
Sascha Disch
Bernd Edler

Jürgen Herre
Meinard Müller

Rudolf Rabenstein
Stefan Turowski

17th International Conference on
Digital Audio Effects
Erlangen, Germany, September 1-5, 2014 

ISBN: 978-3-00-046825-4

1
7

th International C
onference on D

igital A
udio Effects

17th International Conference on
Digital Audio Effects
Erlangen, Germany, September 1-5, 2014 

1
7

th International C
onference on D

igital A
udio Effects

Cover3.indd   1 18.08.2014   13:31:13



17th International Conference on
Digital Audio Effects
Erlangen, Germany, September 1-5, 2014 

http://www.dafx14.fau.de/



Credits:
Proceedings produced and cover designed by
Alexander Adami, Fabian-Robert Stöter and Nils Werner
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Foreword

Welcome to DAFx-14

It is our great pleasure to welcome you to the 17th International Conference on Digital Audio
Effects, held 01.09.-05.09.2014 in Erlangen, Germany. Playing a leading role in the developement and
market introduction of today’s audio codecs, Erlangen has a long history in perceptual audio coding
and general audio engineering. Since the late 1970s, the Fraunhofer Institute for Integrated Circuits
(IIS) and the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) both have continuously con-
tributed to audio engineering with cutting-edge research and are still shaping the future of audio and
multimedia. The fruitful collaboration between IIS and FAU is also reflected by the joint organization
of this year’s edition of the DAFx conference. We are deeply honoured of having the opportunity to
host this event at our institutions.

DAFx-14 has a five day programme full of interesting scientific events. The first part of the
conference (01.09.-02.09.2014), which takes place at the IIS (Tennenlohe), mainly consists of tutorials,
demos, and poster presentations. In particular, we have three tutorials on “Multipitch Analysis of
Music Signals” by Anssi Klapuri, on “Audio Structure Analysis of Music” by Meinard Müller, and
“Perceptual Audio Coding” by Jürgen Herre, Sascha Disch, and Bernd Edler. The second part of
the conference (03.09.-05.09.2014) is held at the FAU campus (Südgelände Technische Fakultät H11)
and comprises the oral presentations and further poster presentations of the peer-reviewed scientific
contributions.

The DAFx program also features three distinguished keynote speakers, who give their talks on
Tuesday, Thursday, and Friday. The first keynote with the title “Improving Time-Frequency Upmix
through Time-Domain Processing” is given by Christof Faller, who is managing director at Illusonic
and teaching at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The second keynote
by Geoffroy Peeters from the Institut de Recherche et Coordination Acoustique/Musique (IRCAM)
in Paris addresses the topic of audio indexing for music analysis and music creativity. The third
keynote by Christian Hoyer, who is the head of the Bubenreutheum museum association, will explain
the historic roots of Frankonian world-class musical instrument building in the Erlangen region and,
alongside, point out a quite surprising relation between the Beatles and Erlangen.

The present volume of the proceedings of DAFx-14 contains the complete manuscripts of all peer-
reviewed papers presented at the conference. A total of 63 papers entered the review process, out
of which 44 contributions were selected for the scientific programme. The mode of presentation was
determined after the accept/reject decision and has no relation to the quality of the papers. From the
44 papers, 23 papers were chosen for oral presentation (organized in six sessions), whereas 21 papers
were chosen for poster presentation (organized in two sessions). Oral presentations have a 20-minute
slot (including setup and questions/answers of the audience), whereas the posters are presented in
a 90-minute poster session as well as during coffee breaks. Furthermore, poster presenters have the
opportunity (in two minutes and two slides) to announce orally their poster during two “Fast Forward”
sessions.

Besides the scientific programme, we also prepared several social events in the evenings, including
a welcome reception on Monday, a concert & reception on Tuesday, a conference banquet with music
on Wednesday, as well as a visit to Nuremberg on Thursday.

We are very proud to present to you the proceedings of DAFx-14. The conference program was
made possible thanks to the hard work of many people including the members of the local organization
team, the reviewers from the DAFx-14 programme committee and the DAFx board members. Special



thanks go to this year’s sponsors - Dolby Germany GmbH, iZotope Inc., Native Instruments GmbH
and Soundtoys Inc. - and also to the supporting institutions - the Fraunhofer Institut Integrated
Circuits (IIS), the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the International
Audio Laboratories Erlangen (AudioLabs). Last, but not least, the DAFx-14 programme is possible
only thanks to the excellent contributions of our community in response to our call for participation.
The biggest acknowledgment therefore goes to you, the authors, researchers and participants of this
conference.

The DAFx-14 Conference Committee

Sascha Disch (Fraunhofer IIS, General Chair)
Jürgen Herre (FAU, AudioLabs, General Chair)
Rudolf Rabenstein (FAU, LMS, General Chair)
Bernd Edler (FAU, AudioLabs, Scientific Coordinator)
Meinard Müller (FAU, AudioLabs, Scientific Coordinator)
Stefan Turowski (FAU, AudioLabs, Technical Coordinator)
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(ETSI Telecomunicación - Universidad
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Marc Rébillat
(Equipe Audition, Ecole Normale
Supérieure)

Sigurd Saue
(Norwegian University of Science and Tech-
nology (NTNU), Trodheim)

Lauri Savioja
(Aalto University School of Science and
Technology)

Alex Southern
(Aalto University)

Fabian-Robert Stöter
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(Aalto University, Espoo)

DAFx-IX



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Contents

17th International Conference on Digital Audio Effects (DAFx-14) I

Foreword IV

Conference Committees VI

Contents X

Keynotes 1

Improving Time-Frequency Upmix through Time-Domain Processing
Christof Faller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Audio Indexing for Music Analysis and Music Creativity
Geoffroy Peeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Beatles and Erlangen? Bubenreuth near Erlangen - the Place where the World-Famous
Instruments are Made
Christian Hoyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Tutorials 2

Multipitch Analysis of Music Signals
Anssi Klapuri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Audio Structure Analysis of Music
Meinard Müller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Perceptual Audio Coding
Jürgen Herre, Bernd Edler, Sascha Disch . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Perceptual Audio Coding
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Keynotes

Christof Faller: Improving Time-Frequency Upmix through Time-Domain Pro-
cessing

Abstract Upmix has been broadly used in the professional (broadcast) and consumer (home cinema)
domains, to convert stereo signals to 5.1 surround. Our motivation to add time-domain methods (such
as reverberators, early reflections, equalisers, exciters, and compressors) came originally from the desire
of scalability. At the advent of 3D multi-channel surround, we wanted an upmix that would be scalable
to almost any number of output channels. It became quickly clear, for instance, that ambience signals
to be reproduced with many loudspeakers need to be generated very differently than in a 5.1 upmix.
The initial efforts in adding reverberators were frustrating: while one could hear the potential (amazing
envelopment), difficult items sounded too often too bad. Ultimately, time-domain processing improved
the quality of our upmix beyond scalability. Specifically, I”ll describe: early reflections for depth in
three dimensions, reverberators for generation of multi-channel ambience signals, equalisation of the
center channel, and the use of exciters to enhance room signals.

Geoffroy Peeters: Audio Indexing for Music Analysis and Music Creativity

Abstract Since the end of the 90’s, audio signal analysis has been used more and more in connection
with machine learning for the development of audio indexing. One of the specific types of audio
content targeted by this indexing technologies is music and the corresponding research field named
Music Information Retrieval (MIR). MIR attempt to develop tools for the automatic analysis of music
(score, tempo, chord, key, instrumentation, genre, mood, tag classification).

In this talk, I will review the development of this research field, its connection with other research
fields and the motivation for its development: from the initial search and navigation over large music
collections paradigm (music search engine) to the more recent computational musicology, ethnomusi-
cology and the use of MIR for music creativity.

Christian Hoyer: The Beatles and Erlangen? Bubenreuth near Erlangen - the
Place where the World-Famous Instruments are Made

Abstract Legendary bands, orchestras, stars and virtuosos like Yehudi Menuhin, the Bavarian Ra-
dio Orchestra, Peter Kraus, Elvis, the Beatles and the Rolling Stones - they all were playing Buben-
reuth instruments. In the post-war years, displaced persons from the Sudeten region (Czechoslovakia)
brought musical instrument manufacturing and related industries to the region around Erlangen. The
region is home to one of every tenth German musical instrument manufacturers. Bubenreuth in par-
ticular was transformed from a farming village to a metropolis of German string instrument making.
The community council of Bubenreuth - then a small village of less than 500 inhabitants - decided by
1949 that more than 2.000 people would be resettled there in the following years to come.

Whether it is those learning to play an instrument, musicians in philharmonic orchestras or rock
stars - they all appreciate Franconian violins and guitars. Both small artisan workshops and semi-
industrial manufacturers produce quality products for the home market, but mainly for export. The
viola da gamba-shaped electric bass designed by Walter Höfner in 1956 and played by Sir Paul Mc-
Cartney exemplifies the story of Bubenreuth’s roots in the instrument making tradition of the 17th
century and how it extends to the manufacturing of electric guitars today. A museum was formed in
2009 in order to maintain the cultural heritage of Bubenreuth.
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Tutorials

Anssi Klapuri: Multipitch Analysis of Music Signals

Abstract Pitch analysis is an essential part of making sense of music signals. Whereas skilled
human musicians perform the task seemingly easily, computational extraction of the note pitches and
expressive nuances from polyphonic music signals has turned out to be hard. This tutorial starts
from the fundamentals of pitch estimation, explaining the basic challenges of the task (robustness to
different sound sources, robustness to polyphony and additive noise, octave ambiguity, inharmonicity,
missing data, time-frequency resolution) and the processing principles and sources of information
that can be used to tackle those challenges. Among the processing principles, we will discuss why
autocorrelation-type estimators (as used in speech processing) do not work for polyphonic data and
how they can be amended; how phase information can be utilized; how timbral information must be
either explicitly modeled or normalized away; etc. Examples pictures and sounds will be presented
in order to illustrate what kind of data we are dealing with and to develop intuition. Towards the
end of the talk, I will describe some state-of-the-art systems by different researchers, and from my
own experience, mention some of the practical challenges that I have encountered when developing
real-time multipitch estimation on mobile devices in last few years.

Meinard Müller: Audio Structure Analysis of Music

Abstract One of the attributes distinguishing music from other sound sources is the hierarchical
structure in which music is organized. Individual sound events corresponding to individual notes form
larger structures such as motives, phrases, and chords, and these elements again form larger constructs
that determine the overall layout of the composition. One important goal of audio structure analysis
is to divide up a given music recording into temporal segments that correspond to musical parts
and to group these segments into musically meaningful categories. One challenge is that there are
many different criteria for segmenting and structuring music. This results in conceptually different
approaches, which may be loosely categorized in repetition-based, novelty-based, and homogeneity-
based approaches. Furthermore, one has to account for different musical dimensions such as melody,
harmony, rhythm, and timbre. In this tutorial, I will give an overview of current approaches for the
computational analysis of the structure of music recordings, which has been a very active research
problem within the area of music information retrieval. As one example, I present a novel audio
thumbnailing procedure to determine the audio segment that best represents a given music recording.
Furthermore, I show how path and block structures of self-similarity matrices, the most important
tool used in automated structure analysis, can be enhanced and transformed. Finally, I report on a
recent novelty-based segmentation approach that combines homogeneity and repetition principles in
a single representation referred to as structure feature.

Jürgen Herre, Bernd Edler, Sascha Disch: Perceptual Audio Coding

Abstract Perceptual audio has been a key ingredient in the multimedia revolution, enabling the
availability of high-quality audio over channels with limited channel capacity, such as the Internet,
broadcasting or wireless services. Today, mp3 and other perceptual audio coding technologies are
ubiquitous in devices, such as CD/DVD players, computers, portable music players and cellular phones.
This tutorial covers the basics of perceptual audio coding, starting with what it means to operate
according to psychoacoustic principles rather than Mean Square Error (MSE). The most relevant
psychoacoustic effects will be briefly reviewed. From the modules of a perceptual audio coder, the
filterbank and strategies for quantization and coding are examined in some detail. Furthermore, we
discuss tools for joint stereo coding of two channels. Alongside, the most common coding artefacts
that originate from violating perceptual transparency criteria will be demonstrated and explained.
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Beyond these concepts, modern perceptual audio coders feature tools that can significantly boost
their performance further at low bitrates, for example, audio bandwidth extension, parametric stereo
or unified speech and audio coding. Some sound examples will be given to illustrate these new advanced
tools. Finally, an overview of today’s state of the art in compression efficiency is given as well as an
outlook of some currently ongoing coding developments.

Sascha Spors, Matthias Geier, Max Schäfer: Sound Field Synthesis with the
SoundScape Renderer

Abstract Sound field synthesis with massive-multichannel loudspeaker arrays has been an active
research field for the last few decades. Several rendering methods for multiple loudspeakers have been
developed including Wave Field Synthesis, Ambisonics, and Vector Base Amplitude Panning. Different
loudspeaker installations exist at many institutions throughout Europe. While the their operating
software is often home-made and specific to the particular loudspeaker set-up, there exists also a
versatile open-source software tool for real-time spatial audio reproduction, the SoundScape Renderer
(SSR). It can be adapted to various loudspeaker configurations and provides modules for the most
common rendering methods. For headphone use also spatial sound by binaural synthesis is supported.
The tutorial gives an introduction to the most common sound field rendering methods, presents the
SoundScape Renderer and some of its rendering methods, and allows hands-on experience for a limited
number of participants using the 128 loudspeaker array at the Chair of Multimedia Communications
and Signal Processing (LMS).
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ABSTRACT

The thin plate is a key structure in various musical instruments,
including many percussion instruments and the soundboard of the
piano, and also is the mechanism underlying electromechanical
plate reverberation. As such, it is a suitable candidate for physical
modelling approaches to audio effects and sound synthesis, such
as finite difference methods—though great attention must be paid
to the problem of numerical dispersion, in the interest of reducing
perceptual artefacts. In this paper, we present two finite difference
schemes on hexagonal grids for such a thin plate system. Numerical
dispersion and computational costs are analysed and compared
to the standard 13-point Cartesian scheme. An equivalent finite
volume scheme can be related to the 13-point Cartesian scheme
and a 19-point hexagonal scheme, allowing for fitted boundary
conditions of the clamped type. Theoretical modes for a clamped
circular plate are compared to simulations. It is shown that better
agreement is obtained for the hexagonal scheme than the Cartesian
scheme.

1. INTRODUCTION

The vibration of thin linear plates is a starting point for the mod-
elling and sound synthesis of many musical systems, such as cym-
bals, gongs, stiff membranes, soundboards, and instrument bodies.
Plate vibration is also important for plate reverberation as a digital
audio effect. Among the various approaches adopted for the sim-
ulation of linear plates, modal techniques are an attractive option,
and can be extended to non-linear equations as well [1, 2]. Finite
difference and finite element methods have also been extensively
adopted [3].

In the modelling of plates using finite difference methods, min-
imising numerical dispersion is critical, as it can introduce artefacts,
such as a mistuning of modes and incorrect modal densities [4].
The latter effect is due to a loss of bandwidth in the simulations, giv-
ing rise to sparsity in frequencies leading to the Nyquist frequency.
Numerical dispersion has been, and continues to be, extensively
studied for the second-order wave equation [5, 6], but aside from [7],
this topic has been neglected for the case of linear plates. Research
has instead focused on simulating the non-linear aspects of plate
vibration, which are arguably more interesting pursuits [8].

The regular hexagonal grid is an alternative to the regular Carte-
sian (square) grid in 2-D, and it has been shown to provide compu-
tationally efficient finite difference schemes for the second-order
wave equation [6], mainly due to the isotropy of discrete Laplacians

∗ This work was supported by the European Research Council, under
grant StG-2011-279068-NESS, and by the Natural Sciences and Engineer-
ing Research Council of Canada.

on the hexagonal grid [9]. It is thus of interest to study discrete
biharmonic operators (bilaplacians) on the hexagonal grid, which,
to our knowledge, have not been used for time-domain plate simula-
tions. Aside from some sparse references found throughout the nu-
merical methods and scientific computing literature [9, 10, 11, 12],
relatively little research has featured the hexagonal discrete bihar-
monics that will be employed in this study.

This paper is organised as follows. In Section 2, the model
equation for the plate is introduced and in Section 3, the hexagonal
finite difference schemes are presented along with von Neumann
stability conditions. In Section 4, numerical dispersion and com-
putational efficiency are analysed. In Section 5, finite volume
formulations are presented to implement boundary conditions, and
stability conditions for the boundary value problem are given in
terms of matrix eigenvalues. Section 6 features circular plate sim-
ulations in order to validate the numerical schemes. Conclusions
and future directions of study are given in Section 7.

2. THIN PLATE VIBRATION

Linear lossless vibrations of plates are governed by the following
equation [13]

∂2
tw + κ2∆2w = 0 , (1)

where w(t,x) represents the transverse displacement of the plate, t
is time and t ∈ R+, x := (x, y) ∈ R2 and ∆ is the 2-D Laplacian
operator, ∆ := ∂2

x + ∂2
y , and thus ∆2 is the biharmonic operator,

or bilaplacian. The notation ∂t denotes partial differentiation with
respect to t, and similarly for ∂x and ∂y . κ is a constant defined by

κ =

√
Ea2

12d(1− ν2)
, (2)

where d is the plate density in kg/m3, a is the thickness in m, E is
Young’s modulus in Pa, and ν is the dimensionless Poisson’s ratio.
All of these parameters are positive.

Eq. (1) holds as long as the transverse displacement w is small
in comparison with the thickness a (small deflections regime) [14],
and is the 2-D analogue of the Euler-Bernouilli equation for a beam
[13]. For deflections of the same order of magnitude as a, this
linear equation no longer holds; some simplifying assumptions
on the system must be dropped and a more complicated, non-
linear equation must be taken into account (von Kármán-Föppl
equations [15]).
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3. NUMERICAL SCHEME

3.1. Temporal and spatial grids

We discretise time with the temporal grid T := {nk, n ∈ Z+},
where k is the time-step. Space will be discretised with a spatial
grid G which is either a square (Cartesian) grid: GC := hZ2 or a
hexagonal grid GH defined by

GH := {hVz ∈ R2, z ∈ Z2} , V =

[
1 −1/2

0
√

3/2

]
. (3)

3.2. Difference operators

Let ŵ(t,x) represent an approximation to the solution of interest
w(t,x). A temporal shift operator may be defined as

st±ŵ := ŵ(t± k,x) , (4)

and a centered time-difference operator can then be written as

δtt :=
1

k2
(st+ − 2 + st−) = ∂2

t +O(k2) . (5)

Let us define the spatial shift operator

sr,hŵ := ŵ(t,x + rh) (6)

where r ∈ R2. The simplest discrete Laplacian on the regular
Cartesian grid is then

δC,∆ :=
1

h2

∑

r∈ΩC

(sr,h − 1) = ∆ +O(h2) , (7)

where ΩC is the set of four unit vectors in Z2. On the hexagonal
grid we consider the following two discrete Laplacians

δH,∆ :=
2

3h2

∑

r∈ΩH

(sr,h − 1) = ∆ +
1

16
h2∆2 +O(h4) , (8)

δ∗H,∆ :=
2

9h2

∑

r∈Ω∗
H

(sr,h − 1) = ∆ +
3

16
h2∆2 +O(h4) , (9)

where ΩH and Ω∗H are the sets of six vectors with norms h and
√

3h
in GH respectively. These discrete Laplacians on their respective
grids are illustrated in Fig. 1.
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Figure 1: Stencil weights for discrete Laplacians, scaled by h2

Now we can construct discrete biharmonics by the composition
of discrete Laplacians in the following manner

δC,∆2 := (δC,∆)2 = ∆2 +O(h2) , (10)

δH,∆2 := (δH,∆)2 = ∆2 +
1

8
h2∆3 +O(h4) . (11)

The Cartesian biharmonic δC,∆2 is a stencil that employs 13 points.
The second-order error in (10) is anisotropic so it is not displayed.
The hexagonal biharmonic δH,∆2 is a 19-point stencil, and has an
isotropic second-order error term (the triharmonic operator), which
is due to the isotropic second-order error term in δH,∆.

