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ABSTRACT

The thin plate is a key structure in various musical instruments,
including many percussion instruments and the soundboard of the
piano, and also is the mechanism underlying electromechanical
plate reverberation. As such, it is a suitable candidate for physical
modelling approaches to audio effects and sound synthesis, such
as finite difference methods—though great attention must be paid
to the problem of numerical dispersion, in the interest of reducing
perceptual artefacts. In this paper, we present two finite difference
schemes on hexagonal grids for such a thin plate system. Numerical
dispersion and computational costs are analysed and compared
to the standard 13-point Cartesian scheme. An equivalent finite
volume scheme can be related to the 13-point Cartesian scheme
and a 19-point hexagonal scheme, allowing for fitted boundary
conditions of the clamped type. Theoretical modes for a clamped
circular plate are compared to simulations. It is shown that better
agreement is obtained for the hexagonal scheme than the Cartesian
scheme.

1. INTRODUCTION

The vibration of thin linear plates is a starting point for the mod-
elling and sound synthesis of many musical systems, such as cym-
bals, gongs, stiff membranes, soundboards, and instrument bodies.
Plate vibration is also important for plate reverberation as a digital
audio effect. Among the various approaches adopted for the sim-
ulation of linear plates, modal techniques are an attractive option,
and can be extended to non-linear equations as well [1, 2]. Finite
difference and finite element methods have also been extensively
adopted [3].

In the modelling of plates using finite difference methods, min-
imising numerical dispersion is critical, as it can introduce artefacts,
such as a mistuning of modes and incorrect modal densities [4].
The latter effect is due to a loss of bandwidth in the simulations, giv-
ing rise to sparsity in frequencies leading to the Nyquist frequency.
Numerical dispersion has been, and continues to be, extensively
studied for the second-order wave equation [5, 6], but aside from [7],
this topic has been neglected for the case of linear plates. Research
has instead focused on simulating the non-linear aspects of plate
vibration, which are arguably more interesting pursuits [8].

The regular hexagonal grid is an alternative to the regular Carte-
sian (square) grid in 2-D, and it has been shown to provide compu-
tationally efficient finite difference schemes for the second-order
wave equation [6], mainly due to the isotropy of discrete Laplacians
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on the hexagonal grid [9]. It is thus of interest to study discrete
biharmonic operators (bilaplacians) on the hexagonal grid, which,
to our knowledge, have not been used for time-domain plate simula-
tions. Aside from some sparse references found throughout the nu-
merical methods and scientific computing literature [9, 10, 11, 12],
relatively little research has featured the hexagonal discrete bihar-
monics that will be employed in this study.

This paper is organised as follows. In Section 2, the model
equation for the plate is introduced and in Section 3, the hexagonal
finite difference schemes are presented along with von Neumann
stability conditions. In Section 4, numerical dispersion and com-
putational efficiency are analysed. In Section 5, finite volume
formulations are presented to implement boundary conditions, and
stability conditions for the boundary value problem are given in
terms of matrix eigenvalues. Section 6 features circular plate sim-
ulations in order to validate the numerical schemes. Conclusions
and future directions of study are given in Section 7.

2. THIN PLATE VIBRATION

Linear lossless vibrations of plates are governed by the following
equation [13]

∂2
tw + κ2∆2w = 0 , (1)

where w(t,x) represents the transverse displacement of the plate, t
is time and t ∈ R+, x := (x, y) ∈ R2 and ∆ is the 2-D Laplacian
operator, ∆ := ∂2

x + ∂2
y , and thus ∆2 is the biharmonic operator,

or bilaplacian. The notation ∂t denotes partial differentiation with
respect to t, and similarly for ∂x and ∂y . κ is a constant defined by

κ =

√
Ea2

12d(1− ν2)
, (2)

where d is the plate density in kg/m3, a is the thickness in m, E is
Young’s modulus in Pa, and ν is the dimensionless Poisson’s ratio.
All of these parameters are positive.

