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ABSTRACT

In recent work, the construction of non-uniform generalized Gabor
frames for the time-frequency analysis of signals has been intro-
duced. In particular, while preserving perfect reconstruction, these
frames allow for tilings of the time-frequency plane with arbitrary
allocation of partially overlapping frequency bands or time inter-
vals.

In a recent paper, the author demonstrated that the construc-
tion of such frames can be entirely based on warping operators,
which are specified by the required frequency or time warping
maps, which, in turn, interpolate the desired frequency or time
intervals edges. However, while the online computation of Ga-
bor expansions on non-uniform time intervals presents little or no
problem, the computation of Gabor expansions on non-uniform
frequency bands requires knowledge of the Fourier transform of
the entire signal, which precludes online computation.

In this paper we introduce approximations and ideas for the de-
sign of nearly perfect reconstruction analysis and synthesis atoms,
which allow for the online computation of time-frequency repre-
sentations on non-uniform frequency bands.

1. INTRODUCTION

Adapting time-frequency representations, such as the phase
vocoder or Short-Time Fourier Transform (STFT), to features of
the sound signals or to characteristics of perception, such as glis-
sando, vibrato and 12-tone note system, is a desired goal in the
analysis, synthesis and processing and in several contexts ranging
from music information retrieval to transformations and special ef-
fects.

The STFT’s uniform frequency bands can be transformed into
non-uniform frequency bands by means of a frequency map, i.e. a
monotonically increasing function remapping the frequency axis,
as shown in Fig. 1 for adaptation to an equally tempered scale with
a constant Q 1/3 octave band splitting.

In a similar way, non-uniform analysis time intervals can be
allocated by remapping the time axis of the signal prior to per-
forming uniform time-frequency analysis. The uniform analysis
of the time warped signal achieves non-uniform time resolution.

Warping the signal prior to STFT analysis is equivalent to in-
verse warping the representative elements, i.e. the atoms of the
representation.

However, being a time-shift dependent operation, frequency
warping disrupts the time organization of signals. Uniform time-
frequency analysis of the frequency warped signal results in a
frequency dependent distortion of the time axis in the warped
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Figure 1: Frequency warping uniform frequency bands according
to a 1/3 of octave scale (top); resulting frequency band character-
istics (bottom). Here b is the frequency shift in Hz of the original
uniform bands.

time-frequency representation. Similarly, the time warped time-
frequency representation shows time dependent distortion of the
frequency axis. Thus, warping one variable prior to uniform time-
frequency analysis affects the conjugate variable in the representa-
tion plane.

In recent work [1, 2, 3], the problem of the construction of
flexible frames that allow for arbitrary selection of the frequency
bands of their atoms was addressed. In [3] it is shown that the
required allocation of generalized Gabor atoms can be specified
according to a frequency or time warping map. In [4] the STFT
redressing method is introduced, which, with the use of additional
warping in time-frequency, shows under which conditions one can
have generalized Gabor frames. These conditions are dictated by
the interaction of sampling in time-frequency and frequency or
time warping operators.

The results in the previously cited work show that arbitrary al-
location of the atoms is generally possible in the so called painless
case, i.e. in the case of finite time support of the windows for arbi-
trary time interval allocation and of finite frequency support of the
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windows for arbitrary frequency band allocation.
Since online computation of the generalized Gabor analysis /

synthesis is only possible with finite duration windows, the arbi-
trary frequency band allocation is not exactly feasible in applica-
tions that require real-time, while the arbitrary time interval allo-
cation presents little or no problem.

In this paper, we address the problem of online computation
of generalized Gabor analysis with arbitrary frequency band allo-
cation, resorting to approximations that lead to near perfect recon-
struction methods.

The paper is organized as follows. In Section 2 we review
the concept of applying time and frequency warping to time-
frequency representations derived from the continuous time Short-
Time Fourier Transform, pointing out the problems introduced by
dispersion and resolving them with the redressing method, which
involves a further warping operations in the time-frequency do-
main. In Section 3 we apply the redressing method to frames,
which allow for sampled time-frequency analysis and synthesis,
and we provide the conditions by which the redressing of disper-
sion is exact. In Section 4 we introduce approximations suitable
for the online computation of redressed frame expansions. In Sec-
tion 5 we draw our conclusions.

2. REDRESSED WARPED TIME-FREQUENCY

In this section we review concepts that lead to the redressing
method for the time alignment of the frequency warped Short-
Time Fourier Transform (STFT).