Another biharmonic on the hexagonal grid, using only 13 points [9],
can be written as a linear combination of δH,∆ and δ∗H,∆:

δ?H,∆2 :=
8

h2
(δ∗H,∆ − δH,∆) = ∆2 +O(h2) . (12)

This discrete biharmonic is different from δC,∆2 and δH,∆2 in
that it cannot be decomposed into the composition of two discrete
Laplacians. The three discrete biharmonics are shown on their
respective grids in Fig. 2.
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Figure 2: Stencil weights for discrete biharmonics, scaled by h4

.

3.3. Finite difference schemes

Combining these operators gives three finite difference schemes
for (1)

δttŵ + κ2δ∆2 ŵ = 0 , (t,x) ∈ T×G , (13)
with possible choices of δ∆2 ∈ {δC,∆2 , δH,∆2 , δ?H,∆2} and its
appropriate spatial grid G ∈ {GC ,GH}. Each scheme has the time
recursion

ŵ+ = (2− µ2δh∆2)ŵ − ŵ− , (14)
where ŵ± := st±ŵ, µ := κk/h2 is a free parameter to be set,
analogous to the Courant number in wave equation schemes, and
δh∆2 := h4δ∆2 . The recursion begins from the two known (or
approximated) values ŵ(0,x) and ŵ(k,x) determined from the
initial conditions. Note that this explicit update is parallelisable,
and thus, well-suited to GPU implementations [16].

3.4. Stability analysis

To determine stability conditions, we can take the Z-transform of
(13) to get the following quadratic equation in z ∈ C

z + µ2Λ− 2 + z−1 = 0 , (15)

where Λ = Λ(ξ) is the Fourier symbol of the operator δh∆2 and
ξ ∈ R2 are the spatial frequencies. For now, we assume that
Λ(ξ) has the property Λ ≥ 0. A stability condition (disallowing
exponential growth) is found from the condition |z| ≤ 1, which
leads to

µ ≤ µmax :=
√

4/Λmax , (16)
where Λmax := maxξ Λ for the spatial frequencies ξ ∈ R2. For
the three biharmonics δC,∆2 , δH,∆2 , δ?H,∆2 (scaled by h4) we have
respectively

ΛC,max = 64 , ΛH,max = 36 , Λ?H,max = 48 . (17)
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The first two values are given by previous studies [11], and the
latter can be found by examining Λ?H,max. Stability limits for the
schemes in (13) are respectively

µC,max = 1/4 , µH,max = 1/3 , µ?H,max =
√

1/12 . (18)

Note that both of the hexagonal schemes give higher µmax than the
Cartesian scheme, which allows for a larger time-step when h is
fixed. On the other hand, if k is fixed to k = 1/Fs, as is common in
sound synthesis applications, this implies a smaller minimum grid
spacing (spatial step). Setting h as small as possible is generally a
good choice for numerical dispersion and maximising the temporal
bandwidth in the approximation [4]. However, this also increases
the density of the spatial grid, and the hexagonal grid is already
2/
√

3 ≈ 1.15 times more dense than the square grid for the same h.
More will be said about this in Section 4.1.

4. NUMERICAL DISPERSION

The dispersion relation for our plate equation is

ω = ±κ|ξ|2 , (19)

where ω ∈ R represents the temporal frequency in rad/s and |ξ| is
the wavenumber in rad/m. The plate system is dispersive, as seen
by its phase velocity:

vφ = κ|ξ| . (20)

In other words, plane-waves with small wavenumbers travel slower
than plane-waves with large wavenumbers.

In order to analyse numerical dispersion of the finite difference
scheme it helps to define a normalised spatial frequency ξh :=
ξh and a normalised frequency ωk := ωk. We can then write
the Fourier symbol for each discrete Laplacian δC,∆, δH,∆, δ∗H,∆,
scaled by h2, as

ΓC(ξh) := −2
∑

r∈ΩC

sin2(ξh · r/2) , (21a)

ΓH(ξh) := −4

3

∑

r∈ΩH

sin2(ξh · r/2) , (21b)

Γ∗H(ξh) := −4

9

∑

r∈Ω∗
H

sin2(ξh · r/2) . (21c)

This allows us to build ΛC , ΛH , Λ?H as follows

ΛC = (ΓC)2 , ΛH = (ΓH)2 , Λ?H = 8(Γ∗H − ΓH) . (22)

Clearly, ΛC and ΛH are non-negative. Examining Λ?H gives the
same result, but we leave this out for brevity. We can then write the
relative phase velocity as

vrel(ξh) :=
ωk(ξh)

µ|ξh|2
, ωk(ξh) := 2 arcsin

(µ
2

√
Λ
)
, (23)

for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenumber cell of the
grid. For the square grid, B is a square centered at zero with sides
of length 2π, whereas for the hexagonal grid, B is the Voronoi cell
(a hexagon) of the lattice spanned by the vectors:(2π, 2π/

√
3)T

and (0, 4π/
√

3)T [6]. The relative phase velocity should ideally
be unity everywhere. Figs. 3(a)-(c) display the relative phase ve-
locities of the finite difference schemes with µ = µmax. Note that

t ↓

(a) 13-pt Cartesian (b) 19-pt hexagonal (c) 13-pt hexagonal

Figure 4: Spatial response to same initial conditions (Gaussian),
demonstrating (an)isotropy. Time-step fixed across schemes. Snap-
shots after 9, 18, 27, and 36 time-steps (top to bottom).

the hexagonal wavenumber cell is slightly bigger than the Carte-
sian wavenumber cell, this is ultimately a result of the denser grid
for the same h. Also, the isotropic characteristic to δH,∆2 can be
seen in Fig. 3b. Some simulations, without taking boundaries into
account, are presented in Fig. 4 to demonstrate how the directional
dependence of the schemes are reflected in the numerical approx-
imation. The initial conditions ŵ(0,x) and ŵ(k,x) are set to a
spatial Gaussian for each case, and the simulations are stopped at
the same time instant. It is clear that the approximation in Fig. 4b
has less directional dependence than the other two.

We would like to compare the dispersion for the Cartesian
scheme to the hexagonal schemes, but this can be difficult since
they are defined in different wavenumber cells. To make for a
better comparison we can use the dispersion relation to reassign
the relative phase velocities to ωk and an angle of propagation
θ ∈ [0, 2π], giving a function vrel(ωk(ξh), θ(ξh)) where

θ(ξh) = arctan ((ξh · ŷ)/(ξh · x̂)) . (24)

where x̂, ŷ are the standard unit vectors in R2. Now we have a
single domain on which to compare relative phase velocities for the
Cartesian and hexagonal schemes. These relative phase velocities,
are displayed in Figs. 3(d-e).

It is from this point of view (temporal frequencies) that we
see large variations between the schemes. There are two effects
of numerical dispersion that are prevalent here. The first is that
the high spatial frequencies are compressed into a small band of
temporal frequencies along the worst-case directions (multiples of
π/2 for the Cartesian scheme, odd multiples of π/6 for hexagonal
schemes). This will cause an unnatural modal density within those
bands of frequencies. The second effect is that the spatial Nyquist
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Figure 3: Contour plots of relative phase velocity as a function of ξh ∈ B, (ξh = (ξxh, ξyh)) (top row), and ωk ∈ [0, π] (radial) and
θ ∈ [0, 2π] (bottom row), where σ = π/4. Contours mark 5% deviations in relative phase velocity.

does not remap to the temporal Nyquist in every direction, creating
directional cutoff frequencies. Thus, above the smallest directional
cutoff frequencies the modal density will be incorrect. These effects
are worst in the Cartesian scheme, while the 19-point hexagonal
scheme experiences the least of these effects.

4.1. Normalising for computational cost

It can be argued that this is still not a fair comparison between
Cartesian and hexagonal schemes, since δH,∆2 uses 19 spatial
points instead of 13 for δC,∆2 . Furthermore, for a fixed time-step
(fixed sample rate) and µ = µmax the hexagonal grid will be
more dense than the Cartesian one. This ultimately leads to more
computation per unit time and space. In principle, it is always
possible to oversample the grid in order to achieve the same levels
of accuracy or simulated bandwidth with the 13-point Cartesian
scheme, so we have to somehow normalise for computational costs.

Three different methods can be adopted to evaluate the finite
difference schemes. First, we will consider the same time-step for
each scheme (no normalisation of computational cost), then we will
normalise for spatiotemporal grid (T × G) densities, and finally
we will consider normalised spatiotemporal densities of addition
operations.

Let the time-step for each scheme be set to k = χk′, where k′

is a constant and χ will represent computational cost normalisation
factors with respect to the Cartesian scheme. As such, χ is always

set as χ = 1 for the Cartesian scheme. When χ = 1 for all schemes,
normalisation for computational cost is ignored. On the other hand,
when χ is chosen as χ =

√
4ηµ with η = 1 for the Cartesian

scheme and η = 2/
√

3 for the hexagonal schemes, then we have
normalised for density of points in space and time, with respect to
the Cartesian scheme. When χ =

√
(4/13)γηµ, where γ is the

number of points in the stencil, then the schemes will be normalised
for the density of additions per space and time, with respect to the
Cartesian scheme. We neglect multiplications for brevity.

The relative phase velocities with these normalisations along
the respective worst-case directions are shown in Fig. 5. It can be
seen that, even after normalising for the extra computational costs,
the hexagonal schemes are more efficient at reducing numerical dis-
persion than the Cartesian scheme. In parallel implementations of
finite difference schemes for plates, such as [17], the normalisation
for additions, which are easily parallelised, may not be important
so we ignore this normalisation for the following discussion.

For the plate problem, reducing the time-step results in a
squared increase in the total number of operations (2x increase
in Fs equals 4x computational cost). With this in mind, we can
compare schemes in terms of a relative computational efficiency
to attain a certain accuracy in the relative phase velocity up to a
given frequency, as in [5] for wave equation schemes. For example,
with data taken from Fig. 5, we can calculate that the 19-point and
13-point hexagonal schemes are respectively 2.1 and 1.8 times more
efficient than the 13-point Cartesian scheme for a one-percent rela-
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Figure 5: Relative phase velocity along worst-case direction for three
schemes, with various normalisations for computational cost. The time-
step in each case is set as k = χk′ for k′ fixed, so χ = 1 implies no
normalisation (same time-step), χ2 = 4ηµ normalises for spatiotemporal
grid densities, and χ2 = (4/13)γηµ normalises for spatiotemporal density
of additions. Note, γ = 13 for the 13-point hexagonal scheme, so the
χ2 = 4ηµ and χ2 = (4/13)γηµ curves overlap.

tive phase velocity error tolerance. Such relative efficiency numbers
could be given for the entire range of phase velocity errors, but it
is unknown how much numerical dispersion is tolerated for audio
applications of this plate model, and whether numerical disper-
sion is perceptually distinguishable from the system’s underlying
dispersion.

Perhaps a more useful comparison is in terms of the global
cutoff frequencies after normalisation, as this gives an idea of the
modal density across the temporal range of frequencies, and thus a
measure of how ‘rich’ the output sound will be. In terms of global
cutoff frequencies, we can calculate that the 19-point and 13-point
hexagonal schemes are respectively 4.3 and 2.8 times more efficient
than the 13-point Cartesian scheme.

5. FINITE VOLUME BOUNDARIES

In this section, we present a finite volume formulation of the 13-
point Cartesian scheme and the 19-point hexagonal scheme, in
order to simplify the implementation of certain boundary conditions.
The 13-point discrete biharmonic on the hexagonal grid does not
decompose into the composition two discrete Laplacians, so it
cannot be easily be interpreted within the following finite volume
framework.

Let V denote a closed 2-D volume and ∂V its boundary. The
finite grid under consideration can then be written as G := G ∩ V .
We start by rewriting (1) as the system of two equations:

∂tv = κ∆m, (25a)
∂tm = −κ∆v , (25b)

where m = m(t,x) is the initial moment and v = v(t,x) is the
initial velocity, which is related to w by:

v = ∂tw (26)

In this system, the two initial conditions to specify are v(0,x) and
m(0,x). Boundary conditions for the plate can be of the clamped
type:

v = n · ∇v = 0 , x ∈ ∂V (27)
where v = 0 denotes a homogeneous Dirichlet condition and
n · ∇v = 0 denotes a homogeneous Neumann boundary condition.
Another set of Dirichlet boundary conditions is the following:

v = m = 0 , x ∈ ∂V . (28)

This set of conditions may be a simplified form of the “simply
supported” conditions for certain geometries, such as rectangular
plates with Cartesian grids.

Consider a tiling of closed cells Ci whose interiors are pairwise
disjoint, and the tiling fills up the volume V , i.e.

⋃
i Ci = V . Now

consider one cell surrounding some point xi ∈ G. For now we will
focus on one of the two equations, as they are similar. Integrating
both sides of (25a) over the volume of the cell and applying the
divergence theorem we have:

∫

Ci
∂tv dS = κ

∫

∂Ci
n · ∇mdr , (29)

where ∂Ci denotes the boundary of Ci and where n is the normal
vector pointing out of the cell at r ∈ Ci. Now, consider that
this cell has neighbouring cells Cj with indices j in the set of
neighbour indices Ni. The interiors of cells are pairwise disjoint
but their closures can intersect. Let these intersections be denoted
by Sij := Ci ∩ Cj ; these are the sides of the cell. Furthermore,
let Si(b) := Ci ∩ ∂V denote the boundary side of the cell. Since
∂Ci = (

⋃
j Sij) ∪ Si(b) we can write (29) as

∫

Ci
∂tv dS = κ

∑

j∈Ni

∫

Sij
n · ∇mdr + κ

∫

Si(b)
n · ∇mdr , (30)

The last term describes one half of the system at the boundary
and this can be set to zero for Neumann conditions. Let the 2-D
volume (area) of the cell be Vi and the length of each side be Sij
and similarly for the boundary side Si(b). We define the first-order
spatial and time differences:

δt± := ± 1

k
(st± − 1) , (31a)

δijŵj :=
1

hij
(ŵj − ŵi) , (31b)

where hij = ‖xj−xi‖. Consider the variables v̂i := v̂(t+k/2,xi)
and m̂i := m̂(t,xi), representing approximations to v(t+k/2,xi)
and m(t,xi) respectively. Neglecting for now the boundary term,
we can approximate (30) with the following, and (25b) by the same
procedure:

Viδt−v̂i = κ
∑

j∈Ni

Sijδijm̂i , (32a)

Viδt+m̂i = −κ
∑

j∈Ni

Sijδij v̂i . (32b)

Note that the time differences are centered, since v̂i is staggered in
time. The spatial difference will also be centered about the sides
of the cells for the grids (square and hexagonal) considered here.
Now rearranging for the update equations we have:

v̂i = v̂−i +
κk

Vi

∑

j∈Ni

Sijδijm̂i , (33a)

m̂+
i = m̂i − κk

Vi

∑

j∈Ni

Sijδij v̂i , (33b)

where v̂−i := st−v̂i and m̂+
i := st+m̂i. The update does not

change when Neumann conditions are applied because the ne-
glected boundary term would be set to zero. For the clamped
conditions, it then suffices to fix v̂i = 0 when Si(b) > 0. For
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the conditions (28), we also fix m̂+
i = 0 when Si(b) > 0. If, on

the other hand, we update both values at the boundaries, then this
implies the non-physical, yet well-posed, boundary conditions:

n · ∇m = n · ∇v = 0 , x ∈ ∂V . (34)

We include this boundary condition because it arises naturally from
the finite volume framework and it may provide interesting artificial
reverberation.

To establish the link with the finite difference schemes, we will
now consider square and regular hexagonal tilings of V . These
tilings may be locally irregular [18], which means that cells on
the interior are regular polygons from the Voronoi tessellations of
GC or GH , but cells that intersect with the boundary of V may be
irregular. Now consider a cell Ci with Si(b) = 0 and Sj(b) = 0 for
j ∈ Ni. It is straightforward to show [19] that we can recover the
following discrete Laplacians from the finite volume formulations:

1

Vi

∑

j∈Ni

Sijδij v̂i = δC,∆v̂i , xi ∈ GC , (35a)

1

Vi

∑

j∈Ni

Sijδij v̂i = δH,∆v̂i , xi ∈ GH . (35b)

Then, using the identity δt+δt−v̂i = δttv̂i, it follows that Eqs. (32a)
and (32b) simplify to the second-order 13-point Cartesian and 19-
point hexagonal schemes respectively in v̂i. The variable ŵ+

i can
be recovered from v̂i = δt+ŵi.

5.1. Matrix formulation and stability

The approximations v̂ and m̂ can be written as the N × 1 vectors
v and m with the values of v̂i and m̂i for xi ∈ G (N = |G|)
at a particular time t. The system (32) can be rewritten in the
matrix-vector form:

δt−v = κL1m , (36a)
δt+m = −κL2v , (36b)

where L1 and L2 are N ×N matrices corresponding to δ∆ with
Dirichlet conditions possibly imposed. These matrices can be
defined as follows. Consider L to be either L1 or L2. For each row
i of the matrix L, the entries lij can be written as:

lij =
Sij
Vihij

, i 6= j , (37a)

lii = −
∑

i 6=j
lij . (37b)

In order to impose Dirichlet conditions, L must be modified on
rows pertaining to boundary nodes. To impose the condition v = 0,
we set lij = 0 in L1 when Si(b) > 0. Similarly, to impose the
condition m = 0, we set lij = 0 in L2 when Si(b) > 0. If the
boundary condition is (34), then L1 = L2.

Stability of the system (36) can be checked as follows. Recom-
bining the system into one variable, we have

v+ = (2I− µ2B)v − v− , (38)

where v± := st±v, B = h4L1L2, and where I is the N × N
identity matrix. Here, h represents the minimum hij with j ∈ Ni

(i 6= j) and xi ∈ G . Similarly to the stability analysis pre-
sented for the initial value problem, we have the following “matrix
method” [20] type stability condition

µ ≤
√

4/ρ(B) , (39)

provided that B is positive semi-definite (PSD), and where ρ(B)
denotes the spectral radius of B. That B is PSD follows from (37)
and Gerschgorin’s theorem [21]. It is assumed that the tiling is
constructed such that ρ(B) ≤ Λmax, and thus µ = µmax (as given
previously) will be sufficient for stability. Energy methods [19]
should be employed to get a more instructive stability condition for
the finite-volume meshing pre-processing step, but these will be
left for a future study.

