain, 2013.

[27] A.L. Berenzweig and D.P.W. Ellis, “Locating singing voice
segments within music signals,” inWASPAA, 2001, pp. 119–
122.

[28] T.L. Nwe and Y. Wang, “Automatic detection of vocal seg-
ments in popular songs,” inProc. ISMIR, 2004, pp. 138–145.

[29] L. Feng, A.B. Nielsen, and L.K. Hansen, “Vocal segment
classification in popular music.,” inISMIR, 2008, pp. 121–
126.

[30] M. Fazel, Matrix Rank Minimization with Applications,
Ph.D. thesis, Dept of Elec. Eng., Stanford Univ., 2002.

[31] B. Recht, M. Fazel, and P.A. Parrilo, “Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm
minimization,” SIAM Rev., vol. 52, no. 3, pp. 471–501, 2010.

[32] E.J. Candès and B. Recht, “Exact matrix completion via con-
vex optimization,” Found. Comput. Math., vol. 9, no. 6, pp.
717–772, 2009.

[33] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma,
“Fast convex optimization algorithms for exact recovery of
a corrupted low-rank matrix,” Tech. Rep. UILU-ENG-09-
2214, UIUC Tech. Rep., 2009.

[34] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange mul-
tiplier method for exact recovery of corrupted low-rank ma-
trices,” Tech. Rep. UILU-ENG-09-2215, UIUC, 2009.

[35] Xiaoming Yuan and Junfeng Yang, “Sparse and low-rank
matrix decomposition via alternating direction methods,”
Preprint, pp. 1–11, 2009.

[36] J.F. Cai, E.J. Candès, and Z. Shen, “A singular value thresh-
olding algorithm for matrix completion,”SIAM J. on Opti-
mization, vol. 20, no. 4, pp. 1956–1982, 2010.

[37] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. R. Stat. Soc. Series B, vol. 58, no. 1, pp. 267–288,
1996.

[38] S. Chen, L. David, D. Donoho, and M. Saunders, “Atomic
decomposition by basis pursuit,”SIAM Journal on Scientific
Computing, vol. 20, pp. 33–61, 1998.

[39] Z. Gao, L.F. Cheong, and M. Shan,Block-Sparse RPCA for
Consistent Foreground Detection, vol. 7576 ofLecture Notes
in Computer Science, pp. 690–703, Springer Berlin Heidel-
berg, 2012.

[40] Y. Grandvalet, “Least absolute shrinkage is equivalent to
quadratic penalization,” inICANN 98, L. Niklasson, M. Bo-
den, and T. Ziemke, Eds., Perspectives in Neural Computing,
pp. 201–206. Springer London, 1998.

[41] H. Zou, “The adaptive lasso and its oracle properties,”J. Am.
Statist. Assoc., vol. 101, no. 476, pp. 1418–1429, 2006.

[42] D. Angelosante and G. Giannakis, “Rls-weighted lasso for
adaptive estimation of sparse signals,” inICASSP, 2009, pp.
3245–3248.

[43] J. Salamon and E. Gómez, “Melody extraction from poly-
phonic music signals using pitch contour characteristics,”
IEEE Trans. Audio, Speech, Language Process., vol. 20, pp.
1759–1770, 2012.

[44] J.L. Durrieu, G. Richard, B. David, and C. Fevotte, ,”IEEE
Trans. Audio, Speech, Language Process., vol. 18, no. 3, pp.
564–575, March 2010.

[45] E. Vincent, R. Gribonval, and C. Fevotte, “Performancemea-
surement in blind audio source separation,”IEEE Trans. Au-
dio, Speech, Language Process., vol. 14, no. 4, pp. 1462–
1469, 2006.

[46] D. FitzGerald and M. Gainza, “Single channel vocal sepa-
ration using median filtering and factorisation techniques,”
ISAST Transactions on Electronic and Signal Processing,
vol. 4, no. 1, pp. 62–73, 2010.

[47] Z. Rafii, F. Germain, D.L. Sun, and G.J. Mysore, “Com-
bining modeling of singing voice and background music for
automatic separation of musical mixtures,” inISMIR, 2013.

[48] G. E. Poliner, D. P. W. Ellis, F. Ehmann, E. Gómez, S. Stre-
ich, and B. Ong, “Melody transcription from music audio:
Approaches and evaluation,”IEEE Trans. Audio, Speech,
Language Process., vol. 15, no. 4, pp. 1247–1256, 2007.

[49] Z. Chen and D.P.W. Ellis, “Speech enhancement by sparse,
low-rank and dictionary spectrogram decomposition,” in
WASPAA, 2013.

DAFX-8


	1  Introduction
	2  Robust Principal Component Analysis via Principal Component Pursuit
	3  Adaptive RPCA (A-RPCA)
	4  Evaluation
	4.1  Parameters, Dataset and Evaluation Criteria
	4.2  Results and Discussion

	5  Conclusion
	6  References