In order to set the notation, the uniform STFT is obtained by
applying the operator S to the signal s:

[Ss] (τ, ν) = 〈s, hτ,ν〉 = 〈s,TτMνh0,0〉 =∫ +∞

−∞
s(t)h0,0(t− τ)e−j2πν(t−τ)dt,

(1)

where Tτs(t) = s(t − τ) is the time-shift operator, Mνs(t) =
ej2πνts(t) is the modulation operator and the overbar denotes
complex conjugation. The operator S acts over time signals and
the frequency ν is considered as a parameter. In (1), the analysis
windows

hτ,ν(t) = [TτMνh0,0] (t) = h0,0(t− τ)ej2πν(t−τ) (2)

are modulated and shifted versions of a unique time window h0,0.
Their Fourier transforms are related to the Fourier transform of the
original window ĥ0,0 as follows:

ĥτ,ν(f) = ĥ0,0(f − ν)e−j2πfτ , (3)

which are frequency shifted and modulated versions of the Fourier
transform of the window h0,0.

Since [Ss] (τ, ν) = s(τ) ∗ h0,ν(−τ), where the symbol ∗
denotes convolution, one can rewrite (1) in the frequency domain
w.r.t. τ as follows:[

Ŝs
]
(f, ν) = ĥ0,ν(f)ŝ(f) = ĥ0,0(f − ν)ŝ(f). (4)

Non-uniform time-frequency representations can be obtained from
uniform ones via time and / or frequency warping, as discussed in
Section 2.2, after we formally introduce warping operators in the
next section.

2.1. Warped STFT

The warped STFT can be obtained by warping the signal prior
to applying the STFT operator. The most general warping op-
erator involves combined time-frequency warping, i.e. time de-
pendent frequency warping or, equivalently, frequency dependent
time warping. For the purpose of this paper we consider separa-
ble warping, which can be computed by cascading time invariant
frequency warping with frequency independent time warping. We
mostly focus on pure frequency warping.

A 1D warping operator performs a remapping of the abscissae,
as obtained through function composition. A time warping oper-
ator Wγ is completely characterized by a function composition
operator in the time domain:

stw = Wγs = s ◦ γ, (5)

where γ is the time warping map and stw is the time-warped sig-
nal. Similarly, a frequency warping operator Wθ̃ is completely
characterized by a function composition operator Wθ in the fre-
quency domain:

ŝfw = Ŵθ̃s = Ŵθ̃ ŝ = Wθ ŝ = ŝ ◦ θ, (6)

where θ is the frequency warping map, which transforms the
Fourier transform ŝ = Fs of a signal s into the Fourier trans-
form ŝfw = Fsfw of another signal sfw, where F is the Fourier
transform operator and the hat over a symbol denotes the Fourier
transformed quantity (signal or operator). We affix the˜symbol
over the map θ as a reminder that the map operates in the frequency
domain. Accordingly, we have Wθ̃ = F

−1Ŵθ̃F = F−1WθF .
If the warping map is one-to-one and almost everywhere dif-

ferentiable then a unitary form of the warping operator can be
defined by amplitude scaling, as given by the square root of the
derivative of the map (dilation function). For example, a unitary
frequency warping operator Uθ̃ has frequency domain action

ŝfw(ν) =
[
Ûθ̃s

]
(ν) =

√∣∣ dθ
dν

∣∣ŝ(θ(ν)), (7)

where ν denotes frequency. We assume henceforth that all warping
maps are almost everywhere increasing so that the magnitude sign
can be dropped from the derivative under the square root.

2.2. Warped Time-Frequency Representations

Remapping signals prior to STFT allows for a reinterpretation of
the representation elements: while the organization of the repre-
sentation (tiling) remains the same, the elements capture differ-
ent components of the signal. Time warping dilates / shrinks and
displaces the characteristic analysis time intervals (resolution and
centers) w.r.t. signals. Frequency warping remaps the character-
istic analysis frequency bands w.r.t. signals (bandwidths and cen-
ters).

Given a frequency warping operator Wθ̃ , the warped STFT is
defined through the operator Sθ̃ as follows

[Sθ̃s] (τ, ν) = [SWθ̃s] (τ, ν) =

〈Wθ̃s, hτ,ν〉 =
〈
s,W†

θ̃
hτ,ν

〉
,

(8)

which is indeed a warped version of (1), where W†
θ̃

is the adjoint
of the warping operator. If the warping operator is unitary then
we have W†

θ̃
= W−1

θ̃
= Wθ̃−1 . In that case, warping the signal
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prior to STFT is perfectly equivalent to perform STFT analysis
with inversely frequency warped windows. The warped STFT is
unitarily equivalent to the STFT so that a number of properties
concerning conditioning and reconstruction hold [5].