6. SIMULATIONS

6.1. Modes of clamped circular plate

In order to validate these schemes, we simulate a clamped circular
plate with tabulated values for the modal frequencies from [22].
The circular plate of interest has a radius of one metre and κ = 20.
The time-step is set to k = 1/Fs where Fs = 8000 Hz for the
Cartesian scheme, and Fs = 6300 Hz for the hexagonal scheme in
order to (approximately) normalise for the spatiotemporal density
of points. For both schemes we employ a “staircase” approximation
and a “fitted” approximation to the circular domain. These tilings
are shown in Fig. 6.

A normalised Kronecker delta (in space and time) is used as
an excitation for the plate. The spectra of the resulting impulse
responses, for low frequencies, are shown in Fig. 7. It can be
observed that the fitted approximations are better than their staircase
counterparts in both cases (Cartesian and hexagonal). However,
as numerical dispersion is significant in both cases the modes are
misrepresented above 250 Hz. We can also observe that in the
Cartesian case, certain modal frequencies are in numerically split
degenerate mode pairs (e.g. at 220 Hz and 270 Hz). This is a
consequence of anisotropy, and it is clear that the hexagonal scheme
offers an improvement in this respect.

6.2. Modal density and cutoff frequencies

Next we demonstrate the effects of the minimum directional cutoff
frequencies, as discussed in Section 4. In Fig. 8, the same impulse
responses are plotted, but now over the entire range of simulated
temporal frequencies. The minimum cutoff frequencies are denoted
with vertical dashed lines. These refer to 0.33Fs for the Cartesian
scheme, and 0.70Fs for the hexagonal scheme.

For the Cartesian case in Fig. 8a, we can see the sparsity of
modes increases above the (minimum) cutoff frequency, leading
up to the maximum cutoff frequency (the Nyquist). As seen in
Fig. 8b, the hexagonal scheme (normalised for computational cost)
has a higher cutoff frequency and one can notice that the density
of modes near 2000 Hz is greater than in the Cartesian case. With
a 8000 Hz sample rate, in Fig. 8c, the hexagonal scheme provides
a richer spectrum, albeit at a higher computational cost. For these
simulations µ was set to µmax and (39) was satisfied.

Finally, we show the hexagonal circular plate with double
Dirichlet conditions (28) and the double Neumann conditions (34).
The spectra that were obtained are shown in Fig. 9. It can be seen
that these conditions provide spectra qualitatively similar to the
clamped conditions.
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Figure 6: Finite volume tilings representing circular plate of radius one. Square and hexagonal staircase and fitted tilings.
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(a) Cartesian grid, Fs = 8000 Hz
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(b) Hexagonal grid, Fs = 6300 Hz

Figure 7: Impulse responses and analytical modes (dotted lines) of
clamped circular plate

7. CONCLUSIONS

In this paper, we have presented two finite difference schemes for
thin plate vibration using hexagonal grids. Stability conditions
were presented and numerical dispersion was analysed. It was
shown that better computational efficiency in terms of minimising
numerical dispersion can be achieved using hexagonal grids rather
than Cartesian (square) grids. Equivalent finite volume schemes
were presented for the 13-point Cartesian and 19-point hexagonal
finite difference schemes in order to implement clamped boundary
conditions over irregular geometries. Simulations of clamped circu-
lar plates were presented and it was seen that finite volume grids
that conformed to the domain were more accurate than “staircase”
approximations. Furthermore, modal accuracy was generally better
with the hexagonal scheme for a comparable computational cost
with the Cartesian scheme.

One issue that will be addressed in future work is a more thor-
ough analysis of boundary conditions. The system (25) is but a
simplified version of a more complex system involving bending
and twisting moments [13], which naturally leads to the correct
boundary conditions in the simply supported and free case. This
complete system is arguably more difficult to simulate with unstruc-
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(a) Cartesian grid, Fs = 8000 Hz
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(b) Hexagonal grid, Fs = 6300 Hz
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(c) Hexagonal grid, Fs = 8000 Hz

Figure 8: Comparison of spectra, clamped circular plate

tured grids within a finite volume framework, and this constitutes a
major challenge at the moment.

Another interesting direction for future study is the simulation
of non-linear phenomena. Finite difference simulations of von Kár-
mán equations have been performed in the past over Cartesian grids
[23], but to our knowledge no similar study has been performed
over different grids. Such simulations rely on a discrete version
of the “triple self-adjointness” property of the non-linear operator
[24], which will present new challenges over non-Cartesian grids.

Sound examples and animations from these schemes will be
available at:

http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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(a) Hexagonal grid, double Dirichlet conditions, Fs = 8000 Hz
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(b) Hexagonal grid, double Neumann conditions, Fs = 8000 Hz

Figure 9: Impulse response spectra from circular plate
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ABSTRACT
The finite difference time domain (FDTD) method is commonly
used as a numerically accurate way of propagating sound. How-
ever, it requires extensive computation. We present a simple method
for accelerating FDTD. Specifically, we modify the FDTD update
loop to prioritize computation where it is needed most in order to
faithfully propagate waves through the simulated space. We esti-
mate for each potential cell update its importance to the simulation
output and only update theN most important cells, whereN is de-
pendent on the time available for computation. In this paper, we
explain the algorithm and discuss how it can bring enhanced accu-
racy and dynamism to real-time audio propagation.

1. INTRODUCTION

Faithful propagation of sound through arbitrary environments is a
computationally complex problem. Audio propagation solutions
must be re-evaluated as the source position(s), listener position(s),
and environment geometry change over time. If the recomputation
can be done very quickly, the method might be useful in real-time
applications like virtual environment audio simulations.

In this paper we present a method to accelerate the finite dif-
ference time domain numerical sound propagation method so that
it might be used in real-time applications under broader config-
urations. We prioritize computation where it is needed most to
most accurately propagate a wave, eliminating computation where
it would have little effect on the output.

2. PREVIOUS WORK

Sound propagation can broadly be split into two groups: geometric
methods and numerical methods. Geometric methods often take
advantage of analytic solutions to wave equation problems directly
in terms of the geometry of the environment and assume that sound
waves travel in straight lines. Numerical methods discretize and
solve wave equation problems with numerical analysis.

Geometric methods include such techniques as image methods
[1], ray tracing [2], beam tracing [3], and acoustic energy transfer

This work was supported by NSF Grant IIS-1018486.

methods [4]. In the early image method presented in [1], virtual
image sources are created from the true sound source to represent
the acoustical contribution of sounds reflected from geometry in
the environment. Similar to graphics research on geometric trac-
ing techniques, ray [2] and beam [3] tracing methods have been
developed for audio propagation. Ray tracing samples an environ-
ment with a multitude of rays reflecting from surfaces. Errors are
introduced in ray tracing methods when samples miss important
features in the environment [5]. Beam tracing methods improve
on this by sampling continuous areas of the environment with each
cast beam and splitting each cast beam where the environment is
discontinuous, such as at the edge of a beam-intersecting wall.
However, it is hard to accurately handle effects like wave diffrac-
tion in arbitrary environments using these methods.

Numerical methods include finite element [6] and finite dif-
ference [7] methods. The finite difference time domain method
(FDTD) is an especially popular numerical method in acoustics,
though originally developed for electricity and magnetism [7]. In
the FDTD method, a finite simulation lattice is overlaid on the en-
vironment to discretize it in space, and the output is computed at
discrete time steps over many iterations. The method naturally
allows the modeling of arbitrary environment configurations and
captures wave phenomena like diffraction. However, it suffers
from high memory and computation time demands, especially as
a simulation’s time or space discretization is refined. We focus on
FDTD in this paper and look at it in greater detail in Section 3.

Several hybrid methods have been developed, merging geo-
metric and numerical methods [8], [9]. Hybrid methods are good
for real-time applications because different wave properties can
be efficiently represented by different methods. A recent example
is the "Wave-Ray Coupling" presented by Yeh et al. 2013 [10],
where a geometric technique handles long-distance wave propa-
gation in a large environment and a numerical method captures
important wave diffraction effects (which the geometric technique
cannot handle) close to the listener position. Acceleration of com-
putationally expensive numerical methods like FDTD is neces-
sary for the numerical components of hybrid methods to function
well in real-time applications. For example, the adaptive rectangu-
lar decomposition method [11] is used instead of plain FDTD in
[10]. Any additional acceleration to the numerical component of a
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hybrid system can critically provide better real-time performance
over a broader range of configurations, e.g. a larger numerical sim-
ulation zone capturing a more complete simulation of diffracted
waves in the environment. This paper offers one such acceleration
technique.

3. BACKGROUND

Sound is a wave phenomena dependent on the wave equation. An-
alytic solutions to the equation exist for simple configurations, but
no complete analytic solutions exist for complex environments.

The FDTD method provides a way to solve the equation in
complex environments in a discrete way. The environment is dis-
cretized in space into a regular grid. The sizes of the grid cells in
each dimension do not have to match but for simplicity they will
be equal here, represented by h. pn(i, j, k) represents the pressure
at location i, j, k at time n. Throughout, we use the speed of sound
c ≈ 340m/s.

Following is a brief derivation of an FDTD update equation,
based on the description in [11].

∂2p

∂t2
− c2∇2p = F (x, t) (1)

F (x, t) is a forcing term representing sound inputs. It is zero with-
out inputs.
∇2 represents the 3D Laplacian operator, ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
,

the divergence of the gradient at a point in the pressure field.
The Laplacian operator can be discretized for a grid represen-

tation in many ways[12]. We use the L2 discretization for speed
and simplicity:

∇2pn(i, j, k) ≈

lap(i, j, k) =
1

h2




−6pn(i, j, k)+
pn(i− 1, j, k) + pn(i+ 1, j, k)+
pn(i, j − 1, k) + pn(i, j + 1, k)+
pn(i, j, k − 1) + pn(i, j, k + 1)




(2)

Or more succinctly with K as a Discrete Laplacian Matrix and P
a long vector of all pressure values in the grid:

∇2p ≈ 1

h2
KP (3)

yielding
∂2P

∂t2
− c2

h2
KP = F (t) (4)

Discretizing in time with time step 4t and using the leapfrog in-
tegrator yields the following update equation.

Pn+1 = 2Pn − Pn−1 +

(
c4t
h

)2

KPn +4t2Fn(t) (5)

Time step size 4t depends, for the sake of numerical stability
in the simulation, on the grid resolution according to Courant-
Friedrichs-Lewy condition4t < h

c
√

3

To model the interface of air and environment surfaces, any of
many absorbing boundary conditions (ABCs) can be used. Please
see [13], based on the original Perfectly Matched Layer (PML)
work [14] for a very helpful derivation of the PML ABC for the
single field parameter "scalar" FDTD context presented above. The
works [15],[16] present the formulation of a simple surface ABC
which also may be used in this context.

4. PRIORITIZED FDTD

Full FDTD simulation demands the evaluation of a large number
of computations. There are many time steps needed, and in each
one, potentially every grid cell representing the simulation space
needs to be updated. Each FDTD time step depends on the previ-
ous time step, but within each time step, every cell update compu-
tation is independent. Also, if one cell is updated, the effect of that
update is only relevant to its neighboring cells whose discretized
Laplacian estimations in the subsequent time step include a term
reading the value of that previously-updated cell. Areas of uniform
pressure remain static until disturbed by impinging waves and also
become static again after those waves pass by. These properties
together allow us to accelerate FDTD by prioritizing computation
where it is needed most and omitting it elsewhere.

We incorporate these properties into one tunable system by
the introduction of a cell update importance function and priori-
tized selection of which updates to execute. We concentrate on
accelerating FDTD impulse response simulation of low frequency
diffracting waves. Higher frequency reflecting components can be
simulated in real time with other methods, together forming a hy-
brid system as in [10]. Our method of acceleration is orthogonal
to other approaches like parallelization, so we believe it can be
applied on top of other methods for further improved results.

4.1. FDTD Setup

We initialize our FDTD simulation grid with a grid cell size, h
appropriate for low frequency waves (e.g. simulation frequency=
1KHz, h ≤ c

2KHz
guided by the Nyquist-Shannon sampling the-

orem). These low frequency waves have a greater tendency to
diffract in a significant way in human-scale environments than do
higher frequency waves.

We focus on the task of recording an impulse response, rather
than continuously propagating an arbitrary source wave. Simu-
lated impulse responses can be efficiently convolved with arbi-
trary source waves after simulation to auralize output. The impulse
response context allows us accelerate computation more than we
could if the source emitted an arbitrary wave. This is true because
with an impulse, more of the pressure field is likely to be static and
unimportant (in front of or behind the impulse wave) at any arbi-
trary time step than if the field were inundated with a continuous
series of waves.

To record an impulse response, we use an input pulse defined
by the following Gaussian function. Its parameters were chosen
to make the pulse peak near the origin and to be short but not so
short that it causes major ringing oscillations when played into the
1KHz grid simulation.

pulseCenterT ime = 0.0025

spread = 0.001

f(t) = e
− (t−pulseCenterTime)2

2∗spread2 (6)

Note that any impulse response recorded from t = 0 using this
impulse must be shifted in time by −pulseCenterT ime.

PML ABC zones are placed around the boundaries of the sim-
ulation space. It is suggested in [17] to make the PML thickness
at least 65-70% of the longest wavelength of interest. Because
we primarily focused on the recording of impulse responses and
to aid computation times we use na = 10, which corresponds
to a "longest wavelength of interest" of 0.65c/h/10 = 130Hz.
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The profile of our input pulse approximately corresponds to a si-
nusoidal wave section with a frequency around 200Hz, so the PML
thickness is reasonable.

4.2. FDTD Computation

Described below is our method to accelerate FDTD computation
in the context described in Section 4.1.

4.2.1. Importance Function

An importance function, notated as importance(i, j, k), estimates
the importance of a cell update during simulation. Before the first
FDTD update pass, the importance function is initialized for ev-
ery cell to zero. At the moment of the start of the input pulse, the
sound source location and its immediate neighbors are given arti-
ficially elevated importance values to seed their evaluation when
they are first important.

In the last moments of a simulation, many regions of the envi-
ronment are so far from the listener position(s) that no wave leav-
ing those regions and traveling at the speed of sound could reach
the listener(s) before the end of the simulation. We include this
in all importance functions by forcing importance to zero when a
cell update can be omitted. Let L represent the listener position in
grid units. Let dur be the duration of the simulation. Omit deter-
mines when a cell update would be made to a cell too far from the
receiver position to possibly have any effect on the output of the
simulation.

Omit(i, j, k, t) =
h · |[i, j, k]− L|

c
> (dur − t) (7)

Idealy, an importance function would look into the future and
determine how much of an effect an update will have on the even-
tual output of the simulation. Since this is not possible to do in
any less time than it would take to run the simulation to that future
time or even in less time than it takes to do a single update, we
approximate the importance function by estimating the effect an
update could have on the immediate region surrounding it in the
following time step. In FDTD simulation, the discretized Lapla-
cian approximation (lap) is the only term in the update equation
(Equation 5, inside K) which interacts with neighboring cells, so
our importance functions incorporate the same values which lap
uses. Importance functions we used take these forms:

importance1 (m1) is something like the Laplacian approxi-
mation, but the absolute value of each term is used and all coeffi-
cients are one. It is always non-negative.

m1(i, j, k) =




|pn(i, j, k)|+
|pn(i− 1, j, k)|+ |pn(i+ 1, j, k)|+
|pn(i, j − 1, k)|+ |pn(i, j + 1, k)|+
|pn(i, j, k − 1)|+ |pn(i, j, k + 1)|




importance1(i, j, k) =

{
0 if Omit(i, j, k, t)

m1(i, j, k) otherwise

}

(8)
importance2 (m2) is something like a gradient magnitude.

m2 yields the largest magnitude of a difference between any two
nearby pressure values (Nearby(i, j, k) denotes the set of nearby

pressure values and includes the value of the cell itself). It is al-
ways non-negative.

Nearby(i, j, k) =





pn(i, j, k)),
pn(i− 1, j, k)), pn(i+ 1, j, k)),
pn(i, j − 1, k)), pn(i, j + 1, k)),
pn(i, j, k − 1)), pn(i, j, k + 1))





m2(i, j, k) = max
p1∈Nearby(i,j,k)
p2∈Nearby(i,j,k)

(p1 − p2)

importance2(i, j, k) =

{
0 if Omit(i, j, k, t)

m2(i, j, k) otherwise

}

(9)

4.2.2. Most Important Cell Retrieval

In every FDTD update pass, a limited number of cells with the
highest importance values are recomputed. To efficently ascer-
tain which cells have the highest importance, we keep a list of
update candidate cells which we call candidates. An average
case O(n) time partial sorting algorithm is used to partially sort
candidates once per time step according to the importance func-
tion. It ensures that the first N cells in the list have greater im-
portance than all others. Provided their importances are non-zero,
these cells are updated in the usual FDTD manner to finish evalu-
ation of a time step.

The number of cells to recompute, N , can be estimated ac-
cording to the approximate volume of the pulse wavefront, defined
here by the inner and outer radii, ri and ro, of an impulse wave in
an open environment. t is the simulation time.

ro = c · t
ri = c · (t− 2 · pulseCenterT ime)

ApproxWaveV ol(t) ≈ 4

3
πro

3 − 4

3
πri

3 (10)

N(t) = ApproxWaveV ol(t)÷ h3 (11)

4.2.3. Refreshing the Importance Function Efficiently

To avoid unnecessarily evaluating the importance function for
every cell at every time step, we keep a set of cell references which
we call refreshSet. Once per time step, the importance for
every cell stored in refreshSet is evaluated and all other cells are
ignored. After this, refreshSet is cleared. In a single time step
of FDTD, the importance values of only updated cells and their
immediate neighbors can change. So, whenever a cell is updated in
one time step, the cell and its neighbors are added to refreshSet
for importance re-evaluation before updates at the next time step.

4.2.4. Pseudocode

Some specific implementation details have been simplified, such
as code to avoid duplicate additions to refreshSet and the special
case for PML zones. See Algorithm 1 and UpdateSimState.

5. DISCUSSION

5.1. Analysis

Figure 1 shows howN changes during a simulation. The unshaded
portion shows the amount of computation avoided by our method.
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begin
initialize;
for t = 0...dur at increments of4t do

UpdateSimState;
Force pressure at source cells;
Record IR output at listener cells;
Prepare for next time step;

Algorithm 1: FDTD Outer Loop

begin
initialize;
candidates =List of all sim cells;
for element ∈ refreshSet do

Refresh importance of element.
refreshSet = ∅;
N = compute as in Eq. 11;
Partially sort candidates as in 4.2.2;
for i = 1...N do

updateCell(candidates[i]);
refreshSet+ = candidates[i];
refreshSet+ = All neighbors of candidates[i];

Procedure UpdateSimState

The dashed line at the top marks the total number of cells in the
FDTD grid. At the beginning of a simulation, computation is lim-
ited byN , and at the end of a simulation, it is limited by theOmit
function. The superimposed curves show the numbers of updates
done on actual runs of our algorithm in our test environments. The
configuration of the environment affects how many updates are
done by affecting the number of zero-importance cells at different
times. Zero-importance cells are not updated even if N is larger
than the number of nonzero-importance cells). Figure 2 is similar
to Figure 1, but the simulation duration is five times longer.