Eq. (1) holds as long as the transverse displacement w is small
in comparison with the thickness a (small deflections regime) [14],
and is the 2-D analogue of the Euler-Bernouilli equation for a beam
[13]. For deflections of the same order of magnitude as a, this
linear equation no longer holds; some simplifying assumptions
on the system must be dropped and a more complicated, non-
linear equation must be taken into account (von Kármán-Föppl
equations [15]).
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3. NUMERICAL SCHEME

3.1. Temporal and spatial grids

We discretise time with the temporal grid T := {nk, n ∈ Z+},
where k is the time-step. Space will be discretised with a spatial
grid G which is either a square (Cartesian) grid: GC := hZ2 or a
hexagonal grid GH defined by

GH := {hVz ∈ R2, z ∈ Z2} , V =

[
1 −1/2

0
√

3/2

]
. (3)

3.2. Difference operators

Let ŵ(t,x) represent an approximation to the solution of interest
w(t,x). A temporal shift operator may be defined as

st±ŵ := ŵ(t± k,x) , (4)

and a centered time-difference operator can then be written as

δtt :=
1

k2
(st+ − 2 + st−) = ∂2

t +O(k2) . (5)

Let us define the spatial shift operator

sr,hŵ := ŵ(t,x + rh) (6)

where r ∈ R2. The simplest discrete Laplacian on the regular
Cartesian grid is then

δC,∆ :=
1

h2

∑
r∈ΩC

(sr,h − 1) = ∆ +O(h2) , (7)

where ΩC is the set of four unit vectors in Z2. On the hexagonal
grid we consider the following two discrete Laplacians

δH,∆ :=
2

3h2

∑
r∈ΩH

(sr,h − 1) = ∆ +
1

16
h2∆2 +O(h4) , (8)

δ∗H,∆ :=
2

9h2

∑
r∈Ω∗

H

(sr,h − 1) = ∆ +
3

16
h2∆2 +O(h4) , (9)

where ΩH and Ω∗H are the sets of six vectors with norms h and
√

3h
in GH respectively. These discrete Laplacians on their respective
grids are illustrated in Fig. 1.
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Figure 1: Stencil weights for discrete Laplacians, scaled by h2

Now we can construct discrete biharmonics by the composition
of discrete Laplacians in the following manner

δC,∆2 := (δC,∆)2 = ∆2 +O(h2) , (10)

δH,∆2 := (δH,∆)2 = ∆2 +
1

8
h2∆3 +O(h4) . (11)

The Cartesian biharmonic δC,∆2 is a stencil that employs 13 points.
The second-order error in (10) is anisotropic so it is not displayed.
The hexagonal biharmonic δH,∆2 is a 19-point stencil, and has an
isotropic second-order error term (the triharmonic operator), which
is due to the isotropic second-order error term in δH,∆.

Another biharmonic on the hexagonal grid, using only 13 points [9],
can be written as a linear combination of δH,∆ and δ∗H,∆:

δ?H,∆2 :=
8

h2
(δ∗H,∆ − δH,∆) = ∆2 +O(h2) . (12)

This discrete biharmonic is different from δC,∆2 and δH,∆2 in
that it cannot be decomposed into the composition of two discrete
Laplacians. The three discrete biharmonics are shown on their
respective grids in Fig. 2.
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Figure 2: Stencil weights for discrete biharmonics, scaled by h4

.

3.3. Finite difference schemes

Combining these operators gives three finite difference schemes
for (1)

δttŵ + κ2δ∆2 ŵ = 0 , (t,x) ∈ T×G , (13)
with possible choices of δ∆2 ∈ {δC,∆2 , δH,∆2 , δ?H,∆2} and its
appropriate spatial grid G ∈ {GC ,GH}. Each scheme has the time
recursion

ŵ+ = (2− µ2δh∆2)ŵ − ŵ− , (14)
where ŵ± := st±ŵ, µ := κk/h2 is a free parameter to be set,
analogous to the Courant number in wave equation schemes, and
δh∆2 := h4δ∆2 . The recursion begins from the two known (or
approximated) values ŵ(0,x) and ŵ(k,x) determined from the
initial conditions. Note that this explicit update is parallelisable,
and thus, well-suited to GPU implementations [16].

