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ABSTRACT

Exponentially damped sinusoids (EDS) model-based analysis of
sound signals often requires a precise estimation of initial ampli-
tudes and phases of the components found in the sound, on top of a
good estimation of their frequencies and damping. This can be of
the utmost importance in many applications such as high-quality
re-synthesis or identification of structural properties of sound gen-
erators (e.g. a physical coupling of vibrating devices). Therefore,
in those specific applications, an accurate estimation of the onset
time is required. In this paper we present a two-step onset time
estimation procedure designed for that purpose. It consists of a
“rough" estimation using an STFT-based method followed by a
time-domain method to “refine" the previous results. Tests car-
ried out on synthetic signals show that it is possible to estimate
onset times with errors as small as 0.2ms. These tests also con-
firm that operating first in the frequency domain and then in the
time domain allows to reach a better resolution vs. speed compro-
mise than using only one frequency-based or one time-based onset
detection method. Finally, experiments on real sounds (plucked
strings and actual percussions) illustrate how well this method per-
forms in more realistic situations.

1. INTRODUCTION

In this paper, the focus is set on percussive sounds that can be
pitched (e.g. guitar, piano or glockenspiel sounds). Such sounds,
and sometimes even non-pitched percussive sounds (see [1]), are
well represented using a signal model of the form:

x[n] =

M∑
m=1

(
Km∑
k=1

am,ke
jφm,kznm,k

)
u[n− nm] + w[n] (1)

where x[n] is the real sound signal; M is the number of transient
events in the sound; u[n] is the unit step function; nm is the sam-
ple marking the start of transient m; Km is the order of the model
for transient m; zm,k = e(δm,k+jωm,k) is its kth pole with radian
frequency ωm,k and damping factor δm,k; am,k and φm,k are the
initial amplitude and phase of zm,k, respectively; and w[n] repre-
sents the stochastic component of the signal.

The estimation of the parameters of this type of model has
been extensively researched [1, 2, 3, 4]. In the scope of this study,
however, it is relevant to note that it is necessary to have a good
estimate of the time parameter nm for those parametric methods
to yield the best possible results. For example, when choosing on
which segment to perform EDS modelling, it is important that the
transient be close to the beginning of the segment to avoid pre-echo

artifacts [1]. Also, one can desire a precise knowledge of the “ini-
tial” amplitudes and phases of the EDS of the model : for example,
in [5], initial amplitudes and phases of the components forming a
partial of a guitar’s string sound are central to the estimation of the
angle at which a guitar string is released.

In this paper we present an onset detection scheme designed
to obtain transients with very fine time resolution in a reasonable
amount of time. To borrow the terminology introduced in [6], this
method makes use of two different detection functions one af-
ter the other.1 More specifically, the detection functions used are
based on frequency- and time-domain energy features rather than
on probabilistic models [6] or a combination of the two [8].

The goal of this paper is to show that the sequential appli-
cation of two simple detection functions leads to significant im-
provements over the results achievable using these two functions
in isolation. Although percussive sounds might be seen as “easy”
sounds to detect onsets on, and despite the fact that methods based
on variations of the energy of the signal to segment audio have
been used for a very long time (e.g. [9]), the valuable contribution
of this paper lies in that the method proposed is of prime interest
in the particular context of the analysis of percussive sounds using
exponentially damped sinusoids. Indeed, it allows to obtain a finer
time resolution than well known methods such as spectral flux [10]
with acceptable computational demands.

The onset detection method is presented in Sec. 2. Experi-
ments on synthetic and real percussive musical sounds are carried
out in Sec. 3 and Sec. 4, respectively. The conclusions drawn from
these experiments, as well as potential extensions are discussed in
Sec. 5.

2. ONSET TIME ESTIMATION PROCEDURE

The onset time estimation procedure studied in this paper is com-
prised of two steps: a first onset determination over the whole du-
ration of the signal based on its STFT with a “rough” time reso-
lution; the second step involves another onset detection with finer
time resolution around each “rough” onset.