The first profile, Figure 1, demonstrates the context where our
method is most useful: impulse response simulations of limited
duration, such as the numerical simulation component in a hybrid
system like Yeh et al.’s Wave-ray Coupling [10]. However, even in
less ideal situations like Figure 2, our method always saves some
computation at the beginning and end of the simulation and pro-
vides a pricipled approach to restricting computation in the middle
of the simulation too, by limiting N .
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Figure 1: With simulation parameters from our trials in Section 6,
the shaded region is computed, the rest omitted.
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Figure 2: Longer duration simulation worst-case behavior.

If the simulation computes output for a continuous input in-
stead of an impulse response or if multiple source positions are
present, our method can still be used. ApproxWaveV ol would
have to be changed, which would change the shape of the early
portions of Figures 1 and 2 (for lesser performance), but the end
portions of the simulation would remain the same, since the same
distance-based cell omission can be done. Conversely, adding ad-
ditional listener positions affects the later portions of simulation
while not affecting the beginning.

5.2. N Approximation

In an environment with many absorbing surfaces (or areas open
to the simulation boundary PML regions), a tighter bound on the
wavefront volume can be made by observing that if there were no
obstacles in the environment, an expanding spherical wave would
eventually begin to leave the simulation grid. The portions of the
wave which have left the space can be subtracted from the volume
as calculated in 4.2.2.

Our presented approximation for N , estimating the wave vol-
ume in an empty environment, is not always quite enough to cap-
ture important updates at the front of a wave because the impor-
tance function is only an estimation of true update importance. In
the "worst case" of a completely open environment while the prop-
agated wave forms a spherical shell, we find it helps to inflate the
very tight wavefront volume figure by up to 20% to ensure that im-
portant cells on the leading edge of the wavefront are not missed
in simulation. In our experiment trials, we did not have to inflate
the N value, because absorbers in our environments and the edges
of the simulation space reduced the actual simulated wave volume
below the estimated wave volume before significant deterioration
took place. If, as discussed in the previous paragraph, a tighter
volume bound were used, some inflation might indeed be needed
in all cases.

6. RESULTS

We computed average performance statistics on an Intel i7-860
machine. The code was compiled and linked from C++ source
with the MSVC 2008 compiler. We ran the simulation thirty six
times for our method and thirty six times for plain FDTD. The
trials were divided evenly between six environments which to-
gether stress our algorithm and represent plausible hybrid simula-
tion scenarios: four open artificial environments with various wall
configurations between source and listener, one completely open
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Time Time Speedup
Prioritized FDTD in Time

Open 1.26s 4.29s 3.41
Env. A 1.24s 4.28s 3.44
Env. B 1.04s 4.31s 4.13
Env. C 1.17s 4.27s 3.66
Env. D 1.27s 4.29s 3.38

Building 0.71s 3.59s 5.07
Column
Averages 1.11s 4.17s 3.85

Table 1: Performance results in terms of time.

Updates Updates Speedup in
Prioritized FDTD Cell Updates

Open 15.0% 100% 6.66
Env. A 14.5% 99.1% 6.82
Env. B 12.3% 99.1% 8.05
Env. C 13.7% 99.4% 7.23
Env. D 15.5% 99.5% 6.86

Building 8.2% 80.8% 9.86
Column
Averages 13.1% 96.3% 7.58

Table 2: Performance results in terms of cell updates. "Updates
FDTD" is not always 100% because updates are not made within
environment obstacles.

environment with no walls, and one generated from interior ge-
ometry of a real building. The environment dimensions were all
fixed at 7m × 7m × 2.5m and the simulated duration (0.03s, long
enough to receive all impulse wave diffractions in our trials) was
also equal across all trials. These results are shown in Tables 1,
2, and 3. "Time" columns show average computation times, "Up-
dates" columns show average percentages of updates performed
out of the maximum possible, and "Speedup" columns show the
relative performance of our method over plain FDTD. In all trials,
FDTD updates were not made for cells within solid objects. The
real building environment had the largest number of occluded cells
(around 20%).

As seen in Table 1, our approach improves average simula-
tion speeds by a factor of 3.85. When the real building environ-
ment trial is considered alone, the improvement was over a factor
of 5. Memory usage with our method was around 70% greater
than plain FDTD, to store the candidates list, refreshSet, and
other data to do things like avoid duplicate neighbor additions to
refreshSet efficiently.

Figure 3 shows response waveform comparisons of our method
to full FDTD simulation for three environments, at three different
inflation factors for N and one deflation factor for N . Each plot
has a response from our method overlaid with the full FDTD re-
sponse. The first two environments (Env. C and Env. D respec-
tively in Table 1) are artificial and mostly open, so they exhibit
a mild case of the problem explained in Section 5.2, where N is
close to the actual wave volume and the importance function does
not perfectly indicate which cells must be updated. Mild N infla-
tion helps those results converge. The third environment is the real
building environment and has many reflecting surfaces which the

0.8 1.0 1.2 2.0
N Factor N Factor N Factor N Factor

Open 42967.8 3014.0 271.3 69.7
Env. A 6148.4 517.6 138.7 49.2
Env. B 21.9 3.7 2.9 2.8
Env. C 76.5 5.9 1.9 1.3
Env. D 4343.0 241.8 25.3 12.7

Building 91.4 39.4 46.0 36.6

Table 3: Sum of squared error between waveform outputs of the
full FDTD and the prioritized method. Compare with Figure 3

other tested environments do not have. Relative computation times
as N inflation factors change are given in the caption of Figure 3.

7. CONCLUSIONS & FUTURE WORK

Our prioritized computation method accelerates FDTD wave prop-
agation. It is especially helpful in the context of a hybrid simula-
tion where a method like FDTD captures the effect of an impulse
wave diffracting in an environment. Our acceleration allows such
an impulse response simulation to be repeated more rapidly, with
better discretization, or larger environment size, to improve real
time results.

Our implementation was not parallelized, but it also does not
prevent the use of parallelization. In fact, preliminary results show
that running our method on a single CPU thread is faster than a
four-way parallel FDTD implementation we tested on four CPU
threads, at least under the trial configurations tested in Section 6. It
is future work for us to parallelize prioritized FDTD computation.

We kept the complete set of simulated cells in the candidates
list, but this list could instead be grown, starting with just the sound
source cell, by appending the contents of refreshSet at each time
step. Old irrelevant cells could likewise be removed over time. If
candidates were made shorter like this or if special considera-
tion were given to the high temporal coherence of candidates,
the running time of the partial sorting algorithm could be reduced.

The partial sorting of candidates creates an overhead over
plain FDTD in the middle of long simulations (like ones with re-
flections which must be simulated), when N approaches the full
volume of the space. In these situations, because we do not change
the pressure field representation, computation can easily be switched
between our method and plain FDTD to avoid the overhead. Com-
putation savings would still be found at the beginning and end of
the simulation time. Alternatively, an upper bound can be placed
on the size of N to guarantee that performance is always better
than ordinary FDTD while still maintaining simulation quality in
a pricipled way. While potentially deleterious in the "worst case,"
an upper bound like this could ordinarily be used because the wave
volume in a simulation typically does not approach the total envi-
ronment volume.

Finally, future work also includes testing the effectiveness of
prioritized computation in numerical techniques other than FDTD.
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Figure 3: The broken lines are the full FDTD ground truth out-
put and the solid lines are the prioritized computation output. The
three waveforms correspond to Env. C, Env. D, and Building, re-
spectively, in Tables 1, 2 and 3.
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(d): 100% N inflation (12% longer computation time than (b))
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ABSTRACT
In this paper we propose a synthesis method using a force-based
algorithm to control frequencies of multiple sine waves. In order
to implement this synthesis method, we analyze an existing sound
source using a fast Fourier transform (FFT). Spectral peaks which
have large magnitudes are regarded as heavy partials and assigned
large attractive forces. A few hundred sine waves with stationary
amplitudes are placed in a frequency space on which forces gener-
ated in the analysis phase are applied. The frequencies of the par-
tials gravitate to the nearest peak of the reference spectrum from
the source sound. As more sine waves are combined at the large
peaks, the sound synthesized by the partials gradually transforms
into the reference spectrum. In order to prevent the frequencies
of the partials from gravitating onto localized peaks, each partial
is assigned a repulsive force against all others. Through success-
ful control of these attractive and repulsive forces, roughness and
speed variation of the synthesis can be achieved. Moreover, by
increasing or decreasing the number of partials according to the
total amplitude of the source sound, amplitude envelope following
is achieved.

1. INTRODUCTION

A force-based (or force-directed) algorithm is commonly known
as a graph drawing algorithm [1]. A graph is a common data struc-
ture which is constructed from a set of vertices and edges, where
the edges connect pairs of vertices [2]. The synthesis method pro-
posed in this paper is inspired by this algorithm, and utilizes the
algorithm in order to generate sound.

The motivation of this research is to accomplish a new synthe-
sis method as an application of the sinusoidal partial editing tech-
nique [3, 4]. The basic premise of the synthesis method is placing
multiple sinusoidal waves which have separate frequencies, and
applying a one dimensional force-based algorithm in a frequency
domain to control the frequencies of the waves. This method is
different from general spectral editors such as spectral SPEAR [5]
in that it is not developed for flexible sound editing, but rather for
generating characteristic time-varying sounds between noises and
recorded sound materials.

The goal of this research is to develop a synthesis method
which can generate various sounds from musical tones and noises
with a small number of intuitive parameters. In order to achieve
this goal, we prepare an existing sound to generate attractive forces
and apply them to the force-based algorithm. Strong attractive
forces are assigned to large peaks in the spectrum by analyzing
the reference sound source using the Fourier transform. A user
can vary the similarity of the sound to the reference sound by con-
trolling the forces applied.

All programs presented in this paper are written in Objective-
C and C++ and are executed in Mac OSX.

2. STRUCTURES

The structures used to achieve the synthesis method are described
in this section.

2.1. Analysis of a reference sound source

The first step is the analysis of a reference sound selected by a user.
The reference sound is usually provided as a sound file except for
real-time processing, which is presented in section 3.3. Any valid
sound source is allowed.

The Short-Time Fourier Transform (STFT) analysis [6] is used
for this step, where amplitudesA for each frequency f are detected
by

X(k) =

N−1X
n=0

x(n)e−2πikn/N (1)

A(k) = |X(k)| (2)

F (k) =
kR

N
(3)

where x(n) consists of N samples of a windowed waveform
and R represents the sampling rate.

2.2. Distribution of partials

The synthesis phase for the proposed method begins by generat-
ing partials in a specific range of frequencies. The amplitudes of
the partials are calculated from the number of partials and are un-
changeable. There are two options for determining the number of
partials.

1. The user specifies the number of partials and it does not
change. The synthesized result does not follow the ampli-
tude of the input reference source.

2. The user specifies the maximum number of partials and the
number of active partials is determined in proportion to the
amplitude of the reference sound as (4).

ν = νmax

N−1X
k=0

αA(k) (4)

where α represents a constant number for scaling the ampli-
tude. The active or inactive partials are randomly chosen. In this
step, since the frequencies of the partials are random, an unpitched
sound is typically created.
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2.3. Attractive force

Attractive forces, which are applied to the partials, are generated
from the spectrum detected from the reference sound. A partial is
attracted to neighboring frequency components, where the user can
specify the number of effective frequency components. The force
is inversely proportional to the square of the distance between the
target frequency component and the frequency of the partial

fa(Pf (i)) =
X

0<|F (k)−Pf (i)|<τ

sgn(F (k)− Pf (i))gaA(k)

|F (k)− Pf (i)|2
(5)

where fa(Pf (i)) represents an attractive force for partial P (i)
of which the frequency is Pf (i), ga is a constant value to adjust
the strength of the force, and τ corresponds to the range of the
effective frequency components.

Figure 1 depicts an example of attractive forces which are ap-
plied to a partial. Three peaks of the spectrum are used for calcula-
tion in this figure. A large and close peak such asA has a profound
effect while a distant peak such as C has little effect. As a result,
the effect of peak A is significant, thus this partial shifts to the left
side (lower in the frequency domain).

Figure 1: Attractive forces applied to a partial

2.4. Repulsive force

To avoid congestion of partials at a small peak in the spectrum,
repulsive forces are generated between every pair of partials. The
force is inversely proportional to the square of the distance be-
tween the partials

fr(P (i)) =
X

Pf (j) 6=Pf (i)

sgn(Pf (i)− Pf (j))gr
|Pf (i)− Pf (j)|2

(6)

where fr(P (i)) represents a repulsive force for partial P (i).
By using all pairs of partials for the calculation, partials depart
from condensations.

Figure 2 represents repulsive forces between each pair of three
partials. Since the partials repel close partials more strongly, par-
tial B is moved up.

Figure 2: Repulsive forces applied to three partials

When some partials have the same frequencies, the repulsive
forces between these partials are unable to activate and the attrac-
tive forces are always congruent. To separate these partials, two
options which user can select are prepared.

1. Random repulsive forces are applied to each partial which
is placed at the same frequency with other partials.

2. New frequencies, which is unrelated to current status, are
redistributed to the partials.

When some partials have the same frequencies, the repulsive
forces between these partials are not activated and the attractive
forces are always congruent. In order to separate these partials,
there are two options for the user:

1. Random repulsive forces are applied to each partial which
is placed at the same frequency with other partials.

2. New frequencies, which are unrelated to the current status,
are redistributed to the partials.

Since it is infrequent that multiple partials have exactly the
same frequency, the difference in the final synthesized sound qual-
ities is minimal between the aforementioned options.

2.5. Resistance

When the reference sound has a static frequency component, the
partials have the risk of periodic vibration around a spectral peak.
This is because the attractive forces convert back and forth be-
tween potential and kinetic energy. Therefore, the oscillations are
inhibited by implementing resistance.

f(P (i)) = r(fa(P (i) + fr(P (i)) (7)

produces total force f(P (i)) for partial P (i). r is a resistance
value between 0 and 1.

2.6. Synthesis

The forces, which are derived in section 2.5, are applied to partials
at every frame by addition of the forces
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Figure 3: An example result of the synthesis (the horizontal axis is time and the vertical axis is frequency). “A” is the reference sound
(Horn; from 0Hz to 2,000Hz), while “B” and “C” are the synthesized sounds which consist of 1000 partials. The attractive force (ga) for
“B” is 0.3, and gr for “C” is 5.

Pf (n, i) = Pf (n− 1, i) + f(P (n− 1, i)) (8)

where n represents the current time frame.
The sound synthesis is accomplished using a common oscilla-

tor bank synthesis technique [7, 8] which is realized by

y(n) =
X
∀i
A cos[2πPf (n, i)n+ φi] (9)

where A represents a constant amplitude for each partial, and
an initial phase φi is randomly distributed.

An example of the synthesis result is depicted in Figure 3. A
is generated from a horn sound; B and C are the synthesis results
which consist of 1000 partials. The beginning of the synthesized
sound starts with an unpitched noise at the left in the figure and the
pitched tone is constructed gradually.

It is also possible to use the inverse Fourier transform for both
simplified and/or real-time calculation which is proposed in the
section 3.3.

3. APPLICATIONS

In this section, we present some applications for this synthesis
method.

3.1. Dynamic control of parameters

This synthesis method can generate various sounds by adjusting
the parameters. In particular, the coefficients for attractive force
ga, repulsive force gr , and resistance r are important for control-
ling the similarity to the reference sound and the quickness of tran-
sitions.

It is possible for users to control these parameters by preparing
time-varying functions. These functions are written in files which
the synthesis program reads in order to synthesize the sound.

Figure 4: An example of the force functions used to generate rhyth-
mic sound.

For instance, periodic changes in timbre are generated by us-
ing the functions depicted in Figure 4, where a rhythm structure
is created. Control of the resistance value is effective to gener-
ate and remove vibrations. Moreover, various effects are realized
by applying these forces to the amplitudes of the reference sound
without preparing function files.

3.2. Timbre morphing

Timbre morphing is a technique used to create a new sound by
combining multiple sounds and transforming the timbres gradu-
ally [9]. Sinusoidal modeling, which is used for the synthesis
method in this paper, is utilized in some cases of timbre morphing
[10, 11]. This synthesis method does not analyze the multidirec-
tional features of the reference sound and it is therefore difficult to
generate a high-quality and well-defined result. However, uncom-
plicated timbre morphing is accomplished by using this synthesis
method.

A sound file which consists of several segments from separate
sound sources is required to accomplish timbre morphing, using
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the file as a reference. Each particle for this synthesis method
varies continuously; therefore, the generated timbre transforms
gradually at the transition of the reference sounds.

By decreasing the attractive force and increasing the repulsive
force at the transition, the synthesized sound converges to the de-
sired sound, and a smooth morphing result is achieved.

3.3. Real-time processing

The synthesis method proposed in this paper generates a wide va-
riety of sounds and controls them through a small number of pa-
rameters; therefore, this method has the potential for realizing a
novel and intuitive user interface for generating sounds. At this
time, it is difficult for off-the-shelf personal computers to gener-
ate high-quality results in real time due to the large calculations
required.

By implementing the ideas below, real-time processing is ac-
complished in computationally limited environments.

1. Decreasing the frame rate(e.g. 30fps)

2. Using a Graphics Processing Unit (GPU)

3. Decreasing the number of partials (e.g. 200)

4. Using the IFFT for synthesis

GPUs are able to realize fast parallel processing; hence it is ef-
fective to calculate the frequencies of many partials using them. In
this research, the GLSL (OpenGL Shading Language) is used [12,
13].

The IFFT (inverse fast Fourier transform) is a common syn-
thesis method which is used for decreasing the calculation time.
In addition to this, the calculation volume is reduced by decreasing
the FFT size and frame rate. However, deteriorations in resolution
in both the time and frequency domains are observed, meaning the
generated sound also has a loss in quality.

4. CONCLUSION

In this paper, structures and applications of a new synthesis method,
which is constructed using sinusoidal editing and a force-based al-
gorithm, were proposed. Although this method is a complicated
tool at this time, examples of productive features are indicated.

The following two points are considered important for the fu-
ture prospects of this research:

1. Development of real-time processing and an intuitive and
interactive user interface.

2. Adoption of advanced physical laws.

As mentioned in section 3, this method has the potential to re-
alize various sound synthesis. However, it is difficult to utilize this
method for musical performances and real-time and/or interactive
compositions due to the large volume of calculations required.

This method also has the possibility to involve various phys-
ical laws, for instance, recent research results of fluid mechanics
indicate large potentials for controlling a vast amount of particles
and streams. The synthesis method presented in this paper has al-
ready accomplished the creation of a wide variety of sounds using
a simple force-based model. It is proposed that more powerful,
flexible, and intuitive synthesis methods can be realized by utiliz-
ing advanced models.
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6. APPENDIX: SOUND EXAMPLES

Sound examples are available online at the following address.

http://www.ryoho.com/software/sinfba/
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ABSTRACT

The voice morphing process presented in this paper is based on the
observation that, in many styles of music, it is often desirable for
a backing vocalist to blend his or her timbre with that of the lead
vocalist when the two voices are singing the same phonetic mate-
rial concurrently. This paper proposes a novel application of recent
morphing research for use with a source backing vocal and a target
lead vocal. The function of the process is to alter the timbre of the
backing vocal using spectral envelope information extracted from
both vocal signals to achieve varying degrees of blending. Sev-
eral original features are proposed for the unique usage context,
including the use of LSFs as voice morphing parameters, and an
original control algorithm that performs crossfades between syn-
thesized and unsynthesized audio on the basis of voiced/unvoiced
decisions.