The Fourier transforms of the frequency warped STFT analy-
sis elements are

ˆ̃
hτ,ν(f) =

[
̂Wθ̃−1hτ,ν

]
(f) =√

dθ−1

df
ĥ0,0(θ

−1(f)− ν)e−j2πθ
−1(f)τ ,

(9)

which shows how the analysis elements are obtained from fre-
quency warped modulated windows centered at frequencies f =
θ(ν). The windows are time-shifted with dispersive delay, where
the group delay is τ dθ

−1

df
.

Frequency warping generally disrupts the time organization of
signals. Indeed, the time-shift operator Tτ does not commute with
the frequency warping operator:[

Ŵθ̃Tτs
]
(ν) =

[
WθT̂τs

]
(ν) = e−j2πθ(ν)τ ŝ(θ(ν)), (10)

which is different from
[
T̂τWθ̃s

]
(ν) = e−j2πντ ŝ(θ(ν)), unless

the map θ is the identity map. Thus, an event that starts at time
T in the original signal, is dispersed into events starting at times
φd(ν)T , where φd(ν) = θ(ν)/ν is the phase delay of the warping
map, which depends on frequency unless the map is linear.

In the applications we would like to produce spectrograms
with non-uniform time or frequency resolution but the dispersion
introduced by warping results in misalignment and spreading of
the time-frequency components in the conjugate variable of the
warped one. In the next section we will show how further warp-
ing in the time-frequency plane can redress the warped representa-
tions.

2.3. Redressing the Warped STFT

To address the problem of realigning the frequency warped STFT
[Sθ̃s] (τ, ν), consider its Fourier transform w.r.t. the time variable
τ . This can be written in the form (4) by replacing the Fourier
transform of the signal with that of the frequency warped signal:[

ŜWθ̃s
]
(f, ν) = ĥ0,0(f − ν)

√
dθ
df
ŝ(θ(f)). (11)

Recall that f is the frequency variable conjugate to time τ in the
time-frequency plane. Performing unitary frequency warping on
this variable by means of the inverse frequency map θ−1 one ob-
tains: [

̂Wθ̃−1SWθ̃s
]
(f, ν) = ĥ0,0(θ−1(f)− ν)ŝ(f), (12)

where we have used the fact that

1 =
d[θ(θ−1(f))]

df
= dθ

dα

∣∣
α=θ−1(f)

dθ−1

df
. (13)

The redressed frequency warped STFT (12) is again in the form of
a time-invariant filtering operation (convolution in time domain)
where the filters are frequency warped versions of the modulated
windows in (4). As a result, the dispersive delays in the analysis

elements (9) are brought back to non-dispersive delays, the Fourier
transform of the redressed analysis elements being

ˆ̃̃
hτ,ν(f) =

[
̂TτWθ̃h0,ν

]
(f) = ĥ0,0(θ

−1(f)− ν)e−j2πfτ .
(14)

It is possible to interpret (12) as the similarity transformation
W†

θ̃
SW

θ̃
on the STFT operator, which is time-shift covariant.

3. REDRESSED WARPED GABOR FRAMES

In this section we review the definition of Gabor and warped Gabor
frames. We would like to apply the same redressing method used
in the previous section to counteract dispersion and realign time.
However, the Gabor expansion coefficients are time-frequency
samples of the STFT so that only a discrete version of time-
frequency unwarping can be set forth.

3.1. Gabor frames

Given a window function h and two sampling parameters a, b > 0,
the set of functions

G(h, a, b) = {TnaMmbh : q, n ∈ Z} (15)

is called a Gabor system. A signal s can be projected over a Ga-
bor system by taking the scalar products 〈s,TnaMmbh〉. These
are exactly evaluations of the STFT of a signal with window h
at the time-frequency grid of points (na, qb). Here we have de-
fined the Gabor system using the same convention as in the def-
inition (1) of the STFT. Usually, Gabor systems are defined with
a reverse order of time-shift and frequency modulation operators,
i.e. {MmbTnah : q, n ∈ Z}. However, the extra phase fac-
tors that are introduced to convert from one definition to the other
are perfectly irrelevant when establishing properties of the system.
Even in the computation the extra phase factors cancel out in the
analysis-synthesis algorithm, so they can be ignored.