3.4. Stability analysis

To determine stability conditions, we can take the Z-transform of
(13) to get the following quadratic equation in z ∈ C

z + µ2Λ− 2 + z−1 = 0 , (15)

where Λ = Λ(ξ) is the Fourier symbol of the operator δh∆2 and
ξ ∈ R2 are the spatial frequencies. For now, we assume that
Λ(ξ) has the property Λ ≥ 0. A stability condition (disallowing
exponential growth) is found from the condition |z| ≤ 1, which
leads to

µ ≤ µmax :=
√

4/Λmax , (16)
where Λmax := maxξ Λ for the spatial frequencies ξ ∈ R2. For
the three biharmonics δC,∆2 , δH,∆2 , δ?H,∆2 (scaled by h4) we have
respectively

ΛC,max = 64 , ΛH,max = 36 , Λ?H,max = 48 . (17)
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The first two values are given by previous studies [11], and the
latter can be found by examining Λ?H,max. Stability limits for the
schemes in (13) are respectively

µC,max = 1/4 , µH,max = 1/3 , µ?H,max =
√

1/12 . (18)

Note that both of the hexagonal schemes give higher µmax than the
Cartesian scheme, which allows for a larger time-step when h is
fixed. On the other hand, if k is fixed to k = 1/Fs, as is common in
sound synthesis applications, this implies a smaller minimum grid
spacing (spatial step). Setting h as small as possible is generally a
good choice for numerical dispersion and maximising the temporal
bandwidth in the approximation [4]. However, this also increases
the density of the spatial grid, and the hexagonal grid is already
2/
√

3 ≈ 1.15 times more dense than the square grid for the same h.
More will be said about this in Section 4.1.

4. NUMERICAL DISPERSION

The dispersion relation for our plate equation is

ω = ±κ|ξ|2 , (19)

where ω ∈ R represents the temporal frequency in rad/s and |ξ| is
the wavenumber in rad/m. The plate system is dispersive, as seen
by its phase velocity:

vφ = κ|ξ| . (20)

In other words, plane-waves with small wavenumbers travel slower
than plane-waves with large wavenumbers.

In order to analyse numerical dispersion of the finite difference
scheme it helps to define a normalised spatial frequency ξh :=
ξh and a normalised frequency ωk := ωk. We can then write
the Fourier symbol for each discrete Laplacian δC,∆, δH,∆, δ∗H,∆,
scaled by h2, as

ΓC(ξh) := −2
∑

r∈ΩC

sin2(ξh · r/2) , (21a)

ΓH(ξh) := −4

3

∑
r∈ΩH

sin2(ξh · r/2) , (21b)

Γ∗H(ξh) := −4

9

∑
r∈Ω∗

H

sin2(ξh · r/2) . (21c)

This allows us to build ΛC , ΛH , Λ?H as follows

ΛC = (ΓC)2 , ΛH = (ΓH)2 , Λ?H = 8(Γ∗H − ΓH) . (22)

Clearly, ΛC and ΛH are non-negative. Examining Λ?H gives the
same result, but we leave this out for brevity. We can then write the
relative phase velocity as

vrel(ξh) :=
ωk(ξh)

µ|ξh|2
, ωk(ξh) := 2 arcsin

(µ
2

√
Λ
)
, (23)

for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenumber cell of the
grid. For the square grid, B is a square centered at zero with sides
of length 2π, whereas for the hexagonal grid, B is the Voronoi cell
(a hexagon) of the lattice spanned by the vectors:(2π, 2π/

√
3)T

and (0, 4π/
√

3)T [6]. The relative phase velocity should ideally
be unity everywhere. Figs. 3(a)-(c) display the relative phase ve-
locities of the finite difference schemes with µ = µmax. Note that

t ↓

(a) 13-pt Cartesian (b) 19-pt hexagonal (c) 13-pt hexagonal

Figure 4: Spatial response to same initial conditions (Gaussian),
demonstrating (an)isotropy. Time-step fixed across schemes. Snap-
shots after 9, 18, 27, and 36 time-steps (top to bottom).

the hexagonal wavenumber cell is slightly bigger than the Carte-
sian wavenumber cell, this is ultimately a result of the denser grid
for the same h. Also, the isotropic characteristic to δH,∆2 can be
seen in Fig. 3b. Some simulations, without taking boundaries into
account, are presented in Fig. 4 to demonstrate how the directional
dependence of the schemes are reflected in the numerical approx-
imation. The initial conditions ŵ(0,x) and ŵ(k,x) are set to a
spatial Gaussian for each case, and the simulations are stopped at
the same time instant. It is clear that the approximation in Fig. 4b
has less directional dependence than the other two.