1. INTRODUCTION

Sound morphing is a term that has been used to describe a wide
range of processes and, as of yet, there is no consensus on a stan-
dard definition for the term due to variations in usage contexts,
goals and methods. Despite the disparities in definitions, Caetano
[1] remarks that, in most applications, the aim of morphing can
be defined as “obtaining a sound that is perceptually intermediate
between two (or more), such that our goal becomes to hybridize
perceptually salient features of sounds related to timbre dimen-
sions.” The goal of achieving perceptually intermediate timbres is
complicated by the multidimensional nature of timbre perception
[2]. Classifications of the dimensions associated with timbre [3, 4]
usually distinguish between features derived from the temporal en-
velope of the sound (e.g temporal centroid, log-attack time), and
features derived from the spectral envelope of sounds (e.g spectral
centroid, spectral tilt).

When attempting to achieve perceptually intermediate spec-
tral features between sounds, many morphing systems adopt si-
nusoidal models in which the partials of a sound are represented
as a sum of sinusoids that, in the case of musical sounds, are of-
ten quasi-harmonically related. A common strategy in morphing
systems is to establish correspondences between the partials of
two sounds and to interpolate the frequency and amplitude val-
ues [5, 6]. Methods based on this approach do not account for
resonance peaks or formants that are delineated by the contour of
the sound’s spectral envelope. Consequently, the resulting inter-
mediate spectral envelopes often display undesirable timbral be-
havior in which formant peaks are smoothed rather than shifted in
frequency. Therefore, when hybridizing the non-temporal dimen-

sions of timbre the challenge is finding parameterizations of the
spectral envelope that can be interpolated to create perceptually
linear shifts in timbre. Some spectral envelope parameterizations
that have been proposed are: linear prediction coefficients (LPC)
[7], cepstral coefficients (CC) [8], reflection coefficients (RC) [7],
and line spectral frequencies (LSF) [9].

Different parameterizations of the spectral envelopes of musi-
cal instrument sounds were recently compared at IRCAM [10] us-
ing spectral shape features as timbral measures to determine which
representations provided the most linear shift in peaks and spectral
shape. They found that, of the parameterizations surveyed, LSFs
provided the most perceptually linear morphs. This supports pre-
vious proposals [9, 11] for the use of LSFs as good parameters
for formant modification. In the morphing process introduced be-
low, this research is used in conjunction with research into the for-
mant behavior of singers that has indicated that individual singers
will sometimes alter the formant structures of vowels to blend in
or stand out in an ensemble situation. Goodwin [12] found that
singers in choirs lowered the intensity of their second and third
formants, and sometimes shifted the formants down in frequency
to blend better. Ternström [13] concluded that singers in barber-
shop quartets spread out the spacings of their formants to stand out
for intonation purposes.

This paper presents a novel voice morphing process that is in-
tended to be used as a studio tool to blend a backing vocal with a
lead vocal. The process uses the spectral envelope of a lead vocal-
ist to alter the spectral envelope of the backing vocalist on a frame
by frame basis while preserving pitch information. The morphing
process is built upon the observation that it is common in many
music styles for a backing vocalist to sing the same phonetic mate-
rial concurrently with the lead vocalist. Given this specific context,
the formants of the two signals will be similar, and differences in
the spectral envelopes can be attributed to differences in either the
singer’s pronunciation or the timbral characteristics of the individ-
ual’s voice. It can be aesthetically desirable in this situation for
vocalists to blend their timbre with other vocalists [12, 13]. In this
context, if the spectral envelope of the backing vocalist is morphed
with that of the lead vocalist, and the morphing method creates a
perceptually linear morph, the formants that define phonetic infor-
mation will remain intelligible and only the envelope information
that affects the singer’s individual timbre will be altered. Further-
more, since perceptually intermediary timbres between the two can
be achieved using LSFs, the process can be used as a subtle effect.

This proposed morphing process could be useful in studio sit-
uations where the lead vocalist and a backing vocalist have con-
trasting timbres. In this scenario, the current common practice to
achieve a blended timbre is to multitrack the lead vocalist perform-
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ing both the lead and backing parts. In this situation, the timbral
results are limited to either being perceptually blended (when the
lead vocalist records both parts) or perceptually distinct (when the
backing vocalist records their part). The proposed morphing pro-
cess allows for a larger variety of combined vocal textures by cre-
ating gradations in the amount of blending between the two voices.
The combined texture created by the two voices can be perceptu-
ally blended, perceptually distinct or any gradation in between the
two depending on the LSF settings that are used.

The objectives of this voice morphing process differ from those
of most morphing processes since the objective is not to achieve
the target vocal sound, but rather to use its spectral envelope to
modify the timbre of the source vocal, preserving its original har-
monic structure and hence its fundamental frequency. The objec-
tives of this morphing process share some similarities with those
discussed in [14], in which features from two voices are combined
to create a hybrid voice that retains one voice’s pitch information.

The proposed morphing process falls within the bounds of
some definitions of cross-synthesis in which an “effect takes two
sound inputs and generates a third one which is a combination of
the two input sounds. The idea is to combine two sounds by spec-
trally shaping the first sound by the second one and preserving the
pitch of the first sound.” [15] If this definition is adopted then
the proposed process would be defined as cross-synthesis with a
preliminary morphing stage in which the spectral envelope of the
second sound is altered using envelope features extracted from the
first sound.

In the next section the signal model used to morph the en-
velopes is described and an overview of the structure of an analy-
sis/synthesis system that implements the process is presented. In
section 3 the calculation of the LSF spectral envelope parameteri-
zation is discussed. In section 4 an original control algorithm that
performs crossfades between the synthesized audio and the unsyn-
thesized backing vocal audio is discussed. In section 5 a subjective
discussion of the sonic results and the limitations of the process are
presented as well as our conclusions.

2. SIGNAL MODEL AND THE STRUCTURE OF THE
PROCESS

2.1. Source-filter signal model

This morphing process uses spectral modeling synthesis (SMS),
as described by Xavier Serra [16], to synthesize a morphed ver-
sion of a backing vocal signal. SMS models a sound x(t), by
splitting it into two components, a sinusoidal component xh(t),
and a stochastic residual component xr(t). The sinusoidal compo-
nent models the quasi-harmonic element of sounds by first detect-
ing spectral peaks according to a quadratic peak-picking algorithm
[17], followed by a refinement of these peaks on the basis of har-
monic content. This harmonic component of the sound is modeled
as a sum of sinusoids using:

xh(t) =

K(t)∑

k=0

ak(t) exp[jφk(t)] (1)

where ak(t) and φk(t) are the amplitude and phase of the kth har-
monic. The residual component is modeled by subtracting the har-
monic component from the original signal. The residual is then
synthesized using noise passed through a time-varying filter. When

Figure 1: Flow chart diagram of the morphing process. Dashed
lines represent the flow of extracted data. Solid lines represent the
flow of audio.

using SMS to synthesize the human voice, the residual generally
models unvoiced sounds such as consonants and aspiration noise.

The synthesis strategy adopted in this morphing process dif-
fers from traditional SMS in its use of a source-filter model which
considers the amplitudes of the harmonics separately from the har-
monics themselves. This model, proposed in [18], divides the har-
monic component of a sound into an excitation source, in which
the amplitudes of the harmonics are set to unity (ak = 1), and a
time-varying filter given by:

H(f, t) = |H(f, t)| exp[jψ(f, t)] (2)

where |H(f, t)| is the amplitude, and ψ(f, t) is the phase of the
system. The time-varying filter is derived using spectral envelope
estimation methods described in section 3. The model for the rep-
resentation of the harmonic element is then given by:

yh(t) =

K(t)∑

k=0

|H[t, fk(t)]| exp[j(φk(t) + ψ(fk(t)))] (3)

where fk(t) ≈ kf0(t), φk(t) is the excitation phase, and ψ[fk(t)]
is the instantaneous phase of the kth harmonic. As such, the time-
varying filter models the curve of the spectral envelope according
to the formant structure and individual timbral characteristics of
the singer. This approach, which was originally proposed for mu-
sical instruments, is adopted for the singing voice instead of tradi-
tional source-filter models, such as linear predictive coding, since
it offers greater flexibility for timbral manipulation.

2.2. Process Structure

This morphing process belongs to the class of audio effects dis-
cussed by Verfaille et al. [19] known as external-adaptive audio
effects. External-adaptive effects use features extracted from an
external secondary input signal as control information to modify
a primary input signal. In the case of this morphing process, fea-
tures used to control the source-filter model described above are
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extracted from the lead vocalist’s signal (xLv) to alter the backing
vocalist’s signal (xBv) on a frame-by-frame basis. The structure
of the process (shown in Fig. 1) can be divided into four stages: an
analysis stage, a morphing stage, a synthesis stage, and a control
stage.

During the analysis stage the spectral envelopes of the har-
monic components of both the lead and backing vocal frames are
estimated and parameterized as LSFs using a process described
in section 3. The residual envelopes are extracted by subtracting
their harmonic components from their respective magnitude spec-
tra. Decimation is then used to create line-segment representations
of the residual envelopes. Voiced/unvoiced information is also ex-
tracted from the two vocals using a two way mismatch (TWM)
algorithm [20]. In addition to the three features listed above that
are extracted from both voices, two additional features, the fre-
quencies of harmonics and phase information, are extracted from
the backing vocal. These two features are used, unaltered, during
the synthesis process. By using the original phase and harmonic
structures, the pitch information of the backing vocalist’s audio is
preserved and only its timbral qualities are altered.

During the morphing stage of the process, the parametric rep-
resentations of both the harmonic and residual envelopes (LSFs
and line segments, respectively) are morphed using:

M(α) = αSLv + [1 − α]SBv 0 ≤ α ≤ 1 (4)

where SLv and SBv are arrays containing the spectral envelope pa-
rameters of the lead and backing vocals respectively. The variable
α is the morph factor that controls the amount of timbral blending.
The morphed parameters are input into the SMS system during
the synthesis stage of the process along with the original harmonic
frequencies and phase information of the backing vocalist. The
final control stage of the process (described in section 4) uses the
voiced/unvoiced information extracted during the analysis stage to
perform crossfades between audio produced by the SMS system
and the original unvoiced backing vocal audio.

The overall structure of the effect, and the unique control al-
gorithm (discussed in section 4) were designed with the intention
of laying the ground-work for a real-time SMS implementation. A
possible real-time effect could be implemented using a side-chain
to input the lead vocal signal. A similar real-time SMS application
has been discussed in [21].

3. MORPHING USING LINE SPECTRAL FREQUENCIES

The chosen method of calculating LSFs begins with the magni-
tudes of the harmonic component of xh, which are derived us-
ing the peak-picking algorithm. The harmonic component is first
squared and then interpolated to create the power spectrum |X(ω)|2.
An inverse-Fourier transform is performed on the power spectrum
to calculate autocorrelation coefficients (rxx(τ)) according to the
Wiener-Khinchin theorem:

rxx(τ) = F−1{|X(ω)|2} (5)

The first p autocorrelation coefficients are used to calculate p linear
prediction coefficients using Levinson-Durbin recursion to solve
the normal equations:

p∑

k=1

akrxx(i − k) = rxx(i) , i = 1, . . . , p. (6)
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Figure 2: Spectral envelopes demonstrating the effect of morphing
sung [A] vowels using LSFs (overlaid in dashed lines). The hy-
brid envelope shows the resulting formant shift behavior when a
morphing factor (α) of 0.5 is used.

LSFs are then derived from the linear prediction coefficients (ak)
by considering the coefficients as a filter representing the reso-
nances of the vocal tract. Based on the interconnected tube model
of the vocal tract, two polynomials are created that correspond to a
complete closure and a complete opening at the source end of the
interconnected tubes [22]. The polynomials are generated from
the linear prediction coefficients by adding an extra feedback term
that is either positive or negative, modeling energy reflection at a
completely closed glottis or a completely open glottis respectively.
The roots of these polynomials are the LSFs. A thorough expla-
nation of the process of calculating LSFs from linear prediction
coefficients, as well as the reverse process, is given in [22].

In the line spectral domain, the LSFs from the backing vocal
are morphed with the LSFs from the lead vocals using equation
(4). An example of morphed LSFs and the hybrid spectrum cre-
ated using this process are shown in Fig. 2. The figure shows a
clear shift in the amplitudes and central frequencies of the of the
third and fourth formants, demonstrating the good interpolation
characteristics discussed in [9, 11, 10]. These morphed LSFs are
then converted into the linear prediction coefficients that constitute
the all-pole filter H[fk(t)] discussed in section 2.1. Using

H[ωk] =
1

1 +
∑p

n=1
a(n) exp[−jωknTs]

(7)

where ωk = 2πfk and Ts is the sampling interval, the linear pre-
diction filter is evaluated at the individual harmonic frequencies.

4. CROSSFADE ALGORITHM

An important feature of this morphing process is a control algo-
rithm that performs crossfades (shown in Fig. 3) between the
original unvoiced consonants of the backing vocal and morphed
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Figure 3: The synthesized harmonic plus stochastic audio (top fig-
ure), the unsynthesized original audio (bottom figure), with their
respective crossfade gain values. Crossfades with an exponential
value of 2 and a fade length of 2 windows (2048 samples) were
used.

voiced sounds. This reconstruction algorithm for the morphing
process uses the voiced/unvoiced classifications for the frame plus
a fade position inherited from the previous frame. The crossfades
are performed by indexing tables created with user-defined expo-
nential curves. The fades are designed to be at unity gain and the
number of samples needed to complete a fade is specified by the
user in window lengths. In the experiments discussed below in
section 5, the hop size of 256 samples is taken into account when
performing the crossfades by applying the indexed gain amount to
only 256 samples at a time. The length of the fade was set to 3072
samples with an analysis window-length of 1024 samples and a
sampling frequency of 44100 Hz.

The crossfades address a number of issues that are unique to
the application context. Firstly, although the morphing process
is designed to operate under the condition that both voices are
singing the same phonetic material concurrently, there will almost
always be discrepancies in the timing of the two voices. To avoid
the spectral envelope of a consonant being imposed on the har-
monic structure of a vowel, or vice versa, the algorithm checks
whether either of the two voices contain unvoiced sounds in their
corresponding frames. If so, the algorithm either fades towards the
original unsynthesized audio or it remains with the unsynthesized
audio at full gain, depending on the initial position of the fade.
An equally important reason for using a crossfading system is that
the transients of consonants synthesized using the filtered noise of
SMS are considered to lack realism due to a loss of sharpness in
their attack [17, 23]. A reason for performing a gradual crossfade
is to make up for inaccuracies in voiced/unvoiced decisions made
by the TWM algorithm during the analysis stage. These inaccu-
racies can be observed in Fig. 3 by the presence of jagged lines
during either steady state voiced sections or during transitions.
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Figure 4: Demonstration of the vowel spectra of a phoneme ([A])
created when the target lead vocal has either a lower (a) or higher
(b) fundamental frequency relative to the backing vocalist. In (a)
the lead vocalist has a lower fundamental (f0 = 147 Hz) and the
backing vocalist has a higher fundamental (f0 = 497 Hz). In (b)
the fundamental frequencies are swapped.

They represent decisions that change quickly over the course of
a small number of frames. They are usually a single voiced frame
surrounded by unvoiced frames, or vice versa. The use of grad-
ual transitions masks the overall impact that these isolated voicing
classifications have.

5. DISCUSSION

5.1. Informal Testing

The effectiveness of the two principal features of this morphing
process (the use of LSFs and the reinsertion of unvoiced conso-
nants using crossfades) were informally tested by comparing the
morphing process with a second SMS-based morphing process
[24] that uses synthesized unvoiced segments and morphs voiced
segments using simple interpolation of the spectral envelopes cre-
ated by the harmonic components. From a five second recording
of a backing vocal, two sets of processed backing vocals were cre-
ated: one using the morphing process presented here, and another
using the second envelope interpolation process used for compar-
ison. In each of the sets, the backing vocal was synthesized using
the morphing factors: α = 0, 0.5, 1.0. To assess the realism of
the resulting audio, the two sets were first played independent of
their corresponding lead vocal. Subsequently, the same processed
backing vocals were played in conjunction with their correspond-
ing lead vocal to informally assess the level of perceptual blending.

An initial observation was that the realism contributed by the
reintroduction of the original unvoiced consonants using the cross-
fade algorithm was significant when compared with the envelope
interpolation process without the reinsertion of consonants. Sim-
ilar to what was found by [17, 23], the use of SMS to model un-
voiced segments was considered to result in consonants that lacked
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definition due to being modeled by the noise residual. A drawback
of the use of the crossfades was that, as α increased, there were
noticeable artifacts that appeared during the transitions between
synthesized and unsynthesized audio. These artifacts are due to
the differences between the two spectral envelopes that are percep-
tually highlighted by rapid changes. The effect of these artifacts
can be reduced by increasing the length of the crossfade. When
considering the realism contributed by the LSFs, as the α value
was increased, the resulting voiced sounds of the LSF-based mor-
phing process remained defined and realistic, due to the linear shift
in timbral features. In contrast, the voiced segments synthesized
using the second SMS morphing process lacked definition at α =
0.5, due to the peak smoothing behavior that occurs during the in-
terpolation of envelopes. When the two sets of processed backing
vocals were played in conjunction with the lead vocal it was con-
sidered that the formant shift behavior due to the use of LSFs in-
creased the level of perceptual blend between the two voices as the
α value was increased. With the second SMS morphing process,
this was not always the case due to the peak smoothing behavior.

5.2. Limitation

One of the limitations of the morphing process presented here is
that it cannot be used to effectively blend backing vocals that have
a lower fundamental than their corresponding lead vocals. This is
due to the envelope-sampling behavior of harmonics. As shown
in Fig. 4, the harmonics sample the vowel envelope at frequen-
cies that are approximately integer multiples of the fundamental.
Given the case of a backing vocal with a lower fundamental than
the lead vocal, the lead vocal vowel envelope will not be sampled
at a high enough rate for the backing vocalist to accurately recre-
ate the formants of the vowel. In addition, the harmonics of the
backing vocal that are at lower frequencies than the fundamental
of the lead vocal cannot be designated appropriate amplitude val-
ues since there is no vowel envelope information at frequencies
below the fundamental.