The “rough” onset detection starts by computing the STFT of
the signal x[n] as follows:

X[l, b] =

N−1∑
n=0

w[n].x[n+ lH].ej2πnb/Nwith b ∈ [0;N−1] (2)

where w[n] is a Hanning analysis window [11], l is the STFT
frame index, b is the FFT bin index, N is the FFT size, and H

1A similar, though not identical, approach can be found in [7, p. 42].
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is the hop size. The frequency-domain detection function df [l] is
given by:

df [l] =

√√√√N/2∑
b=0

(
|X[l, b]| − |X[l − 1, b]|

)2 (3)

where |X| is the modulus of the complex number X . In essence,
df [l] measures how different two consecutive STFT frames are
from each other using an L2-norm.2 It is clear that the maximum
time resolution is limited by H and depends on N .

As “rough” onsets are often late (see Sec. 3), the “refining”
stage of onset detection is performed on smaller data segments
starting a few hop sizes before each “rough” onset. Another de-
tection function is put to use at this stage: a time-domain method,
based on the variations of the energy of the signal [1]. More specif-
ically, for a given sample index n, the power of the signal is com-
puted over

[
x[n− J ];x[n− 1]

]
(a “backward” window) and over[

x[n+1];x[n+ J ]
]

(a “forward” window), where J is an integer
number of samples. The detection function dt[n] is then computed
as follows:

dt[n] =
1

J
log

( ∑n+J
m=n+1 x

2[m]∑n−1
l=n−J x

2[l] + υ

)
.

n+J∑
k=n+1

x2[k]. (4)

The term in the log function is included in order to empha-
size increases in energy. The variable υ is included in Eq. 4 as a
regularization factor (i.e. to prevent divisions by zero).

The time offsets implied by the definitions of X[l, b], df [n]
and dt[n]3 are compensated for in practice in order to be able to
perform proper comparisons.

As suggested in [6], the detection function is first zero-meaned,
normalized and finally smoothed using a normalized derivative fil-
ter:

H(z) = 1− γ
1− γz−1

, (5)

Peaks are identified on the smoothed detection function using
parabolic interpolation and considering an extremum to be a peak
if it is α dB above the neighbouring minima [12, p. 42]. Once
peaks are detected, an adaptive thresholding scheme [6] is used:
only the peaks with amplitude higher than τad are considered to be
onsets. The expression of τad is as follows:

τad = τ + `dmedian,p, (6)

where τ is an absolute threshold, dmedian,p is the normalized and
smoothed detection function passed through a median filter of or-
der p, and ` controls how much the absolute threshold is affected
by dmedian,p.

After both the “rough” and “refined” onset detection steps, a
pruning mechanism is included to remove repeated onsets. That is,
each onset is compared to neighbouring onsets within a given time
interval (notated I in the rest of the paper). Then, in this interval,
only the onset corresponding to the highest value of the detection
function is kept.

2Note that only half of the bins are considered since x[n] ∈ R.
3N/2 in Eq. 2, (N −H)/2 in Eq. 3 and J/2 in Eq. 4

Table 1: Parameters of the onset estimation procedure used in
Sec. 3.1. Their definition is found in Sec. 2. A sampling rate of
44.1kHz is used and the signals analyzed are such that |x[n]| < 1.

Rough onsets Refined onsets
N : 2048 J : 200
H : 1024 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.1 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 6dB α : 6dB
I : 900 I : 900

3. EXPERIMENTS ON SYNTHETIC SOUNDS

In this section, the two-step onset detection procedure presented
in Sec. 2 is evaluated in several experiments on synthetic pitched
percussive sounds. These sounds reproduce the basic signal struc-
ture of sounds generated by a guitar or a piano. In other words,
there are several modes, or poles zm,k, inside a given string partial
due to the coupling of strings through the bridge of the instrument
[13, 5]. In this paper, synthetic signals are composed of EDS com-
ponents grouped in pairs with very similar frequencies and quite
different damping factors: 100 different sounds, lasting 1 s each
(with Fs = 44.1 kHz), are synthesized with parameters randomly
chosen within specific ranges as follows. Onset times are chosen
within the first 0.5 s of sound segments. The number of partials,
K, is such that K ∈ [1; 6]. In order to approach the ideal structure
of guitar sounds, partials are chosen to be strictly harmonic, with a
fundamental frequency between 82 Hz and 900 Hz. Moreover, am-
plitudes of harmonics are weighted with a formula of the type 1/k2