A sequence of functions {ψl}l∈I in the Hilbert space H is
called a frame if there exist both positive constant lower and upper
bounds A and B, respectively, such that

A‖s‖2 ≤
∑
l∈I

|〈s, ψl〉|2 ≤ B‖s‖2 ∀s ∈ H, (16)

where ‖s‖2 = 〈s, s〉 is the norm square or total energy of the
signal. Frames generate signal expansions, i.e., the signal can be
perfectly reconstructed from its projections over the frame.

A Gabor system that is a frame is called a Gabor frame. In this
case, the signal can be reconstructed from the corresponding sam-
ples of the STFT. While not unique, reconstruction can be achieved
with the help of a dual frame, which in turn is a Gabor frame gen-
erated by a dual window h̃. Perfect reconstruction depends on the
choice of the window and the sampling grid. One can show that
there exist no Gabor frames when ab > 1.

3.2. Warping Gabor frames

From (16) it is easy to see that any unitary operation on a frame
results in a new frame with the same frame boundsA andB [5]. In
particular, unitary operators can be applied to Gabor frames to ob-
tain new frames. Depending on the operator, the resulting frames
are not necessarily of the Gabor type, as the atoms are not gener-
ated by shifting and modulating a single window function.
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Conceptually, starting from a Gabor frame (analysis)
{ϕn,q}q,n∈Z and dual frame (synthesis) {γn,q}n,q∈Z:

ϕn,q = TnaMqbh

γn,q = TnaMqbg,
(17)

where h and g are dual windows, warped frames can be generated
by unitarily warping the signal s prior to analysis and unitarily
unwarping it after the synthesis:

s = U†
θ̃

∑
n,q∈Z

〈Uθ̃s, ϕn,q〉γn,q =∑
n,q∈Z

〈
s,U†

θ̃
ϕn,q

〉
U†
θ̃
γn,q,

(18)

where Uθ̃ is a unitary frequency warping operator. Defining the
frequency warped frame (analysis) {ϕ̃n,q}q,n∈Z and dual frame
(synthesis) {γ̃n,q}n,q∈Z as follows:

ϕ̃n,q = U†
θ̃
ϕn,q = Uθ̃−1TnaMqbh

γ̃n,q = U†
θ̃
γn,q = Uθ̃−1TnaMqbg,

(19)

one obtains the signal expansion

s =
∑
n,q∈Z

〈s, ϕ̃n,q〉γ̃n,q. (20)

Just as Gabor frames can be obtained by uniformly sampling
the integral STFT, the warped frames can be obtained as a result
of nonuniform sampling in time-frequency. Nonuniform sampling
theorems based on a time warping map were introduced in [6] and
their adaptation to frequency sampling is immediate. Applications
of frequency warping to time-frequency analysis date back to [7].
However, warped Gabor frames suffer from the same problem as
the warped STFT: as a result of frequency warping, the time or-
ganization of the analysis and synthesis systems is disrupted; the
windows are time-shifted with frequency dependent shifts. Indeed
the Fourier transforms of the warped Gabor frame elements are

ˆ̃ϕn,q(f) =
√

dθ−1

df
ĥ(θ−1(f)− qb)e−j2πθ

−1(f)na, (21)

which bear frequency dispersive delays. In other words disper-
sive time samples are produced by the direct application of the
warped frame analysis. Similar problems are encountered when
time-warping Gabor frames.

The magnitude Fourier transforms ĥ(θ−1(f)− qb) of a set of
frequency warped modulated windows corresponding to 1/3 oc-
tave frequency resolution is shown in Fig. 1, together with a scaled
version 1

b
θ−1 of the warping map, which maps warped frequency

to fractional band number, i.e., the integer values of 1
b
θ−1 corre-

spond to the center frequencies of the bands.

3.3. Redressing Warped Gabor Frames

The evaluation of the warped Gabor expansion coefficients

c̃n,q = 〈s, ϕ̃n,q〉 (22)

is identical to that of a time-frequency sampled warped STFT. In
order to redress the frequency warped STFT into a time covari-
ant representation we have introduced additional inverse frequency

warping with respect to the time variable τ in the time-frequency
plane. However, in the warped Gabor frames (19) this variable is
sampled at instants na. Therefore, in order to parallel our warped
STFT redressing procedure in the warped Gabor frames case, one
can only apply a discrete-time form of frequency warping to the
time index n.