We would like to compare the dispersion for the Cartesian
scheme to the hexagonal schemes, but this can be difficult since
they are defined in different wavenumber cells. To make for a
better comparison we can use the dispersion relation to reassign
the relative phase velocities to ωk and an angle of propagation
θ ∈ [0, 2π], giving a function vrel(ωk(ξh), θ(ξh)) where

θ(ξh) = arctan ((ξh · ŷ)/(ξh · x̂)) . (24)

where x̂, ŷ are the standard unit vectors in R2. Now we have a
single domain on which to compare relative phase velocities for the
Cartesian and hexagonal schemes. These relative phase velocities,
are displayed in Figs. 3(d-e).

It is from this point of view (temporal frequencies) that we
see large variations between the schemes. There are two effects
of numerical dispersion that are prevalent here. The first is that
the high spatial frequencies are compressed into a small band of
temporal frequencies along the worst-case directions (multiples of
π/2 for the Cartesian scheme, odd multiples of π/6 for hexagonal
schemes). This will cause an unnatural modal density within those
bands of frequencies. The second effect is that the spatial Nyquist
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Figure 3: Contour plots of relative phase velocity as a function of ξh ∈ B, (ξh = (ξxh, ξyh)) (top row), and ωk ∈ [0, π] (radial) and
θ ∈ [0, 2π] (bottom row), where σ = π/4. Contours mark 5% deviations in relative phase velocity.

does not remap to the temporal Nyquist in every direction, creating
directional cutoff frequencies. Thus, above the smallest directional
cutoff frequencies the modal density will be incorrect. These effects
are worst in the Cartesian scheme, while the 19-point hexagonal
scheme experiences the least of these effects.

4.1. Normalising for computational cost

It can be argued that this is still not a fair comparison between
Cartesian and hexagonal schemes, since δH,∆2 uses 19 spatial
points instead of 13 for δC,∆2 . Furthermore, for a fixed time-step
(fixed sample rate) and µ = µmax the hexagonal grid will be
more dense than the Cartesian one. This ultimately leads to more
computation per unit time and space. In principle, it is always
possible to oversample the grid in order to achieve the same levels
of accuracy or simulated bandwidth with the 13-point Cartesian
scheme, so we have to somehow normalise for computational costs.

Three different methods can be adopted to evaluate the finite
difference schemes. First, we will consider the same time-step for
each scheme (no normalisation of computational cost), then we will
normalise for spatiotemporal grid (T × G) densities, and finally
we will consider normalised spatiotemporal densities of addition
operations.

Let the time-step for each scheme be set to k = χk′, where k′

is a constant and χ will represent computational cost normalisation
factors with respect to the Cartesian scheme. As such, χ is always

set as χ = 1 for the Cartesian scheme. When χ = 1 for all schemes,
normalisation for computational cost is ignored. On the other hand,
when χ is chosen as χ =

√
4ηµ with η = 1 for the Cartesian

scheme and η = 2/
√

3 for the hexagonal schemes, then we have
normalised for density of points in space and time, with respect to
the Cartesian scheme. When χ =

√
(4/13)γηµ, where γ is the

number of points in the stencil, then the schemes will be normalised
for the density of additions per space and time, with respect to the
Cartesian scheme. We neglect multiplications for brevity.

The relative phase velocities with these normalisations along
the respective worst-case directions are shown in Fig. 5. It can be
seen that, even after normalising for the extra computational costs,
the hexagonal schemes are more efficient at reducing numerical dis-
persion than the Cartesian scheme. In parallel implementations of
finite difference schemes for plates, such as [17], the normalisation
for additions, which are easily parallelised, may not be important
so we ignore this normalisation for the following discussion.

For the plate problem, reducing the time-step results in a
squared increase in the total number of operations (2x increase
in Fs equals 4x computational cost). With this in mind, we can
compare schemes in terms of a relative computational efficiency
to attain a certain accuracy in the relative phase velocity up to a
given frequency, as in [5] for wave equation schemes. For example,
with data taken from Fig. 5, we can calculate that the 19-point and
13-point hexagonal schemes are respectively 2.1 and 1.8 times more
efficient than the 13-point Cartesian scheme for a one-percent rela-
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Figure 5: Relative phase velocity along worst-case direction for three
schemes, with various normalisations for computational cost. The time-
step in each case is set as k = χk′ for k′ fixed, so χ = 1 implies no
normalisation (same time-step), χ2 = 4ηµ normalises for spatiotemporal
grid densities, and χ2 = (4/13)γηµ normalises for spatiotemporal density
of additions. Note, γ = 13 for the 13-point hexagonal scheme, so the
χ2 = 4ηµ and χ2 = (4/13)γηµ curves overlap.

tive phase velocity error tolerance. Such relative efficiency numbers
could be given for the entire range of phase velocity errors, but it
is unknown how much numerical dispersion is tolerated for audio
applications of this plate model, and whether numerical disper-
sion is perceptually distinguishable from the system’s underlying
dispersion.