to mimic the expected spectral slope for the displacement of an
ideally plucked string with rigid terminations [14]. Each harmonic
consists of two EDS, with slightly different frequencies, damping
factors, amplitudes and phases. Only the real part of each signal is
kept, so that the phasors in Eq. (1) are replaced by cos functions.
Finally, some noise is added to the signal in such a way that the
ratio of the maximum value of the signal squared to the power of
the noise is 30dB. These sounds, as well as the real sounds used in
Sec. 4 can be downloaded from this paper’s companion webpage.4

3.1. Comparing “rough" and “refined" estimations

The two-step onset detection is applied to these sounds with the
parameters found in Table 1. The choice of N was motivated
by a desire to ensure that spectral components would be separate
enough that a rapid temporal variation would clearly translate in
energy spreading in more bins. The “refined” onset detection is
performed on a portion of the sound starting 5 hop sizes before the
onset detected at the “rough” stage and ending 1 hop size after.

Fig. 1 depicts the distribution of errors between the true on-
set, n0, and its estimate, n̂0 after both “rough” and “refined” onset
estimations, over the 100 sounds of the experiment. From these
plots, it is clear that the refining step improves the performance
of the onset detection: the median of the error (red line in Fig. 1)

4http://www.music.mcgill.ca/~scherrer/dafx14/
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goes from 500 samples after the “rough" onset detection to 0 af-
ter the “refined” onset detection stage. Also, the spread of the
errors for the “refined" estimation is dramatically reduced com-
pared to the “rough" onset stage. In particular, Fig. 2a shows that
75 % of the error lies between 0 and 3 sample of the target (0-
0.06ms at 44.1kHz) for the “refined" onset detection compared to
the [250;700] sample range (6-16ms) for the “rough" estimation.
It also appears that most of the onsets detected at the “rough” stage
were late compared to the actual onset time (en0 < 0). This jus-
tifies the choice to look for “refined” onsets 5 hop sizes before the
estimated onset and 1 hop size after during the refinement stage.

3000 2500 2000 1500 1000 500 0 500

Rough

Refined

en 0 = n0 − n̂0 (samples)

Figure 1: Distribution of errors made on the estimation of the onset
time (n0) for synthetic signals with randomly chosen parameters.
The plot labelled “Rough” corresponds to the distribution of er-
rors made at the “rough” estimation stage, while the plot labelled
“Refined” represents the error distribution after refinement.

3.2. Testing the robustness to “soft” onsets

After closer inspection of Fig. 1, it appears the outliers (red crosses)
in the “refined" stage correspond to signals where the waveform
of the signal has a smoother start form 0 compared to the other
sounds; signals with “soft" onsets. Thus, another experiment is
carried out to better quantify the performance of the method on
such sounds.

To that end, another set of synthetic sounds with the same gen-
eral structure as those studied in Sec.3.1 is generated. The differ-
ence lies in the fact that the phases of the EDS’s are now all set
to π/2. The results of this experiment are presented in Fig. 3.
The advantage of using the two-step method is still clear, judging
from the drastic improvement of the median of the error between
“rough” and “refined” steps. When comparing the “refined” on-
set detection in this experiment and in the previous experiment,
as in Fig. 2b, one can note a very slight degradation of perfor-
mances when all phases are set to π/2. For example, there are
slightly more outliers at the “refined" stage in the case where all
the phases are set to π/2 than when the phases are all random.
Also, as shown in Fig. 2b, when all phases are set to π/2, there is
a small increase in the error: a median of -4 instead of 0 for the
random phases case, and now 75% of the error is within [-3;-5]
samples ([0.07ms-0.11ms] at 44.1kHz). Despite this slight degra-
dation in this adverse scenario, the performance of the method is
still very satisfying in terms of time resolution.