It is possible to show [8, 9] that if the discrete-time frequency
warping map ϑ is one-to-one and onto [− 1

2
,+ 1

2
[, and almost ev-

erywhere differentiable there, then the set of sequences

ηm(n) =

∫ +
1
2

− 1
2

√
dϑ
dν
ej2π(nν−mϑ(ν))dν, (23)

where n,m ∈ Z, forms an orthonormal basis of `2(Z). These
are recognized as generalized Laguerre sequences [10, 11, 12],
which are the inverse discrete-time Fourier transforms of warped
harmonic complex sinusoids in the frequency domain interval
[− 1

2
,+ 1

2
[. The map ϑ can be extended over the entire real axis

as congruent modulo 1 to a 1-periodic function.
Given a sequence {x(n)} in `2(Z), the scalar products

x̃(m) = 〈x, ηm〉`2(Z) (24)

generate another sequence {x̃(m)} in `2(Z), which satisfies

ˆ̃x(ν) =

√
dϑ−1

dν
x̂(ϑ−1(ν)), (25)

where theˆsymbol, when applied to sequences, denotes discrete-
time Fourier transform. Thus, ηm(n) defines the nucleus of an
inverse unitary frequency warping `2(Z) operator D

ϑ̃−1 = D†
ϑ̃

.
Clearly, the transposed conjugate sequences µm(n) = ηn(m)
form the nucleus of a unitary frequency warping `2(Z) operator
Dϑ̃.

In order to limit or eliminate time dispersion in the frequency
warped Gabor expansion, one can apply the discrete-time fre-
quency warping operator Dϑ̃−1 to the time sequence of expansion
coefficients over the warped Gabor frame (22), i.e., with respect
to index n. Since the operator is applied only on the time index,
for generality, one can include dependency of the map and of the
sequences ηn on the frequency index q, which will be useful in the
sequel. The new coefficients are obtained as follows:

˜̃cn,q =
[
D
ϑ̃−1
q
c̃•,q
]
(n) =

∑
m∈Z

ηn,q(m) 〈s, ϕ̃m,q〉 =〈
s,
∑
m∈Z

ηn,q(m)ϕ̃m,q

〉
.

(26)

In order to reconstruct the signal from the coefficients ˜̃cn,q one can
first recover the coefficients c̃n,q , which stems from the complete-
ness and orthogonality of the set {ηn,q}n∈Z, and then combine
them with the dual warped frame elements:

s =
∑
n,q∈Z

c̃n,qγ̃n,q =
∑
n,q∈Z

∑
m∈Z

˜̃cm,qηm,q(n)γ̃n,q. (27)

Hence, defining the redressed frequency warped Gabor analysis
and synthesis frames as follows:

˜̃ϕn,q = D
ϑ̃−1
q
ϕ̃•,q =

∑
m

ηn,q(m)ϕ̃m,q

˜̃γn,q = D
ϑ̃−1
q
γ̃•,q =

∑
m

ηn,q(m)γ̃m,q,
(28)
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from (26) and (27) we have:

s =
∑
n,q∈Z

˜̃cn,q ˜̃γn,q =
∑

n,q∈(Z)

〈
s, ˜̃ϕn,q

〉
˜̃γn,q. (29)

Indeed, the redressing discrete-time warping transformation is
based on an orthonormal and complete expansion in `2(Z), which
leads to the unitary equivalence of the redressed warped frames
with the warped frames.

Exploiting the periodicity of the discrete-time redressing fre-
quency warping map one can show that the Fourier transforms of
the redressed frame is

ˆ̃̃ϕn,q(f) = A(f)ĥ(θ−1(f)− qb)e−j2πnϑq(aθ
−1(f)), (30)

where

A(f) =
√

dθ−1

df

√
dϑq

dν

∣∣∣∣
ν=aθ−1(f)

. (31)

Hence, the effect of the dispersive delays would be counteracted if

ϑq(aθ
−1(f)) = dqf (32)

for any f ∈ R, where dq are positive constants controlling the time
scale in each frequency band. In this case, the Fourier transforms
of the redressed frame elements simply become:

ˆ̃̃ϕn,q(f) =

√
dq
a
ĥ(θ−1(f)− qb)e−j2πndqf . (33)

Furthermore, if all dq are identical, all the time samples would be
aligned to a uniform time scale throughout frequencies.