5.3. Conclusion

The voice morphing process presented in this paper uses LSFs to
modify the timbral characteristics of a backing vocal, including
the frequencies and strengths of formants, to achieve different lev-
els of blending with a target lead vocal. In choral situations, for-
mant modification by singers has been observed in which formant
strengths have been lowered and centre frequencies slightly shifted
for the purpose of blending [12]. Although the actions of a choral
singer and the timbral modifications produced by this process cre-
ate different results, both are motivated by the objective of produc-
ing a homogeneity of timbre through modification of the spectral
envelope. For this reason, this process is proposed as a potentially
valuable artistic tool for blending two voices.
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ABSTRACT

We present an analysis of short-time time-reversal on audio sig-
nals. Based on our analysis, we define parameters that can be used
to control the digital effect and explain the effect each parameter
has on the output. We further study the case of 50% overlap-add,
then use this for a real-time implementation. Depending on the
window length, the effect can modify the output sound variously,
from adding overtones to adding reverse echoes. We suggest ex-
ample use cases and digital effects setups for usage in sound design
and recording.

1. INTRODUCTION

Overlap-add (OLA) methods are widely used in digital audio ef-
fects. Examples include time stretching, pitch shifting, phase vocoder,
and more complex effects based on the short-time Fourier trans-
form (STFT). [1, 2, 3, 4, 5, 6, 7, 8]. In this paper, we explore a spe-
cial case of OLA effects termed short-time time-reversal (STTR)
— reversal of overlapping short time intervals.

Time reversal is widely used in many fields including acous-
tics, ultrasound, underwater communications, and biomedical en-
gineering as a method for focusing propagated signals ([9, 10]).
Contrarily, it does not seem to be a noticeable topic in the digital
audio effects literature. The application of time reversal in audio
effects is generally not covered because the system becomes non-
causal. For short time intervals, however, it is possible to add a
short delay to the output, a buffering period similar to that of de-
lay line effects, to alleviate non-causality. It is worth noting that
though STTR is linear, it is not time invariant.

Time reversal audio effects are available on the market. Grain
Reverser, a Max for Live plugin, and Reverse Grain from Native
Instruments are examples. These audio effects are designed to be
temporal not spectral. As we will examine in later sections, time
reversal of shorter time intervals, 30ms or less, with overlap-add
creates complex spectral and temporal effects and opens new pos-
sibilities for sound design. However, due to the nature of the effect
it may be hard to control and may create unexpected and unpleas-
ant results. We shed light on this through Fourier analysis.

The remainder of this paper is structured as follows. We math-
ematically define STTR and look at the Fourier analysis of STTR
(§2), cover the parameters of STTR and examine the effects of
each parameter (§3), explore a special case with 50% OLA (§4),
look at a real-time implementation of the 50% OLA case (§5), and
discuss observations using the implementation (§6).

2. FOURIER ANALYSIS

In this section, we define STTR and perform a Fourier transform
to study its effects in the frequency domain.

2.1. Short-Time Time-Reversal

Let x(t) be the input signal and w(t) be the window function of
length L with constant overlap-add for step size R: (Equation 2.1)

∞∑

m=−∞
w(t−mR) = 1 (2.1)

The STTR signal y(t) is formed by the following steps.

Step 1. Window the input signal x(t) with w(t−mR).
Step 2. Reverse the signal under the window:

(a) Move the windowed signal to the origin.

(b) Reverse the windowed signal.

(c) Move it back to the original position.

Step 3. Sum the reversed signals.

Following the steps we get

y(t) =
∞∑

m=−∞
x(−t+ 2mR)w(t−mR). (2.2)

Note that without the time reversal, the time shifts for x(t) from
Step 2 would cancel out.

2.2. General Derivation

The Fourier transform of y(t) becomes

Y (f) =
∞∑

m=−∞
e−2πifm2RX(−f) ∗ e−2πifmRW (f). (2.3)

We can expand the convolution in equation (2.3) and use the Fourier
transform of an impulse train to simplify Y (f) to

Y (f) =
1

R

∞∑

k=−∞
X

(
f − k

R

)
W

(
2f − k

R

)
. (2.4)

For a detailed derivation of equation (2.4), see the Appendix.
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2.3. Single Sinusoid Input

From a quick glance equation (2.4) may not intuitively make sense.
We can gain insight into the effect of STTR in the frequency do-
main by looking at the simple case of a single sinusoid.

For a single sinusoid x(t) = cos(2πf0t), equation (2.4) be-
comes,

Y (f) =
1

2R

∞∑

k=−∞

{
W (f+2

k )δ(f − f+
k )

+W (f−2
k )δ(f − f−k )

}
(2.5)

where fR = 1
R

, f±k = kfR ± f0 and f±2
k = kfR ± 2f0.

At each integer multiple of frequency fR, we get two peaks
at offsets ±f0, a weighted copy or “reflection” of the original fre-
quency spectrum (f±k ). The weights are given by not the corre-
sponding sample of the window spectrum but that at offsets±2f0,
twice the frequency offsets (f±2

k ). Figure 1 visualizes equation
(2.5) for two cases, f0 < fR/2 and f0 > fR. When f0 < fR/2
finding the correct weights for each peak at f±k is trivial. It quickly
gets complicated when f0 > fR (Figure 1b). Adjacent peaks are
not from the same reflection, i.e. f−1 is not the closest peak to f+

1 .
The weights for each peaks are from even further away points.
Furthermore, the original frequency f0 is not necessarily the peak
with the greatest amplitude.

Figure 2b shows the spectrogram of the STTR output for a
linear sine sweep for a short window length. The pattern on this
figure can be explained by equation (2.5). We cover the parameters
of STTR and the observed effects of each parameter in §3.

2.4. Gaussian White Noise

We look at the discrete STTR to analyze the output for Gaussian
white noise. Let x[n] be an uncorrelated Gaussian white noise pro-
cess and y[n] the output after STTR. Since all samples of y[n] are
linear combinations of x[n], we know that they are also Gaussian
random variables.

We now look at the covariance matrix to verify if all samples
in y[n] are uncorrelated. We first look at the case of 50% OLA
(R = L/2), then extend this to the generalized case. For a given
section along the alignment of half the window length, like one
slot in Figure 3, the output will be the weighted linear sum of the
surrounding time slots. LetX be a 3R×1 random vector with the
values of x[n] for n = [mR, (m+3)R), the span of 2 overlapping
windows, and Y be a R× 1 random vector with the values of y[n]
for n = [(m+ 1)R, (m+ 2)R), where the two windows overlap.
We can formulate Y as follows,

Y =
(
A 0 B

)
X

where

Aij =

{
w[j] i = R− 1− j;
0 otherwise,

and

Bij =

{
w[j +R] i = R− 1− j;
0 otherwise.

That is,A andB are cross diagonal matrices with the split window
components ofw[n] for each overlapping component from the cor-
responding parts of x[n]. Since the covariance matrix of X , VX is
the identity matrix I , the covariance matrix of Y is

VY =
(
A 0 B

)
I




A
0
B


 = AAT +BBT (2.6)

Since A and B are cross diagonal matrices, VY is a diagonal
matrix and thus all elements of Y are uncorrelated. We can gen-
eralize equation (2.6) to any overlap ratio by splitting w[n] onto
more cross diagonal matrices. This holds true regardless of the
window type. The values of the main diagonal, however, will not
be constant (VY 6= I) but will be dependent on w[n] and the over-
lap ratio. This means the window type and overlap ratio will be
imprinted on the variance for each sample within a given slot. See
[11] for an analysis of the effects of OLA on noise.

3. PARAMETERS

Equation (2.5) gives us insight into the parameters that can be used
to change the audible effects of STTR. First we can change the
window type as well as the length of the window L. Also, we can
change R, the step size.

3.1. Window Type

The window type defines the shape of the functionW (f). This af-
fects the weights of the overtones. Choosing a window with high
sidelobe levels, e.g., a rectangular window, will in general increase
the power of the overtones. By smoothly changing the window
shape it is possible to shape the overtones. Compared to the side-
lobe levels, the mainlobe width has a subtle effect of spreading the
peak energy, i.e., the frequency with maximum power over a num-
ber of sinusoid peaks. It is worth noting that the peak frequency is
not necessarily the original sinusoid frequency (Figure 1b).
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(d) Window length 1000 ms

Figure 2: Spectrogram plots showing the effect of STTR window length for 50% overlap-add. The sampling frequency for all signals in
this figure is 20 kHz. Figure 2a shows the spectrogram of the input signal, a 10 second linear sine sweep from 0Hz to 10 kHz. For short
window lengths the “reflected” overtones of the signal are visible (2b). As the window length and hop size increase, the reflections are
pulled in closer to the main diagonal, decreasing the visibility of STTR on the spectrogram (2c). Further increasing the window length, the
time reversal structure becomes visible (2d).

3.2. Step Size

For short window lengths, the step size R changes the reflection
frequencies kfR. Decreasing R will increase spacing between
overtones fR = 1/R. The step size will also change the overtone
weights as can be seen in Figure 1. We can regulate the overtone
weights in regard to the window length by defining the overlap
ratio α = R/L and using this as a parameter instead of R.

3.3. Window Length

The window length L determines the width of the window spec-
trum W (f). As L increases the width of W (f) decreases, even-
tually resembling an impulse function. At the same time the time
reversal effect becomes more audible due to the longer durations
that become reversed.

Figure 2 shows the spectrograms of STTR on a linear sine
sweep from 0Hz to 10 kHz with different window lengths. For
shorter window lengths (2b), we see the overtones explained in
§2.3. For window lengths around 30ms (2c), the width of W (f)
decreases to the point that the reflections disappear on the spec-
trogram. However, STTR affects the timbre adding roughness or
shimmer to the sine sweep. At longer lengths, window lengths
beyond 100ms (2d), we see the overlapping reverse sweeps.

3.4. Relation between Parameters

Though we cover the effects of each parameter separately, it must
be noted that they are not independent. The spectrum W (f) de-
pends on both the window type and the window length. The weights
of each overtone depend on both W (f) and R.

Furthermore, the step size R must be chosen so that equation
(2.1) holds. R cannot be an arbitrary value and is dependent on
the type of window as well as its length. When the window side-
lobe level is negligible above some frequency fc, all step-sizes
R < fs/fc will yield substantially constant overlap-add, where
fs denotes the sampling rate [1, 7].

We can reduce the complexity by fixing the overlap ratio, α.
For a fixedα, the window length becomes the parameter that changes
the effect of STTR most, since R = αL. In the following sections
we cover the case where α = 0.5 (50% OLA).

4. SPECIAL CASE STUDY: 50% OLA

Here we examine a case for a fixed 50% overlap ratio (α = 0.5).
The price of fixing α is to lose the freedom of changing the weights
of the overtones. However, it simplifies the process of designing a
window function.

For a window function to work for 50% OLA, it must satisfy
the following constraints.

1. Non-negative w(t) is assumed to be non-negative:

w(t) > 0

2. Symmetry As with most window functions, we expect w(t) to
be even:

w(t) = w(−t)

3. Constant OLA From equation (2.1) with C = 1 and R = L
2

,

w(t) + w

(
L

2
+ t

)
= 1.

From the constraints above, we find that we can choose any
shape for the interval t = [−L

2
,−L

4
), a quarter of the window,

with the only constraint being w(±L
4
) = 1

2
. This opens possi-

bilities for designing various windows to create different overtone
weights, including linear mixtures of known constant OLA win-
dows.

5. IMPLEMENTATION

In this section we cover an audio plug-in implementation of 50%
OLA STTR. Figure 3 shows the timing relations between the input
buffer and the output buffer. This can be implemented efficiently
using a single delay line and two output taps. In general, for an
arbitrary overlap ratio α, we need

⌈
1
α

⌉
taps. The length of the

delay line is 2Lmax, where Lmax is the longest allowed window
length. This is constant regardless of the step size. We can also
add another output tap on the delay line to delay the input signal
to match that of the STTR signal.
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Input Buffer

L

Output Buffer

Figure 3: Relation between input signal and output signal for 50%
OLA STTR. It shows two overlapping windows and the corre-
sponding read and write directions. We can see that the first sample
of a windowed input signal will be the last to be rendered to the
output, two window lengths later.

We implemented 50% OLA STTR as an audio plugin with
JUCE1. For practical purposes, we exposed the parameters, win-
dow length, window shape and wet/dry mix. The window length
parameter is on a log scale ranging from 0.1ms to 0.5 s. The win-
dow shape parameter, ranging from 0 to 1, mixes a rectangular
window with a Hann window with 0 being the rectangular window
and 1 being the Hann window. The wet/dry mix weighs the output
of STTR with the original signal. This is particularly useful for
taming the harshness of STTR caused by the overtones. We will
look at some example uses in §6.2.

6. OBSERVATIONS

Implementation of an audio plug-in allows the real-time explo-
ration of the digital audio effect. In this section, we test various
input signals and present the findings. We cover the perceptual
qualities of STTR and suggest example use cases.

6.1. Perceptual Effects of STTR Depending on Window Length

In §2, we covered the effects of window length on a single sinusoid
and Gaussian white noise. Here we will make a qualitative assess-
ment on the effects of STTR on more complex audio signals.

For window lengths of less than 1ms, STTR creates many reg-
ularly spaced overtones. This causes the output to sound harsh,
metallic and aliased, but with no stretching of the original frequen-
cies. The effects are mostly spectral with almost no effect in the
time domain.

For window lengths between 1ms and 30ms, we start hearing
deflections in the transitions, that is, the pitch, like that of a singing
voice, starts moving in a different direction than the original signal.
Tonal sounds start sounding detuned.

From 30ms to 100ms, the sounds start to flutter. STTR starts
having a temporal effect. For sounds like guitar, it adds a shim-
mering effect, similar to a mixture of chorus and reverb.

Beyond 100ms, we hear the time reversal. Mixing some of
the input signal makes it a reverse echo effect. Due to the delay
in the implementation, when mixed with the input signal the delay

1http://www.juce.com

becomes noticeable at larger window sizes, which also contributes
to the timbre.

6.2. Example Usage

Based on the observations in the previous section we have found
example use cases for our implementation of 50% OLA STTR.2

One obvious use is to set a long window length, mix the out-
put with the dry signal and use it to create a reverse echo effect.
This works particularly well with arpeggiated instruments such as
guitars or pianos.

STTR can be used to change the direction of pitch by setting
the window length around 1ms and 30ms. Since this extends the
spectrum, it is recommended to add a low pass filter to reduce the
extreme overtones. This can be used on pitched sounds such as a
speech or a car accelerating to make versions with different pitch
trajectories.

STTR can also be used to extend the spectrum and add sparkle
when set to very short window lengths. For this use, it is recom-
mended to use a low pass filter or band pass filter as an input stage
to control the aliasing effects and also a low pass filter on the out-
put stage to reduce extreme overtones.

7. CONCLUSION

We have presented STTR, a novel digital audio effect for manip-
ulating an input signal both spectrally and temporally. Despite its
simple implementation, one delay line and a few output taps, it is
possible to achieve a variety of effects by changing the window
length. STTR opens up new methods for designing and manip-
ulating sounds. We conclude this paper by examining possible
extensions of STTR.

We examined the case of 50% OLA STTR and found the de-
grees of freedom for designing window functions to shape the
overtone. It is worth looking further into the effects of the shape of
the window function on the timbre and find window design princi-
pals for 50% OLA STTR.

Another aspect to further investigate is the effect of time vary-
ing window lengths. We hypothesize that for short window lengths,
the effect will be similar to a chorus effect (time varying comb
filters), yet the spectral peaks will move in alternating directions
which may cause a different perceptual effect. We have yet to see
what the effect will be at longer window lengths.

Pitch synchronous STTR is also a promising direction to ex-
plore. At short window lengths, STTR expands the spectrum of an
input signal. Together with a pitch tracker, it may be possible to
harmonize a musical signal tonally or atonally. This can also be
used to bend the direction of pitch by taking advantage of the fact
that we have overtones moving in both directions.

8. REFERENCES

[1] Jont B. Allen and Larry R. Rabiner, “A unified approach to
short-time Fourier analysis and synthesis,” Proc. IEEE, vol.
65, no. 11, pp. 1558–1564, Nov. 1977.

[2] Mark Dolson, “The phase vocoder: A tutorial,” vol. 10, no.
4, pp. 14–27, 1986.

2Sound examples can be found at http://ccrma.stanford.
edu/~hskim08/sttr/.

DAFX-4

DAFx-32



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

[3] James A. Moorer, “The use of the phase vocoder in computer
music applications,” vol. 26, no. 1/2, pp. 42–45, Jan./Feb.
1978.

[4] Jean Laroche and Mark Dolson, “New phase-vocoder tech-
niques for real-time pitch shifting, chorusing, harmonizing,
and other exotic audio modifications,” Journal of the Au-
dio Engineering Society, vol. 47, no. 11, pp. 928–936, Nov.
1999.

[5] Axel Röbel, “A new approach to transient processing in the
phase vocoder,” 2003.

[6] S. Roucos and A. M. Wilgus, “High quality time scale mod-
ification for speech,” Mar. 1985, pp. 493–496, Introduces
the SOLA (Synchronous OverLap-Add) technique for time
scale modification.

[7] Julius O. Smith, Spectral Audio Signal Processing,
http://ccrma.stanford.edu/˜jos/sasp/, Dec.
2011, online book.

[8] Udo Zölzer, DAFX, Digital Audio Effects. John Wiley &
Sons, Mar. 2011.

[9] Sylvain Yon, Mickael Tanter, and Mathias Fink, “Sound fo-
cusing in rooms: The time-reversal approach,” The Jour-
nal of the Acoustical Society of America, vol. 113, no. 3, pp.
1533–1543, 2003.

[10] Mathias Fink, Gabriel Montaldo, and Mickael Tanter, “Time-
reversal acoustics in biomedical engineering,” Annual review
of biomedical engineering, vol. 5, no. 1, pp. 465–497, 2003.

[11] Pierre Hanna and Myriam Desainte-Catherine, “Adapting
the overlap-add method to the synthesis of noise,” pp. 101–
104, 2002.

9. APPENDIX: DERIVATION OF EQUATION (2.4)

Y (f) =
∞∑

m=−∞

(
e−2πifm2RX(−f) ∗ e−2πifmRW (f)

)

=
∞∑

m=−∞

∫ ∞

−∞
e−2πi(f−τ)m2RX(τ − f)e−2πiτmRW (τ)dτ

=

∫ ∞

−∞
X(τ − f)W (τ)

( ∞∑

m=−∞
e−2πi(2f−τ)mR

)
dτ

=

∫ ∞

−∞
X(τ − f)W (τ)

1

R

∞∑

k=−∞

(
δ
(
2f − τ − k

R

))
dτ

=
1

R

∞∑

k=−∞

∫ ∞

−∞
X(τ − f)W (τ)δ

(
τ − 2f +

k

R

)
dτ

=
1

R

∞∑

k=−∞
X
(
f − k

R

)
W
(
2f − k

R

)

On the third line, we use the Fourier transform of an impulse train,
the Dirac comb function XT (t).

XT (t) =
∞∑

k=−∞
δ(t− kT ) = 1

T

∞∑

k=−∞
e2πikt/T
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ABSTRACT

Mastering audio is a complicated yet important step in music pro-
duction. It is used for many purposes, an important one is to ensure
a typical loudness for a piece of music within its genre. In order to
automate this step we use a statistical model of the dynamic sec-
tion. To allow a statistical approach we need to introduce some
modifications to the compressor’s side-chain or more precisely to
its ballistics. We then develop an offline framework to determine
compressor parameters for the music at hand such that the signal’s
statistic properties meet certain target properties, namely statistical
central moments, which for example can be chosen genre specific.
Finally the overall system is tested with songs which are available
to us as unmastered, professionally mastered, and only compressed
versions.