Perhaps a more useful comparison is in terms of the global
cutoff frequencies after normalisation, as this gives an idea of the
modal density across the temporal range of frequencies, and thus a
measure of how ‘rich’ the output sound will be. In terms of global
cutoff frequencies, we can calculate that the 19-point and 13-point
hexagonal schemes are respectively 4.3 and 2.8 times more efficient
than the 13-point Cartesian scheme.

5. FINITE VOLUME BOUNDARIES

In this section, we present a finite volume formulation of the 13-
point Cartesian scheme and the 19-point hexagonal scheme, in
order to simplify the implementation of certain boundary conditions.
The 13-point discrete biharmonic on the hexagonal grid does not
decompose into the composition two discrete Laplacians, so it
cannot be easily be interpreted within the following finite volume
framework.

Let V denote a closed 2-D volume and ∂V its boundary. The
finite grid under consideration can then be written as G := G ∩ V .
We start by rewriting (1) as the system of two equations:

∂tv = κ∆m, (25a)
∂tm = −κ∆v , (25b)

where m = m(t,x) is the initial moment and v = v(t,x) is the
initial velocity, which is related to w by:

v = ∂tw (26)

In this system, the two initial conditions to specify are v(0,x) and
m(0,x). Boundary conditions for the plate can be of the clamped
type:

v = n · ∇v = 0 , x ∈ ∂V (27)
where v = 0 denotes a homogeneous Dirichlet condition and
n · ∇v = 0 denotes a homogeneous Neumann boundary condition.
Another set of Dirichlet boundary conditions is the following:

v = m = 0 , x ∈ ∂V . (28)

This set of conditions may be a simplified form of the “simply
supported” conditions for certain geometries, such as rectangular
plates with Cartesian grids.

Consider a tiling of closed cells Ci whose interiors are pairwise
disjoint, and the tiling fills up the volume V , i.e.

⋃
i Ci = V . Now

consider one cell surrounding some point xi ∈ G. For now we will
focus on one of the two equations, as they are similar. Integrating
both sides of (25a) over the volume of the cell and applying the
divergence theorem we have:∫

Ci
∂tv dS = κ

∫
∂Ci

n · ∇mdr , (29)

where ∂Ci denotes the boundary of Ci and where n is the normal
vector pointing out of the cell at r ∈ Ci. Now, consider that
this cell has neighbouring cells Cj with indices j in the set of
neighbour indices Ni. The interiors of cells are pairwise disjoint
but their closures can intersect. Let these intersections be denoted
by Sij := Ci ∩ Cj ; these are the sides of the cell. Furthermore,
let Si(b) := Ci ∩ ∂V denote the boundary side of the cell. Since
∂Ci = (

⋃
j Sij) ∪ Si(b) we can write (29) as∫

Ci
∂tv dS = κ

∑
j∈Ni

∫
Sij
n · ∇mdr + κ

∫
Si(b)

n · ∇mdr , (30)

The last term describes one half of the system at the boundary
and this can be set to zero for Neumann conditions. Let the 2-D
volume (area) of the cell be Vi and the length of each side be Sij
and similarly for the boundary side Si(b). We define the first-order
spatial and time differences:

δt± := ± 1

k
(st± − 1) , (31a)

δijŵj :=
1

hij
(ŵj − ŵi) , (31b)

where hij = ‖xj−xi‖. Consider the variables v̂i := v̂(t+k/2,xi)
and m̂i := m̂(t,xi), representing approximations to v(t+k/2,xi)
and m(t,xi) respectively. Neglecting for now the boundary term,
we can approximate (30) with the following, and (25b) by the same
procedure:

Viδt−v̂i = κ
∑
j∈Ni

Sijδijm̂i , (32a)

Viδt+m̂i = −κ
∑
j∈Ni

Sijδij v̂i . (32b)