However, each map ϑq is constrained to be congruent modulo
1 to a 1-periodic function, while the global warping map θ can be
arbitrarily selected. Furthermore, having to be one-to-one in each
unit interval, the functions ϑq can at most experience an increment
of 1 there.

The problem of linearizing the phase is illustrated in Fig. 2,
where the black curve is the amplitude scaled warping map dqθ(ν)
and the gray curve represents the map ϑq(aν), which is 1/a-
periodic, both plotted in the abscissa ν = θ−1(f). Amplitude
scaling the warping map θ allows the values of the map to lie in
the range of the discrete-time warping map ϑq . The amplitude
scaling factors are the new time sampling intervals dq of the re-
dressed warped Gabor expansion.

If the window h is chosen to have compact support in the fre-
quency domain, which is the so called “painless” case, one can
exactly eliminate the dispersive delays with the help of (28). In
fact, suppose for simplicity that the bandwidth of the window h is
Kb, with K a positive integer, i.e., ĥ(f) = 0 for |f | ≥ Kb/2.
The choice of the initial sampling interval a allows all the maps
{ϑq}q∈Z to be arbitrarily specifiable to match dqθ(ν) in the inter-
vals where the Fourier transforms of the warped modulated win-
dows (warped frame elements) are nonzero. Hence, condition (32)
only needs to be satisfied by the map ϑq in this interval. Equiva-
lently, we require

ϑq(aν) = dqθ(ν), (q − K
2
)b < ν < (q + K

2
)b, (34)

which is possible if on one hand the variation of the argument of
the map ϑq in (34) satisfies

a[(q + K
2
)b− (q − K

2
)b] = Kab ≤ 1 (35)

n  =(q -   )b

J (a n)q

d q(n)q

q

n=q    ( f )-1

d  q(n ) 1

1
a

K
2

n- n+

-

n  =(q +   )bK
2

+

qd  q(n )
+

-

Figure 2: Locally eliminating dispersion by means of discrete-time
frequency warping. Black line: curve derived from the original
map θ by amplitude scaling. Gray line: discrete-time frequency
warping characteristics for local delay linearization.

and, on the other hand, if also the variation of the map ϑq over the
warped modulated window bandwidth satisfies

dq[θ((q +
K
2
)b)− θ((q − K

2
)b)] = dqBq ≤ 1, (36)

where Bq = θ((q + K
2
)b) − θ((q − K

2
)b) is the full bandwidth

of the warped modulated window. The first of these conditions
only requires ab ≤ 1/K, which does not depend on q and can
be satisfied assigning sufficient redundancy (oversampling) of the
initial Gabor frame. Incidentally, this is the same condition for the
original Gabor system to form a frame. A valid choice is K = 2,
which requires ab ≤ 1/2. For the second condition, one needs
to select dq ≤ 1/Bq , as intuitively clear from the sampling theo-
rem. If there is an upper bound B to the bandwidths Bq then one
can choose identical dq = 1/B, q ∈ Z, to satisfy the sampling
condition with uniform rates.

In the general case, a perfect time realignment of the compo-
nents is not guaranteed. By construction, the redressed warped
Gabor systems are guaranteed to be frames for any choice of the
maps ϑq satisfying the stated periodicity conditions, even when
the phase is not completely linearized. Locally, within the essen-
tial bandwidths of the warped modulated windows it is possible to
linearize the phase of the complex exponentials in (30).

4. ONLINE COMPUTATION AND APPROXIMATIONS

The warping map design method to eliminate dispersive sampling
in the frequency warped Gabor elements is exact when the ele-
ments are compactly supported in the frequency domain. This type
of frames are definitely suitable for offline computation using sim-
ple and efficient frequency domain techniques [1].

Since the computation of Gabor expansion coefficients is not
causal, in online computation one requires the frame elements to
have compact support in the time domain. Starting with a finite
duration window, one can linearize the phase and choosing suit-
able sampling parameters, one can eliminate dispersion within the
essential bandwidths of the warped modulated windows [4]. How-
ever, this is still not sufficient for online computation purposes.
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In fact, generally, the modulated frequency warped windows will
not have compact support in the time domain even if the original
window had this property.