1. INTRODUCTION

Mastering audio is a complex task which requires an experienced
sound designer. There is a huge amount of literature giving ex-
perience-based tips to sound designers on how to master mastering
music. One of the best-known and most cited examples would be
Bob Katz’ ”Mastering audio” [1].

An alternative approach to set the compressor parameters is
the use of presets coming with today’s software mastering tools
like compressors and limiters. The drawback of these presets is,
that they do not take into account the properties of the piece of
music at hand, therefore a satisfying result can not be guaranteed.

Recently Giannoulis et. al. [2] proposed an automation of the
compressors parameters based on the input signal’s temporal be-
havior with only a single user controlled parameter, namely the
compressor’s threshold. Vickers [3] presented a method to auto-
mate a compressor based on the input signal statistics. His ap-
proach still has the need of the user controlled parameter thresh-
old, as well as two target parameters, one to define the input-output
relation and one to set a make-up gain, and of course the ballistics
of the compressor.

We will present a new way to determine the control settings of
the compressor depending on the material at hand and statistical
determined target parameters without the need of any adjustments
by the user. This will be done by means of the input signal statistics
and an arbitrary reference, which could be the typical statistics of
its genre. The statistical properties of music have been investigated
in various ways. See for example [4], [5] and [6] which can be used
as a starting point for more information on genre specific statistical
properties, [7] gives an overview of statistical features which can
be used to describe a compressor’s behaviour.

In Section 2 we describe a classical compressor and its param-
eters. Section 3 introduces the statistical model of the dynamic
section and defines some modification concerning the ballistics
and signal feature detector of the compressor. This is used in Sec-
tion 4 to present an offline procedure to estimate the compressor
parameters needed to match certain target central moments based
on the properties of the music at hand. This procedure will be eval-
uated in Section 5. Finally, Section 6 will summarise the proposed
framework and its result and suggest fields of further research.

2. COMPRESSOR CONTROLS

There are countless compressor topologies, but all of them are us-
ing a signal path and a control path, the so called side-chain. This
side-chain is typically realised in a feedforward structure. The
principle block diagram is shown in Fig. 1, with the side-chain
usually working on levels and consisting of four basic blocks

• a signal feature detector, like the Root Mean Square (RMS)
or Peak detector to control the compressor based on the sig-
nal feature to be altered,

• the gain calculation based on an arbitrary input-output rela-
tionship, given as a characteristic curve,

• the ballistics, a gain smoothing stage with different time
constants for rising and falling edges to reduce non-linear
distortion on transient signals

• and finally the so called make-up gain, an increase of the
calculated gain by a constant.

We will first describe these blocks in detail before we will discuss
their contribution to the statistical model of the compressor. In the
following we assume normalised pieces of music as input signals.

2.1. Signal feature detector

Classic analog compressors (or digital realisations of it) use ei-
ther Peak or short time RMS detectors to control the compressor’s
characteristic [8]. This is done because of the simple realisation,
not the musical or psychoacoustical meaning of these measures.
With digital signal processing we can use arbitrary measures, like
for example a complex loudness model with signal level depen-
dent spectral weighting or a simplified model like in [3]. In order
to keep the presented method a general framework we will use the
term Cx for the input feature used in the side-chain. Analysing
the compressors output y using the same detector yields the corre-
sponding output feature Cy .
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Figure 1: principle block diagram of a compressor with suggested extensions (grey).

2.2. Characteristic curve

The classical compressor characteristic is given by two parameters,
namely the threshold (T ) and the ratio (R). For levels below T the
gain is 1, above T the slope of the characteristic is determined by
the reciprocal of R. Fig. 2 illustrates the classical characteristic
with T = −30 dB and R = 3 : 1 (solid) and the same character-
istic with a make-up gain of M = 20 dB (dashed).
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Figure 2: classical characteristic curve of a compressor with
(red,dashed) and without (green, solid) make-up gain.

2.3. Attack and release times, the ballistics

The gain calculated based on the signal feature and the character-
istic curve is usually smoothed to reduce non-linear distortion on
transient signals and to suppress gain ripples produced by low fre-
quencies. This is realised with different time constants for rising
and falling gains, the attack time τa and the release time τr re-
spectively. The user needs to select the attack and release times
carefully which complicates the use of a compressor.

Katz [1] gives the following typical ranges: attack times rang-
ing between 50 ms and 300 ms, common value 100 ms, release
times lying between 50 ms and 500 ms, common value range be-
tween 150 ms and 250 ms. These values should be set suitable for
the music’s temporal behaviour, or in Katz’ words: ”it’s counter-
productive to go against the natural dynamics of music”.

Due to the ballistics, the gain reduction or the actual compres-
sion depends not only on the input signal’s characteristic level Cx
but also on its temporal characteristics.

2.4. Make-up gain

The make-up gain is an added constant (sometimes signal depen-
dent and time-varying as e.g. in [9]) to raise the system’s output
gain. We will use this block to normalise the chosen signal char-
acteristic. This means we do not want to reduce the maximum of
Cx (say the RMS value), instead we want to amplify the lower
(RMS) parts of the signal. In other words the make-up gain should
bring the maximum output value to the maximum input value, for
example 0 dBFS. This leads to

M = −T
(

1− 1

R

)
. (1)

In Fig. 2 the dashed line shows the characteristic curve with a
make-up gain according to equation (1) applied.

3. STATISTICAL MODEL OF A COMPRESSOR

The description of a compressor by means of signal statistics has
recently been proposed by Shuttleworth [7]. He uses different sig-
nal features, i.e. inflection points as a peak measure, short and long
term RMS as well as their partition into several frequency bands,
to investigate the effects of a compressor by its Probability Density
Function (PDF).

The statistic properties of any signal s is completely charac-
terised by its PDF fs. It is obvious that the compressor generates
an output y with a PDF depending on the input’s PDF and the com-
pressor parameters. This holds of course for the PDF of any signal
feature Cx (e.g. the RMS levels) used in the side-chain, namely
fCy and fCx respectively, with

fCy = g [fCx , T,R,M ] . (2)

The influence of each block of the side-chain on fCy is now dis-
cussed to find an analytic expression for the function g.

The detector determines the signal feature to be altered. The
static characteristic curve of the compressor is mainly responsible
for the transformation of the PDF. This usually leads to a non-
linear relation between input and output PDF that can be expressed
analytically. The make-up gain just shifts the PDF by M and is
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therefore a simple linear transformation. The ballistics however
lead to a transformation which depends not only on the level of the
input’s signal feature Cx, but also on its temporal characteristics
and thus can not be modelled appropriately in a statistical manner
directly. Fig. 3 illustrates this effect in the time domain.

0 dB
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-20 dB

-30 dB

0.50.40.30.20.1 0.6 0.7 1.110.90.8 1.2

T
τa

τr τr
τa

t (s)

Cx

Figure 3: Illustration of the ballistics in the time-domain, red
(solid lines) areas are above T but not fully compressed due to
τa = 100ms, green (dashed lines) areas are below T but partly
compressed due to τr = 200ms.

The red/green areas show the regions above/below threshold
in which the gain does not follow the static characteristic due to
the attack/release time. Their sizes are a direct measure for the
variation from the static characteristic. By comparing the first red
and green areas with the second ones it can be stated, that the faster
the signal’s feature cross the threshold the larger these areas are.

The ballistics behave like different low pass filters for descend-
ing and ascending gains with corner frequencies inverse propor-
tional to the attack and release time and thus can not follow fast
changes in Cx. The effect therefore can be lowered by simply
adapting the attack and release time on the signal variation in time.
We propose the use of automated ballistics based on recent re-
search by Giannoulis et. al. [2]. In the following we will give a
brief summary of their automated ballistics, extend their approach
and show a computational efficient way to realise the proposed au-
tomation.

3.1. Auto ballistics

Giannoulis et. al. proposed an algorithm to ease the adjustment of
the compressor parameters for the user. They automated the attack
and release time based on the so called Spectral Flux (SF) of the
input signal, which is a common tool for note onset detection. It
sums the bins of the input short time spectrum in which the energy
raises (positive half-wave rectifier) from one block to another, nor-
malised by the total signal energy. This measure will be low for
steady state signals and will show peaks for abrupt changes in pitch
or transient level increase.

The basic concept of this approach is to use short response
times for material consisting of strong transients and longer time
constants for signals with constant levels over time. Giannoulis et.
al. set the attack and release time inversely proportional to the SF.
Listening tests with both, professionals and amateurs showed good
results for this signal dependent automation of the ballistics [2].

This method seems a promising starting point to automate the
ballistics in a musical sense as well as to lower the time depen-
dency of the PDF transformation as described before. To do so, we
will need to extend this approach to satisfy the following two con-
ditions: First falling transients to automate the release time sepa-
rately need to be included, whereas changes in pitch without sig-

nificant changes in signal level should to be excluded in the mea-
sure. Second the measure should correlate strongly with the slope
of level increase respectively decrease. Finally we will discuss the
use of this measure with an arbitrary signal feature detector.

In [2] the SF alters the attack time as well as the release time
which leads to good musical performance. Following this ap-
proach and taking into account that falling transients, i.e. an abrupt
end of a sound, should alter the release time of a compressor, we
propose to denote SF, as it is a measure for increasing energy or
onset, by SF+ and extend it by SF− which sums falling energy
bins (negative half-wave rectifier) or in other words is a measure
for note offsets or falling transients.

By adding SF+ and SF− to SF
∑

the change of a note without
a significant change in loudness will no longer be detected. A
positive value will show an abrupt raise in signal level which can
be used to scale the attack time of the compressor. A negative
value indicates an abrupt fall in signal level and can therefore be
used to scale the release time.

Following [2], for our simulations1 we used aN = 1024 sam-
ple Fast Fourier Transformation (FFT) with a hann window and
an overlap of N/2 to produce a value every 512th input sample
(hop size h = 512) or every block k. Windowing the data prior to
the FFT is important in order to reduce so called end-effects and
therefore smooth the spectrum and thus the SF.

Fig. 4 (b)2 illustrates SF+, SF− and SF
∑

for a sine-wave with
abrupt changing level and frequency. It is clearly visible, that SF

∑

is a good measure to detect rising and falling transients in signal
level.

In order to reduce the computational effort we will realise a
similar measure in the time domain. As the introduced SF

∑
ba-

sically indicates the differences in signal energy between two ad-
jacent blocks we can also use the differentiation of the length N
RMS value of the windowed3 input signal x̂ calculated with a mov-
ing averager, namely

∆RMS [k] =

√√√√
N−1∑

i=0

x̂2[kh+ i]−

√√√√
N−1∑

i=0

x̂2[(k − 1)h+ i] . (3)

Fig. 4 (c) illustrates this measure. It can be seen that the pro-
posed measure is similar to SF

∑
. It even correlates more with

the amount of signal energy increase respectively decrease. This
is not surprising since SF was introduced to detect note onsets and
not their levels, hence due to the normalisation by the block energy
every change in level will be detected almost equally.

∆RMS satisfies the required modifications, namely positive
values are proportional to the slope of rising transients, negative
values are proportional to the slope of falling transients and changes
in frequency are ignored. Using this measure to scale the ballistics
of the compressor guarantees a signal dependent attack and release
time which will smooth the gain accordingly to the temporal be-
haviour of the input signal.

The use of any signal feature detector other than RMS leads to
the need of a different measure as the characteristic and of course

1With a sampling rate of fs = 48kHz.
2The chosen test signal is equivalent to that in [2] for a better compara-

bility of the results.
3Windowing in time domain calculations seems unusual, but the reduc-

tion of end-effects will help to suppress the RMS error due to the difference
between integration time and the unknown signal’s period. This leads to
smoother, less oscillating results. A correction factor must be applied. For
an overview of different windows and their correction factors see [10].
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Figure 4: (a) input signal, sine-wave with abrupt changing am-
plitude and frequency. (b) SF+ (red, dashed), SF− (green, dash-
dotted) and their sum (blue, solid) with an FFT length of N =
1024 using a hann window and 50% overlap. (c) ∆RMS with
block length N = 1024 using a hann window and 50% overlap.

the ballistics will not work on the RMS values anymore. Therefore
we will introduce the general measure

∆Cx [k] = Ĉx [kh]− Ĉx [(k − 1)h] (4)

with again windowed input data x̂.
In order to achieve approximately equal areas shown in Fig. 3,

the actual attack and release times should be calculated block-wise
by

τa[k] = τamax

(
1− 2 max {0,∆Cx [k]}

)

τr[k] = τrmax

(
1 + 2 min {0,∆Cx [k]}

)
.

The maximum attack and release times should be set accordingly
to typical values as given in Section 2.3, for example τamax =
100ms and τrmax = 200ms.

Using this automation, we can simplify the temporal charac-
teristic-dependent, non-linear characteristic of the compressor to a
temporal characteristic-independent system with kindly smoothed
non-linearity and therefore a statistical analysis becomes accept-
able. The smoothing is because of the now signal dependent bal-
listics, or in other words signal independent error areas in Fig. 3
and is ignored in the following parameter estimation process as it
would not modify the needed parameters significantly.

4. AUTOMATED COMPRESSOR USING THE STATISTIC
MODEL

We assume similar statistic properties for pieces of mastered music
within a specific genre. This assumption is based on genre-specific
instrumentation and arrangements as well as a similar overall sound
and loudness as sound designers usually let themselves be inspired
by currently popular productions within the same genre. This leads
to genre-specific PDFs for the RMS levels [5].

As a compressor can alter the PDF of an input signal, if the
transformation of the input PDF fCx to the output fCy is known
analytically, one could invert this transformation and thus the proper
parameters needed to meet a genre specific target PDF could be
determined explicitly.

The input signal feature distribution is given by fCx and can
be approximated by the histogram of the levels of the detector’s
output. This distribution will be altered by the compressor, more
precisely its characteristic. We will now formulate analytic expres-
sions for this alteration with the use of a PDF transformation.

4.1. Transformation of the PDF due to a compressor and its
inversion

A compressor with a characteristic curve based on threshold and
ratio alters the detected signal characteristic (without taking the
ballistic into account) to the output distribution

fCy =

{
RfCx

[
Cx = RCy

]
, Cx ≥ T, Cy ≥ T

R

fCx

[
Cx = Cy −M

]
, Cx < T, Cy <

T
R
.

(5)

We now know how the compressor modifies the input PDF.
With a genre typical target PDF, which could be the mean of a sta-
tistical relevant number of analysed mastered songs within a genre
we can try to minimise the difference between this target PDF and
fCy by adjusting R and T . An exact match in general is not pos-
sible as equation (5) does not arbitrarily modifies the input PDF.
However it is possible to match certain (central or standardised)
moments of the target PDF for example its mean and variance.
Hence we will now analyse the transformation of these moments
due to the compressor.

The i-th central moment µi,y is transformed to

µi,y =

T∫

−∞

(M + Cx − µ1,y)i fCxdCx

+

∞∫

T

(
Cx
R
− µ1,y

)i
fCxdCx .

(6)

With the help of equation (6) it is possible to determine the
central moments of the output of the compressor based on its input
and parametersR and T . As the parameter T is part of the integral
limits it is not possible to directly invert equation (6) to determine
R and T to match certain target moments µi,t. In addition the
input signal PDF fCx is not known as an analytic expression and
needs to be approximated by a histogram.

We define the cumulative sums over the product of Cix and the
histogram f̂Cx for all possible thresholds T as

mi[T ] =
T∑

l=Cxmin

lif̂Cx [l] . (7)
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This vector is an approximation for the i-th non central moment of

the compressor input
T∫
−∞

CixfCxdCx and can be used to evaluate

the output central moments using simple vector additions. We will
need two target moments to determine the two parameters R and
T , in the following we will use the first two, namely the mean and
variance.

The mean value is then approximated by

µ1,y = Mm0[T ] +m1[T ] +
1

R
(m1[0]−m1[T ]) (8)

and the variance to

µ2,y =M2m0[T ] + 2Mm1[T ] +m2[T ]

+
m2[0]−m2[T ]

R2
− µ2

1,y ,
(9)

with mi[0] representing the i-th moment with T = 0dB, or in
other words of the whole histogram of Cx.

By rearranging equation (8) to solve forRwe obtain the vector

Rµ1 [T ] =
Tm0[T ]−m1[T ] + µ1,x

Tm0[T ]−m1[T ] + µ1,t
(10)

containing the values for R which are needed to meet the target
mean value.

By evaluating equation (9) at the points determined in (10) we
obtain a vector containing all output variances µ2,y [Rµ1 [T ]] for
each parameter combination. Then the minimum of the squared
difference of the variance µ2,y of the output and its target µ2,t

determines the desired parameters Test andRest. In cases were an
exact match in both moments is not possible with the use of just
a compressor, this approach will lead to an exact match in mean
µ1,y and a minimum squared error in variance µ2,y . To ensure
an exact match in variance and a minimum error in mean for all
cases, equation (9) should be rearranged to solve for Rµ2 [T ], then
the minimum squared difference between µ1,y and the target mean
µ1,t determines the desired parameters. The described procedure
of course can easily be expanded to higher central moments or
even standardised moments like the skewness or the kurtosis.

Rµ1 can contain negative values, as for higher thresholds, de-
pending on the input signal and the target mean value, it will be-
come impossible to match it with the make-up gain not letting Cy
exceed 0 dBFS. Then a negative ratio R and therefore a negative
slope of the characteristic above T will causeCy to exceed 0 dBFS
around Cx = T and still meet 0 dBFS for Cx = 0 dBFs. This of
course is not what we desire, so we will only use the range with
positive values for Rµ1 to evaluate µ2,y .

4.2. Limiter to suppress overshoots due to attack time

Even though the make-up gain M is defined to meet 0dB at the
output for a 0dB input, the non-zero attack time produces peaks of
very short duration exceeding 0dB. In order to prevent the output
signal from clipping these peaks have to be eliminated. This can
be done with what is typically called a brick-wall limiter.

The use of such a limiter in the mastering process is a typical
procedure as it can be used to make the piece of music at hand
louder without changing its sound significantly. As distortion of
short duration are nearly inaudible even gain reductions of several
dB are possible for short peaks as long as the limiter’s attack and
release time are short enough [1]. We therefore propose the use

of a limiter with very short attack and release time and a so called
look ahead, an infinite ratio and a threshold set near to 0 dB. Our
simulations show good results using τl,a = 0.5 ms, τl,r = 50 ms
and Tl = −0.1 dB in terms of no clipping and no significant deto-
riation in the matching of the target mean and variance4. The lim-
iter is shown as the last block of the framework in Fig. 1.

5. SIMULATION RESULTS

To evaluate the proposed automated compressor we first tested the
method to determine the parameters R and T described in Section
4.1. Then we used the proposed automatic compressor with songs
which are available to us in unmastered and professional mastered
versions5 in two scenarios: first to match the mean and variance
of unmastered songs to those of the same songs processed with a
classic compressor and second to match the mean and variance of
these songs to those of the corresponding mastered version. Fi-
nally the results were validated in an informal listening test. For
all simulations we solved the mean value for R to choose R and T
to achieve the minimum squared error in variance.