3.3. Computational time vs. onset time error

This last experiment on synthetic sounds aims at characterizing
how the two-pass onset estimation procedure compares to onset
estimations using only df [l] (cf. Eq.3), or only dt[n] (cf. Eq.4).
The sounds analyzed are the same as those used in Sec. 3.1. The

10 8 6 4 2 0 2

Refined

en 0 = n0 − n̂0 (samples)

(a) Random phases

10 8 6 4 2 0 2

Refined

en 0 = no − n̂o (samples)

(b) Phases all set to π/2

Figure 2: Distributions of the errors on the detected onset time
after refinement, a) for the case of partials with random phases, b)
with phases set to π/2.

3000 2500 2000 1500 1000 500 0 500

Rough

Refined

en 0 = no − n̂o (samples)

Figure 3: Distribution of errors made on the estimation of the onset
time, in the case where all partials have a phase of π/2. The labels
"Rough" and "Refined" refer to the first and second pass of the
onset detection.

parameters for the STFT-based method are the same as those in Ta-
ble 1 for the “rough" estimation, except that the hop size has been
varied between 1024 and 256 samples (so between 23ms and 6ms
at 44.1kHz). Hop sizes smaller than 256 samples yield computa-
tion speeds higher than that of the two-pass estimation procedure
so they are not included in the plot. The parameters for the time-
based method are identical to those in Table 1.

Fig.4 depicts the median value of the computational time5,
tcomp, versus the absolute value of the error on the onset,6 |en0 |, for
the different analysis scenarios. The two-pass onset estimation is
represented by a white disk, while the time-based method is sym-
bolized by a black triangle. Finally, the several instances of the
STFT-based analysis are depicted using grey squares (one for each
hop size used).

The ideal method would lie in the leftmost bottom corner of
the plot as it would mean that this method is very quick and has
no error. With this in mind, it is then clear that the two-pass on-
set estimation procedure studied here outperforms the time-based
method in terms of speed, by a factor of 10. It also performs better

5in Matlab R2012b on a MacBook with a 2GHz processor, 4GB of
RAM.

6As en0 can be negative.
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Figure 4: Median value of tcomp the computation time vs. the me-
dian value of |en0 | = |n0− n̂0| for different estimation scenarios:
the two-pass procedure (white disk), the time-based method (black
triangle), the STFT-based method with varying hop sizes, H (grey
squares). Logarithmic scales are used on both axes.

than the STFT-based method only in terms of error on the onset,
since its median is 0 compared to a minimum error of about 50 for
H = 256. The presence of errors smaller than H is due to the
parabolic interpolation performed after smoothing of the detection
function df [l].

This experiment also confirms the importance of choosing H
properly as it seems to significantly reduce the error on the onset
estimation: ifH = 256, the error is about 7 times less than ifH =
1024 while it only takes about 4 times more to compute. Even for
H = 256, however, the error is still several orders of magnitude
greater than using the two-pass onset estimation procedure.

4. EXPERIMENTS ON MUSICAL SOUNDS

In this section the two-pass onset detection scheme is used on
more realistic signals, that do not exactly meet the model of Eq. 1.
Sec. 4.1 presents a qualitative experiment that illustrates how the
method performs on pitched percussive sounds (a monophonic re-
cording of classical guitar) and on non-pitched percussive sounds
(a monophonic recording of castanets). Sec. 4.2 discusses a quan-
titative evaluation of the method introduced in this paper on a small
set of annotated guitar, piano and castanet sounds.

4.1. Qualitative experiment

An example of this two-pass onset detection method applied to a
monophonic guitar recording is depicted in Fig. 5. In Fig. 5a, the
waveform of the whole audio file is represented and includes both
“rough” and “refined” onset times (dashed black lines and solid
red lines, respectively). Fig. 5b and Fig. 5c feature close-ups of the
7th and 12th notes in Fig. 5a, respectively. Theses two examples
were chosen to show the type of refinement on the “rough" onset
detection that this method offers. One may note that, although on
the whole signal the refinement may seem minor, the cases shown
in Fig. 5b and Fig. 5c represent in fact a substantial improvement
especially for analysis tasks requiring precise knowledge of the
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(b) Close-up of the 7th transient.
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(c) Close-up of the 12th transient.