Note that the time differences are centered, since v̂i is staggered in
time. The spatial difference will also be centered about the sides
of the cells for the grids (square and hexagonal) considered here.
Now rearranging for the update equations we have:

v̂i = v̂−i +
κk

Vi

∑
j∈Ni

Sijδijm̂i , (33a)

m̂+
i = m̂i −

κk

Vi

∑
j∈Ni

Sijδij v̂i , (33b)

where v̂−i := st−v̂i and m̂+
i := st+m̂i. The update does not

change when Neumann conditions are applied because the ne-
glected boundary term would be set to zero. For the clamped
conditions, it then suffices to fix v̂i = 0 when Si(b) > 0. For
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the conditions (28), we also fix m̂+
i = 0 when Si(b) > 0. If, on

the other hand, we update both values at the boundaries, then this
implies the non-physical, yet well-posed, boundary conditions:

n · ∇m = n · ∇v = 0 , x ∈ ∂V . (34)

We include this boundary condition because it arises naturally from
the finite volume framework and it may provide interesting artificial
reverberation.

To establish the link with the finite difference schemes, we will
now consider square and regular hexagonal tilings of V . These
tilings may be locally irregular [18], which means that cells on
the interior are regular polygons from the Voronoi tessellations of
GC or GH , but cells that intersect with the boundary of V may be
irregular. Now consider a cell Ci with Si(b) = 0 and Sj(b) = 0 for
j ∈ Ni. It is straightforward to show [19] that we can recover the
following discrete Laplacians from the finite volume formulations:

1

Vi

∑
j∈Ni

Sijδij v̂i = δC,∆v̂i , xi ∈ GC , (35a)

1

Vi

∑
j∈Ni

Sijδij v̂i = δH,∆v̂i , xi ∈ GH . (35b)

Then, using the identity δt+δt−v̂i = δttv̂i, it follows that Eqs. (32a)
and (32b) simplify to the second-order 13-point Cartesian and 19-
point hexagonal schemes respectively in v̂i. The variable ŵ+

i can
be recovered from v̂i = δt+ŵi.

5.1. Matrix formulation and stability

The approximations v̂ and m̂ can be written as the N × 1 vectors
v and m with the values of v̂i and m̂i for xi ∈ G (N = |G|)
at a particular time t. The system (32) can be rewritten in the
matrix-vector form:

δt−v = κL1m , (36a)
δt+m = −κL2v , (36b)

where L1 and L2 are N ×N matrices corresponding to δ∆ with
Dirichlet conditions possibly imposed. These matrices can be
defined as follows. Consider L to be either L1 or L2. For each row
i of the matrix L, the entries lij can be written as:

lij =
Sij
Vihij

, i 6= j , (37a)

lii = −
∑
i 6=j

lij . (37b)

In order to impose Dirichlet conditions, L must be modified on
rows pertaining to boundary nodes. To impose the condition v = 0,
we set lij = 0 in L1 when Si(b) > 0. Similarly, to impose the
condition m = 0, we set lij = 0 in L2 when Si(b) > 0. If the
boundary condition is (34), then L1 = L2.

Stability of the system (36) can be checked as follows. Recom-
bining the system into one variable, we have

v+ = (2I− µ2B)v − v− , (38)

where v± := st±v, B = h4L1L2, and where I is the N × N
identity matrix. Here, h represents the minimum hij with j ∈ Ni

(i 6= j) and xi ∈ G . Similarly to the stability analysis pre-
sented for the initial value problem, we have the following “matrix
method” [20] type stability condition

µ ≤
√

4/ρ(B) , (39)

provided that B is positive semi-definite (PSD), and where ρ(B)
denotes the spectral radius of B. That B is PSD follows from (37)
and Gerschgorin’s theorem [21]. It is assumed that the tiling is
constructed such that ρ(B) ≤ Λmax, and thus µ = µmax (as given
previously) will be sufficient for stability. Energy methods [19]
should be employed to get a more instructive stability condition for
the finite-volume meshing pre-processing step, but these will be
left for a future study.

6. SIMULATIONS

6.1. Modes of clamped circular plate

In order to validate these schemes, we simulate a clamped circular
plate with tabulated values for the modal frequencies from [22].
The circular plate of interest has a radius of one metre and κ = 20.
The time-step is set to k = 1/Fs where Fs = 8000 Hz for the
Cartesian scheme, and Fs = 6300 Hz for the hexagonal scheme in
order to (approximately) normalise for the spatiotemporal density
of points. For both schemes we employ a “staircase” approximation
and a “fitted” approximation to the circular domain. These tilings
are shown in Fig. 6.