In order to provide an approximation suitable for online com-
putation, one can observe that the window h is narrow band low
pass and the warping map is differentiable. Therefore, in the argu-
ment of ĥ in (30) one can expand θ−1(f) in Taylor series around
the point θ(qb). Truncating to first order, which corresponds to a
local linearization of the warping map within the bandwidth of the
window, one obtains:

θ−1(f) ≈ qb+ 1

τq
(f − θ(qb)), (37)

where
τq =

dθ
df

∣∣∣
f=qb

(38)

is the group delay associated to the warping map θ(f) at frequency
f = qb. Thus, we have the following approximation:

ĝq(f) = ĥ(θ−1(f)− qb) ≈ ĥ
(
f−θ(qb)
τq

)
(39)

Thus, in this approximation, the window gq(t) is simply obtained
by dilating and modulating the prototype window h, in which the
local group delay acts as scaling factor:

gq(t) = τqh(τqt)e
j2πθ(qb)t. (40)

Hence, if the prototype window has compact support in the time
domain, all its approximate warped modulated versions will have
compact support.

In order to perform online computations of the redressed fre-
quency warped Gabor expansion, one can start from a prototype
window h that has compact support in the time domain, where
aliasing is canceled in the time-domain through overlap-add, such
as the time-domain cosine window, given by

h(t) =

{ √
2b
R
cos πt

T
if − T

2
6 t < +T

2

0 otherwise
(41)

where T is the total duration of the window, R > 1 is an inte-
ger, b is the frequency sampling interval and we let the time shift
parameter a = T/R.

In the redressed frame (30) one replaces the warped modulated
windows by the scaled windows in (39). Furthermore, one per-
forms redressing in the essential bandwidth and considers uniform
time sampling within each analysis band. This requires suitable
setting of the time-frequency sampling rates, which we are goind
to illustrate for the cosine window example.

The Fourier transform of the cosine window, given by

ĥ(ν) =
√

b
2R

(sinc(νT − 1
2
) + sinc(νT + 1

2
)), (42)

is plotted in Fig. 3, from which one can see that the main lobe
has bandwidth 3/T = 3/Ra. Assuming this as the essential
bandwidth in which to linearize the phase, in order to satisfy
(32) here, one needs to select R ≥ 3, which is the analogon of
(35), and dqBq ≤ 1, which is the analogon of (36), where now
Bq = θ(qb+ 3

2T
)− θ(qb− 3

2T
).

Concurrently, the parameter T can be selected according to
the smallest required essential bandwidth. For example, in the
case of a tempered scale warping map, in order to have sufficient

2T
-3 0

Frequency
2T
-5

2T
+3

2T
+5

Figure 3: Magnitude Fourier transform of the cosine window.

frequency resolution one can select 3
2T

= f0, where f0 is the
frequency of the smallest tone to be represented, so that adjacent
tones fall away from the main frequency lobe of the window, which
gives a = 3

2Rf0
.

The frequency shift parameter b must be chosen so that ab ≤
1/R for the original Gabor system to be a frame. For R = 3
and the chosen value of a, this gives b ≤ 2f0/3. However, in
practice one would like the tones of the scale to be adequately
represented by the warped bands; moreover, narrower bands im-
prove the approximation of the warped modulated windows with
the scaled modulated cosine windows. In our examples we chose
b = f0/3. The quality of the approximation can be evaluated by
comparing the magnitude Fourier transform of the widows, shown
in Fig. 4 for the case of 1/3 octave warping map for the centerband
frequency of 356.02 Hz. The two modulated windows are shown
in the time domain in Fig. 5. One can see that the scaled cosine
modulated window closely approximates the warped window on a
finite interval, truncating its tails.

As a refinement of the finite length window approximation,
one can consider the truncation of the modulated warped windows
on a larger interval than that offered by the approximating scaled
cosine. The length of the interval can be estimated at 1.5 the sup-
port of the approximating cosine window. In this case one can ob-
tain a reconstruction error norm in the order of 10−5 of the norm
of the signal for the 1/3-octave warping map. Informal perceptual
tests show no audible artifacts attached to the approximate analysis
and synthesis procedure. A deeper analysis of the approximation
error will be the object of a forthcoming paper.

Since the center frequencies of the warped Gabor frames are
not equally spaced, the computation of the transform cannot be di-
rectly performed by means of the Fast Fourier Transform. Real
multirate filterbanks can be designed by combining the complex
conjugate channels. Therefore the complexity is linear in the num-
ber of samples, where the number of channels is a proportional
factor.
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Figure 4: Magnitude Fourier transforms of the warped modu-
lated window (dotted line) and of the approximating modulated
scaled cosine window (solid line), calculated for a 1/3 octave time-
frequency representation.