Figure 5: Whole audiofile with the 7th and 12th transients singled
out. The solid red lines are the “refined” onsets, while the dashed
black lines are the onsets found at the “rough” onset detection
step. Close-ups on transients indicated by arrows in a) are found
in b) and c).

start of the transient. These two examples also indicate that the
two-pass onset detection scheme is relevant for both isolated notes
(Fig. 5b) and notes played closer together (Fig. 5c). The parame-
ters used to obtain these results are listed in Table 2.

In order to demonstrate that the onset time estimation approach
discussed here can also be applied to non-pitched percussive sig-
nals another test was conducted. It uses castanet sounds, often cho-
sen as a test case in audio encoding experiments (e.g. [1]) as they
are quite short with wide energy variations. Fig. 6 depicts both the
rough and refined onsets for a castanet recording analyzed using
the parameters in Table 3. Fig. 6 depicts two different examples of
refinement where the rough onset was late (Fig. 6b) and where the
rough onset was slightly too early (Fig. 6c). This shows that the
method we propose is also well adapted to signals with very short
and sharp transients and could be valuable in audio coding applica-
tions based on EDS modeling or other applications requiring very
accurate estimations of transient times.
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Table 2: Values of the analysis for the guitar recording in Fig. 5a.
The analysis parameters are those presented in Sec. 2 with a sam-
pling rate of 44.1kHz.

Rough onsets Refined onsets
N : 1024 J : 400
H : 512 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.15 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 6dB α : 6dB
I : 2205 I : 900

Table 3: Values of the analysis for the castanet recording in Fig. 6.
The analysis parameters are those presented in Sec. 2.

Rough onsets Refined onsets
N : 1024 J : 400
H : 512 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.1 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 3dB α : 6dB
I : 2205 I : 900

4.2. Quantitative experiment

A preliminary quantitative evaluation has also been carried out to
complement the qualitative observations made on the two previous
examples. The goal of this experiment is to evaluate the improve-
ment resulting from adding a refining stage. The two-pass onset
detection method is thus evaluated on a small set of annotated
sounds. This set is comprised of the guitar and castanet sounds
previously studied, as well as two non distorted guitar sounds and
one piano sound from a small database used for the MIREX2005
Onset Detection task7; they are referred to as guitar2, guitar3 and
piano1 in the rest of this paper. The annotation of the guitar and
castanet sounds was done using the software accompanying [15].

The approach outlined in the instructions of the MIREX Audio
Onset Detection task was implemented8 to perform the evaluation.
In particular, the F-measure [16] was used as the main evaluation
metric:

F = 2
P.R

P +R
(7)

with P =
nTP

nTP + nFP

and R =
nTP

nTP + nFN

where P is the precision, R is the recall and nTP , nFP , nFN
are the numbers of true positive, false positive and false negative

7http://www.tsi.telecom-paristech.fr/aao/en/2011/07/13/onset_leveau-
a-database-for-onset-detection/

8http://www.music-ir.org/mirex/wiki/2014:Audio_Onset_Detection
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(b) Close-up of the 3rd transient.
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Figure 6: Onset detection on a castanet signal. Solid red lines
indicate “refined” onsets, while dashed black lines mark onsets
found at the “rough” onset detection step. In a), the results over
the whole file are depicted, while b) and c) illustrate how the initial
onset time was refined in two particular instances.

detections, respectively. In this paper, for each labelled onset, a
true positive detection is counted if at least one detected onset is
within a certain onset time tolerance, en0,max, of that onset. When
there are no false positive or false negative detections, P = 1 and
R = 1, so F = 1 (see Eq. 7). Conversely, when there are no true
positive detections, F = 0. Thus, for a given sound and a given
set of detected onsets, the value of F will change depending on
the chosen en0,max. It is often taken to be equivalent to 50 ms [6]
for musical tasks. Since the goal of the method presented in this
paper is to provide a fine time resolution for the estimation of EDS
parameters, en0,max values ranging between 44 samples ('1 ms
at 44.1 kHz) and 2205 samples (50 ms at 44.1 kHz) were used.