A normalised Kronecker delta (in space and time) is used as
an excitation for the plate. The spectra of the resulting impulse
responses, for low frequencies, are shown in Fig. 7. It can be
observed that the fitted approximations are better than their staircase
counterparts in both cases (Cartesian and hexagonal). However,
as numerical dispersion is significant in both cases the modes are
misrepresented above 250 Hz. We can also observe that in the
Cartesian case, certain modal frequencies are in numerically split
degenerate mode pairs (e.g. at 220 Hz and 270 Hz). This is a
consequence of anisotropy, and it is clear that the hexagonal scheme
offers an improvement in this respect.

6.2. Modal density and cutoff frequencies

Next we demonstrate the effects of the minimum directional cutoff
frequencies, as discussed in Section 4. In Fig. 8, the same impulse
responses are plotted, but now over the entire range of simulated
temporal frequencies. The minimum cutoff frequencies are denoted
with vertical dashed lines. These refer to 0.33Fs for the Cartesian
scheme, and 0.70Fs for the hexagonal scheme.

For the Cartesian case in Fig. 8a, we can see the sparsity of
modes increases above the (minimum) cutoff frequency, leading
up to the maximum cutoff frequency (the Nyquist). As seen in
Fig. 8b, the hexagonal scheme (normalised for computational cost)
has a higher cutoff frequency and one can notice that the density
of modes near 2000 Hz is greater than in the Cartesian case. With
a 8000 Hz sample rate, in Fig. 8c, the hexagonal scheme provides
a richer spectrum, albeit at a higher computational cost. For these
simulations µ was set to µmax and (39) was satisfied.

Finally, we show the hexagonal circular plate with double
Dirichlet conditions (28) and the double Neumann conditions (34).
The spectra that were obtained are shown in Fig. 9. It can be seen
that these conditions provide spectra qualitatively similar to the
clamped conditions.

DAFX-6



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Square, staircase
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Square, fitted
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Hexagonal, staircase
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Hexagonal, fitted

Figure 6: Finite volume tilings representing circular plate of radius one. Square and hexagonal staircase and fitted tilings.
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(a) Cartesian grid, Fs = 8000 Hz
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(b) Hexagonal grid, Fs = 6300 Hz

Figure 7: Impulse responses and analytical modes (dotted lines) of
clamped circular plate

7. CONCLUSIONS

In this paper, we have presented two finite difference schemes for
thin plate vibration using hexagonal grids. Stability conditions
were presented and numerical dispersion was analysed. It was
shown that better computational efficiency in terms of minimising
numerical dispersion can be achieved using hexagonal grids rather
than Cartesian (square) grids. Equivalent finite volume schemes
were presented for the 13-point Cartesian and 19-point hexagonal
finite difference schemes in order to implement clamped boundary
conditions over irregular geometries. Simulations of clamped circu-
lar plates were presented and it was seen that finite volume grids
that conformed to the domain were more accurate than “staircase”
approximations. Furthermore, modal accuracy was generally better
with the hexagonal scheme for a comparable computational cost
with the Cartesian scheme.

One issue that will be addressed in future work is a more thor-
ough analysis of boundary conditions. The system (25) is but a
simplified version of a more complex system involving bending
and twisting moments [13], which naturally leads to the correct
boundary conditions in the simply supported and free case. This
complete system is arguably more difficult to simulate with unstruc-
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(a) Cartesian grid, Fs = 8000 Hz
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(b) Hexagonal grid, Fs = 6300 Hz
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(c) Hexagonal grid, Fs = 8000 Hz

Figure 8: Comparison of spectra, clamped circular plate

tured grids within a finite volume framework, and this constitutes a
major challenge at the moment.

Another interesting direction for future study is the simulation
of non-linear phenomena. Finite difference simulations of von Kár-
mán equations have been performed in the past over Cartesian grids
[23], but to our knowledge no similar study has been performed
over different grids. Such simulations rely on a discrete version
of the “triple self-adjointness” property of the non-linear operator
[24], which will present new challenges over non-Cartesian grids.

Sound examples and animations from these schemes will be
available at:

http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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(a) Hexagonal grid, double Dirichlet conditions, Fs = 8000 Hz
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(b) Hexagonal grid, double Neumann conditions, Fs = 8000 Hz

Figure 9: Impulse response spectra from circular plate
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