5. CONCLUSIONS

In this paper, we have introduced approximation methods suit-
able for the online computation of the analysis and synthesis of
time-frequency representations with arbitrary allocation of the fre-
quency bands based on frequency warping. The problems arising
from the dispersive sampling introduced by warping are solved by
introducing a further warping operation in time-frequency.

The approximation of the frequency warped modulated win-
dows consists in a local linearization of the warping map, which
corresponds to time scaling and modulating a prototype window.
The effect of dispersion is minimized within the essential band-
widths of the frame elements when these are selected, in order to
fulfill causal computational needs, to have compact support in the
time domain. A further refinement is obtained by directly truncat-
ing the modulated windows on larger intervals than the approxi-
mating cosine windows, obtaining higher accuracy in the recon-
struction at the cost of larger storage, as the windows can be pre-
computed offline.

6. REFERENCES

[1] G. A. Velasco, N. Holighaus, M. Dörfler, and T. Grill,
“Constructing an invertible constant-Q transform with non-
stationary Gabor frames,” in Proceedings of the Digital Au-
dio Effects Conference (DAFx-11), Paris, France, 2011, pp.
93–99.

[2] P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus, and G. A. Ve-
lasco, “Theory, implementation and applications of nonsta-
tionary Gabor Frames,” Journal of Computational and Ap-
plied Mathematics, vol. 236, no. 6, pp. 1481–1496, 2011.

[3] G. Evangelista, M. Dörfler, and E. Matusiak, “Phase
vocoders with arbitrary frequency band selection,” in Pro-
ceedings of the 9th Sound and Music Computing Conference,
Copenhagen, Denmark, 2012, pp. 442–449.

−0.1 −0.05 0 0.05 0.1
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (sec.)

Figure 5: Warped modulated window (dotted line) and of the ap-
proximating modulated scaled cosine window (solid line), calcu-
lated for a 1/3 octave time-frequency representation.

[4] G. Evangelista, “Warped Frames: dispersive vs. non-
dispersive sampling,” in Proceedings of the Sound and Mu-
sic Computing Conference (SMC-SMAC-2013), Stockholm,
Sweden, 2013, pp. 553–560.

[5] R. G. Baraniuk and D. L. Jones, “Unitary equivalence : A
new twist on signal processing,” IEEE Transactions on Sig-
nal Processing, vol. 43, no. 10, pp. 2269–2282, Oct. 1995.

[6] J. J. Clark, M. Palmer, and P. Lawrence, “A transforma-
tion method for the reconstruction of functions from nonuni-
formly spaced samples,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 33, no. 5, pp. 1151–1165,
1985.

[7] C. Braccini and A. Oppenheim, “Unequal bandwidth spec-
tral analysis using digital frequency warping,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 22,
pp. 236–244, 1974.

[8] P. W. Broome, “Discrete orthonormal sequences,” Journal
of the ACM, vol. 12, no. 2, pp. 151–168, Apr. 1965.

[9] L. Knockaert, “On Orthonormal Muntz-Laguerre Filters,”
IEEE Transactions on Signal Processing, vol. 49, no. 4, pp.
790 –793, apr 2001.

[10] G. Evangelista, “Dyadic Warped Wavelets,” Advances in
Imaging and Electron Physics, vol. 117, pp. 73–171, Apr.
2001.

[11] G. Evangelista and S. Cavaliere, “Frequency Warped Filter
Banks and Wavelet Transform: A Discrete-Time Approach
Via Laguerre Expansions,” IEEE Transactions on Signal
Processing, vol. 46, no. 10, pp. 2638–2650, Oct. 1998.

[12] G. Evangelista and S. Cavaliere, “Discrete Frequency
Warped Wavelets: Theory and Applications,” IEEE Trans-
actions on Signal Processing, vol. 46, no. 4, pp. 874–885,
Apr. 1998, special issue on Theory and Applications of Fil-
ter Banks and Wavelets.

DAFX-7


	1  Introduction
	2  Redressed Warped Time-Frequency
	2.1  Warped STFT
	2.2  Warped Time-Frequency Representations
	2.3  Redressing the Warped STFT

	3  Redressed Warped Gabor Frames
	3.1  Gabor frames
	3.2  Warping Gabor frames
	3.3  Redressing Warped Gabor Frames

	4  Online computation and approximations
	5  Conclusions
	6  References