Fig. 7 depicts the evolution of the F-measure versus en0,max,
the onset time tolerance. Analysis parameters were found man-
ually for all sounds so that they ensured most (if not all) onsets
were found at the rough estimation stage. The tuning of analysis
parameters for each sound is appropriate here as this experiment
aims at quantifying the effect of the refinement of the onset detec-
tion, from the best possible rough onset estimation. The complete
list of parameters used can be found on this paper’s companion
website. There are 5 subplots, one for each recording studied. In
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Figure 7: F-measure versus en0,max for various annotated
sounds.

each subplot, the F-measure obtained after rough (crosses) and re-
fined estimation (circles) is represented as a function of en0,max.
As expected, the general trend for both rough and refined estima-
tion is that F increases as the tolerance increases. In all plots of
Fig. 7, it is clear that adding the refinement stage helps increase F
as en0,max becomes smaller. The refinement stage does not seem
to increase F significantly for a en0,max of 882 samples (20 ms) or
2205 samples (50 ms), except for the piano1 recording in Fig. 7e.
For all recordings, however, it appears that one benefits most from
the refinement stage for tolerances between 176 samples (4 ms)
and 441 samples (10 ms).

The results obtained for the castanet recording (Fig. 7a) are
much better for both stages of the estimation than all the other
sounds. This is most likely due to the fact that this sound was
comprised of well defined bursts of energy that do not really over-
lap in time whereas all the other sounds involve a fair amount of
polyphony, where loud notes can overshadow softer new notes.
In Fig. 7c, the refinement stage and the rough detections yield ap-
proximately similarF values, with a slight advantage to the refined
detection. The reason for this is not entirely clear for now but after
inspecting the results of the rough onset time estimations for all 5
sounds, it appears that the results obtained for that particular sound
are the least satisfying of all five.

5. CONCLUSION

This paper presents and evaluates an onset time estimation pro-
cedure specifically designed for applications when a very precise
onset time estimation is required (of the order of a few tenth of a
millisecond). First, a frequency-domain onset estimation is per-
formed. Then around each of those onsets a time-domain onset
estimation is used in order to “refine" the onset time estimation.

Experiments on synthetic signals mimicking the structure of
guitar sounds show that with this two-pass onset estimation proce-
dure it is possible to obtain onset estimates with errors of at most
0.1ms, 75% of the time. It is also demonstrated that using this two-
step method outperforms using either the STFT-based method or
the time-based method in isolation. Indeed, Fig.4 shows that the
two-pass procedure allows very small error with a small computa-
tion time.

Qualitative and quantitative tests on musical recordings help
evaluate the performance of the method in more realistic condi-
tions. It is indeed shown that adding the refining stage after the
rough estimation helps improve the onset time estimation (increase
the F-measure of that detection) when the time tolerance is be-
tween 4 ms and 10 ms. The difference with the synthetic case
(where onsets were found within 0.1 ms) most likely comes from
a combination of factors: real sounds do not conform exactly to
the signal model of the synthetic sounds; onsets were manually
annotated; the sounds used for testing were polyphonic.

As future work, we plan to investigate the nature of the outliers
in the experiment of Sec. 3.2, itself designed to study the outliers
of the study in Sec.3.1. Also, as hinted by the results in Fig.4, the
choice of parameters of the STFT-based method can have impor-
tant consequences on the error on the onset and on the computation
time. A more systematic evaluation of the effect of N and H on
the performances of the STFT-based method would help explain
those observations. Another avenue for future work would be to
try other methods for the "rough" detection that may be more ro-
bust to polyphony. Also, if one were to use this onset detection
method on large datasets, and as with all onset time estimation
methods, the automatic determination of parameters would be an
interesting avenue for improvement.
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