By using a compressor with the proposed auto ballistics it
should be possible to exactly reconstruct the chosen parameters R
and T from the input and output PDF with the described parameter
estimation method from section 4.1. In order to test this method
we processed songs with a compressor employing the described
windowed RMS detector and automatic ballistics using randomly
chosen parameters Rref and Tref . The resulting versions were
used to calculate the target moments for the parameter estimation
process. The estimated parameters Rest and Test were identical
(with small variations due to the chosen histogram density) to the
ones employed for generating the reference signal, as expected.

The complete automatic compressor was tested in the first sce-
nario by using unmastered songs processed with a classic compres-
sor, more precisely the one coming with Apple’s Logic Pro, using
typical settings according to [1] and with the build-in limiter acti-
vated, as the reference signal. Then the raw unmastered versions
were processed with the framework and the moments of its output
were compared to those of the reference signal. The results are
shown in Table 1.

song 1 song 2 song 3 song 4 song 5
µ1,t −10.57 −14.47 −9.25 −18.47 −21.89
µ1,x −12.55 −16.95 −12.36 −19.55 −26.76
µ1,y −10.60 −14.50 −9.29 −18.47 −21.90
µ1,yl −10.87 −15.01 −9.80 −19.15 −23.13

µ2,t 14.60 35.22 20.28 48.46 90.71
µ2,x 21.20 47.05 31.27 51.78 91.29
µ2,y 17.18 37.93 25.24 49.01 91.12
µ2,yl 17.12 37.90 24.96 49.01 91.10

Table 1: Mean and variance values of input signals, their targets
calculated from the compressed signals, the output moments with-
out (µ1,y , µ2,y) and with limiter (µ1,yl , µ2,yl ).

It can clearly be seen, that the overall system shows a good
matching of the mean values µ1,y for each song. The variance of
the output µ2,y is kindly higher than its target, which is due to

4A small decrease in both, mean and variance, will occur (see Table 1).
5Song 1 - 3 from [11] and song 4 and 5 from the album ’Mind Meets

Matter’ by Claude Pauly.
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the ballistics, leading to higher levels during attack and lower lev-
els during release than modelled. This effect is of short duration
and was therefore not audible in our tests. Furthermore this effect
could be reduced by introducing an additive correction term to the
target’s variance, depending on τamax and τrmax . The discussed
kind reduction of the moments due to the usage of the limiter is
also clearly visible. This good overall matching is achieved al-
though the parameters R and T of the automated compressor dif-
fer from those used to create the reference, which is not surprising
as Logic’s compressor and the automatic compressor employ dif-
ferent signal feature detectors.

In the second scenario we matched the unmastered versions
to the mastered versions of the same songs. As mentioned be-
fore an exact match of the PDFs is not possible. This is mainly
due to the possibly excessive use of a limiter (see Fig. 5 around
−4dB), and in this case, in addition, the possible use of an equal-
izer and/or a multi-band compressor during the professional mas-
tering process, as these effects can not be modelled by just a com-
pressor. However the statistical moments of the output meet the
targets in all our simulations very well (comparable to the results
in Table 1). As an example, Fig. 5 shows the PDF of one of
the songs for its unmastered and mastered version as well as the
output of the automatic compressor. The target moments were
µ1,t = −9.89 dB, µ2,t = 16.80, the resulting compressor param-
eters T = −16.5 dB and R = 1.281 and the resulting moments at
the output were µ1,y = −9.92 dB and µ2,y = 19.20 before and
µ1,yl = −10.28 dB and µ2,yl = 18.96 after limiting.
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Figure 5: PDF of the RMS values of the input (blue, solid), the
output (green, dash-dotted) and the target (red, dashed).

Finally, in order to evaluate the overall performance of the sys-
tem we validated the results in an informal listening test, compar-
ing the target wave file with the automatic compressor’s output. In
all examples there was no significant change in the overall loud-
ness between both versions, which is not surprisingly due to the
use of an RMS detector in combination with the relative exact
match in its mean. In addition, no pumping or any other audi-
ble distortions were present, which indicates a good working au-
tomation of the ballistics. Finally the overall sound of the songs
processed with the automatic compressor, besides some spectral
differences compared to the mastered versions due to the use of
an equalizer or multi-band compressor, was similar to that of their
targets.

6. CONCLUSION

We presented a method to determine the parameters R and T for
a compressor to ensure its output, based on the piece of music at
hand, to meet certain target moments. The only modifications to
a classic compressor needed for this statistical approach in mas-
tering audio was automating the ballistics in the compressor and
the use of a simple brick-wall limiter to eliminate overshoots due
to the ballistics. In total this leads to a framework to automate the
audio mastering process. With the use of target moments which
differ significantly between different genres the proposed frame-
work is able to match these moments and therefore a genre specific
loudness and sound automatically.

Further research should focus on the identification of the most
significant statistical moments to use as targets. In addition the
framework can easily be extended to an automated multiband com-
pressor by using several paths with different bandpass filters and an
instance of the proposed compressor in parallel, which will help to
take a genre typical spectral distribution during automated master-
ing into account. A useful starting point for getting proper multi-
band target moments or even PDFs can be [4] or [7].
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ABSTRACT

Implicit finite difference schemes for the 3-D wave equation using
a 27-point stencil on the cubic grid are presented, for use in room
acoustics modelling and artificial reverberation. The system of
equations that arises from the implicit formulation is solved us-
ing the Jacobi iterative method. Numerical dispersion is analysed
and computational efficiency is compared to second-order accurate
27-point explicit schemes. Timing results from GPU implemen-
tations demonstrate that the proposed algorithms scale over their
explicit counterparts as expected: by a factor of M + 2, where
M is a fixed number of Jacobi iterations (eight can be sufficient
in single precision). Thus, the accuracy of the approximation can
be improved over explicit counterparts with only a linear increase
in computational costs, rather than the quartic (in operations) and
cubic (in memory) increases incurred when oversampling the grid.
These implicit schemes are advantageous in situations where less
than 1% dispersion error is desired.

1. INTRODUCTION

Room acoustics simulations are important for the purposes of au-
ralization and artificial reverberation. There are many models and
techniques used in room acoustics simulations; see [1, 2] for a re-
view. One popular starting point for room acoustics modelling is the
second-order scalar wave equation with impedance boundary con-
ditions [3]. This model problem can be discretised with finite differ-
ence (FD) operators on regular spatial grids, and solutions can be ap-
proximated through explicit (leapfrog) time integration [4] at a sam-
ple rate of choice (e.g. 44.1 kHz). Explicit time-stepping FD meth-
ods have been used extensively in the literature for simulating room
acoustics [5, 6, 7] in various equivalent formulations [8, 9, 10, 11].

FD methods can be computationally expensive for large 3-D
spaces due to the fact that the solution is approximated for the
entire domain at each time-step. Furthermore, numerical dispersion
affects the approximation, to a large degree, in high frequencies.
This may require that the spatial grid be oversampled, which in-
curs cubic increases in memory usage and quartic increases in the
operation count. Explicit schemes are well-suited to implementa-
tion on graphics processing units (GPU), allowing for real-time
low-frequency [12] and offline full-bandwidth applications [13].

Numerical dispersion can be improved by employing implicit
generalisations of explicit schemes [14, 15], however, implicit
schemes require a linear system to be solved at each time-step.
This extra burden at each time-step can be alleviated somewhat

∗ This work was supported by the European Research Council,
under grant StG-2011-279068-NESS, and by the Natural Sciences and
Engineering Research Council of Canada.

when the implicit scheme allows for an alternating direction im-
plicit (ADI) decomposition [16, 15], since the overall system in
3-D ADI schemes can be decomposed into three tridiagonal sys-
tems that can be solved efficiently with the Thomas algorithm [16].
However, the Thomas algorithm is serial in nature, so it is not easily
parallelised. Furthermore, the formulation of impedance boundary
conditions that are compatible with the ADI decomposition and the
Thomas algorithm seems to be an open problem [7]. On the other
hand, simple iterative methods [17] can be employed to tackle the
implicit system, free from ADI constraints. The Jacobi method is
a simple iterative method whose iterations reduce to sparse matrix-
vector multiplications (SpMV) that are easily parallelised on a GPU.
The purpose of this paper is then to revisit implicit schemes in the
context of the Jacobi method and identify schemes that are suitable
for room acoustics applications and GPU implementations.

This paper is laid out as follows. The model problem is in-
troduced in Section 2, followed by the implicit finite difference
schemes in Section 3 and conditions for stability in Section 4. The
Jacobi method is described in Section 5, and optimal parameters
for the implicit schemes are chosen in Section 6. Numerical dis-
persion and computational efficiency are analysed in Section 7. In
Section 8, numerical experiments are conducted in order to validate
the implicit schemes, check convergence rates for the Jacobi solve,
and test the stability of the proposed schemes in finite precision
arithmetic. Section 9 presents timing results from CUDA imple-
mentations of the implicit schemes on an Nvidia Tesla K20 GPU
card, followed by conclusions and future work in Section 10.

2. MODEL PROBLEM

2.1. Initial and boundary value problem

The 3-D wave equation can be written as

�Ψ := ∂2
tΨ− c2∆Ψ = 0 . (1)

Here, t is time and t ∈ R+, x := (x, y, z) ∈ R3, c is the wave
speed, assumed to be a constant, and ∆ is the 3-D Laplacian op-
erator, ∆ := ∂2

x + ∂2
y + ∂2

z . The box symbol (�) represents the
d’Alembert operator and the scalar field Ψ = Ψ(t,x) represents the
acoustic velocity potential [3]. Two initial conditions, Ψ(0,x) and
∂tΨ(0,x), are required to complete the initial value problem (IVP).

For the boundary value problem (BVP), let V denote a closed
3-D volume and ∂V its boundary. Frequency-independent lossy
boundaries can be written as

n · ∇Ψ = (γ/c)∂tΨ , x ∈ ∂V , (2)

where γ represents the specific acoustic admittance with γ ∈ R,
γ ≥ 0 and where n is the outward normal vector at x ∈ ∂V .
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These become first-order absorbing boundary conditions of the
Engquist-Majda type for γ = 1. When γ = 0 the condition (2) is
a homogeneous Neumann (lossless) boundary condition.

3. AN IMPLICIT FINITE DIFFERENCE SCHEME

3.1. Discretising time and space

Time can be discretised by restricting t to the grid of points T :=
{nk, n ∈ Z+}, where k is the time-step, and the spatial domain can
be discretised using a cubic grid: G := hZ3. The finite spatial grid
to consider can then be written as G := G∩V . For the purposes of
this paper, the closed volume of interest will be a box-shaped room.
Furthermore, it will be assumed, for convenience and comparison
with published literature [7], that the “boundary nodes” of the grid
are precisely on the boundary ∂V .

3.2. Difference operators

Let u(t,x), which will be restricted to T×G or T×G, represent
an approximation to the solution of interest Ψ(t,x). A time-shift
operator may be defined as

et±u := u(t± k,x) , (3)

and the following abbreviation will be employed throughout this
paper: u± := u(t± k,x). Centered time-difference operators can
be written as

δt· := (et+ − et−)/(2k) = ∂t +O(k2) , (4a)

δtt := (et+ − 2 + et−)/k2 = ∂2
t +O(k2) . (4b)

A parameterised 27-point discrete Laplacian (stencil) can be defined
on the cubic grid as

δ∆u :=
∑

q

6αq
|Ωq|qh2

∑

v∈Ωq

(u(t,x+vh)−u(t,x)) = ∆u+O(h2) ,

(5)
where q ∈ {1, 2, 3}, Ωq := {x ∈ Z3 : ‖x‖2 = q}, where |Ωq|
denotes the cardinality of the set Ωq , and α := (α1, α2, α3) ∈ R3.∑
q αq = 1 is required for consistency. The 27-point stencil vectors

are displayed in Fig. 1.

3.3. Difference scheme for IVP

An implicit finite difference scheme for (1) can now be written as

δ�u :=
(
1 + βh2δ∆

)
δttu−c2δ∆u = 0 , (t,x) ∈ T×G , (6)

where β ∈ R is a free parameter. The scheme is consistent since
δ�u → �u as h → 0 for a fixed Courant number λ := ck/h.
Starting from the two known (or approximated) values u(0,x) and
u(k,x) determined by the initial conditions, the unknown variable
u+ is related to the two previous states by

(1 + βδh∆)u+ = ((λ2 + 2β)δh∆ + 2)u− (1 + βδh∆)u− , (7)

where δh∆ := h2δ∆. The unknown variable cannot be isolated
algebraically unless β = 0, in which case the scheme is explicit.
For β 6= 0 the scheme is implicit, and a linear system of equations
must be solved at each time-step. This family of implicit schemes
generalises the 27-point compact explicit schemes analysed in [7].
The operator δh∆ expressed in a similar notation to that used in [7]
can be found in the Appendix.

Figure 1: Stencil vectors for δ∆: Ω1 (black), Ω2 (red), Ω3 (blue)

3.4. Matrix update for BVP

Imposing the boundary condition (2) reduces (7) to a finite sys-
tem of equations which can be written as a matrix update. The
approximation for the BVP at a particular time t can be written as
the N × 1 vector u with the values of u for x ∈ G (N = |G|).
Similarly, u± is a vector of u± values. The operator ∂t in the lossy
case (2) can be discretised with δt· and the spatial derivatives are
approximated with centered spatial differences, following [7]. The
update equation in matrix form becomes

(γλQ+I+βL)u+ = ((λ2+2β)L+2I)u+(γλQ−I−βL)u− ,
(8)

where L is the N ×N Laplacian matrix corresponding to δh∆ with
discretised Neumann conditions, I is the N ×N identity matrix,
and Q is a non-negative diagonal matrix. Constructions for the
matrices L and Q are given in the Appendix. This matrix up-
date encapsulates the point-wise explicit updates presented in [7]
for interior, wall, edge, and corner nodes, in the special case of
frequency-independent boundaries.

4. NUMERICAL STABILITY

4.1. Stability for the IVP

First we consider stability conditions for the initial value problem.
The recursion in (7) must be numerically stable for ‖u−Ψ‖h → 0
as h→ 0 (for λ fixed) by the Lax-Richtmyer theorem, where ‖f‖h
denotes the spatial L2-norm of f(x) on G or G. Stability condi-
tions for (7) can be found by taking the Z-transform in time and the
Fourier transform in space [18]. After some cancellation we obtain
the following quadratic in z ∈ C:

(1− 4βΛ)z + 4Λ(λ2 + 2β)− 2 + (1− 4βΛ)z−1 = 0 , (9)

where Λ is the Fourier symbol of the operator − 1
4
δh∆. Solving for

the roots of the quadratic (9) it can be shown [8] that |z| ≤ 1 as
long as ∣∣∣∣

4Λ(λ2 + 2β)− 2

1− 4βΛ

∣∣∣∣ ≤ 2 , (10)

given that Λ is non-negative, which is satisfied when

− 2α1 ≤ α2 ≤ 2α1 + 1 . (11)

Condition (10) then simplifies to the following

β <
1

4Λmax
, λ ≤ λmax :=

√
1

Λmax
− 4β , (12)

where Λmax := maxξ Λ for the spatial frequencies ξ ∈ R3. We
can extract Λmax from previous studies [8] since this must reduce
to the explicit case when β = 0. We have then

Λmax = max(1, 2α1 + α2, 2α1 − α2 + 1) . (13)
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Note, the stability conditions allow linear growth in the solution,
but this is valid since linear growth is permitted in the underlying
system [18].

4.2. Stability for the BVP

Stability conditions for the lossless boundary value problem are
straightforward to obtain using the matrix method [18]. Using the
ansatz u = zφ, where φ is an eigenvector of L, we get, analogous
to (9), the following quadratic in z with matrix coefficients:

z(I+βL)φ− ((λ2 +2β)L+2I)φ+z−1(I+βL)φ = 0 . (14)

This can be reduced to a set of decoupled scalar equations, and
thus, we can obtain a sufficient condition for stability in terms of
the spectrum of L. Comparing with (9) we can see that (12) is
sufficient for stability as long as L ≤ 0 (negative semi-definite)
and ρ(L) ≤ 4Λmax, where ρ(L) denotes the spectral radius of L.
The first condition on L is easily verified using Gerschgorin’s the-
orem [17]. That the condition ρ(L) ≤ 4Λmax is satisfied, with L
as defined in the Appendix, follows from stability in the explicit
case [7].

A matrix-type stability analysis becomes more difficult after
including the additional matrix Q, with γ > 0 for lossy boundaries,
because the matrix coefficients of the resulting quadratic equation
no longer commute. It is possible to show, through the use of en-
ergy techniques [19, 10] or by investigating reflection coefficients
at the boundaries [7], that the lossy case is stable as long as the
lossless case is stable and the boundaries remain passive (γ ≥ 0).
A detailed proof is left out for brevity.

5. SOLVING THE LINEAR SYSTEM

5.1. Jacobi method

To solve the linear system of equations with the Jacobi method we
first write (8) in the form Ax = b, where

A = (γλQ + I + βL) , x = u+ , (15a)

b = ((λ2 + 2β)L + 2I)u + (γλQ− I− βL)u− . (15b)

Next, we use the matrix splitting A = D−N where D is a diag-
onal matrix with just the main diagonal of A. Starting from any
initial guess x0 (a good choice is x0 = u), the Jacobi iterative
solve proceeds with

xn+1 = Hxn + b′ , (16)

where H = D−1N is the iteration matrix (sparse), b′ = D−1b
and where the superscript n on xn denotes the nth iteration (n ≥ 0).
Note that b′ only needs to be computed once per time-step. The
entire iterative solve can be accomplished with only four states
stored in memory since the space in memory that is used to store
u− can be overwritten after b′ has been calculated. This Jacobi
solve requires two SpMVs to compute b′ and M subsequent Sp-
MVs, where M is the number of iterations. Thus, the increase in
operations over the explicit case is a factor of M + 2. The memory
increase over the explicit case is a factor of two.

The iterative solve can be halted when the following condition
on the relative error is satisfied:

‖b−Axn+1‖h
‖b‖h

≤ E , ‖b‖h > 0 , (17)

where E is some threshold, such as IEEE 754 single precision
machine epsilon, εs ≈ 1.2×10−7, or double precision machine ep-
silon, εd ≈ 2.2× 10−16. Calculating the relative residual requires
one additional SpMV per iteration, as well as the calculation of two
discrete norms.

It is worth pointing out that while we use a matrix represen-
tation to illustrate the iterative method, a practical implementa-
tion does not require construction or storage of the matrices in-
volved. For practical implementations, one can ‘unroll’ each SpMV
into a (parallelisable) for-loop, as in the explicit case [13]. In
fact, the explicit case is expressed by a single Jacobi iteration
(β = 0⇒ H = 0). The matrices involved are sparse and have en-
tries that are mostly constant or zero along the diagonals, and the
non-zero entries change only for boundary nodes. The storage of
these constants is negligible. Point-wise updates can be extracted
from the matrices in the Appendix, or derived from the explicit case
in [7], so they are left out for brevity.

5.2. Convergence of the Jacobi method

The Jacobi iterations will converge from any initial guess x0 as
long as the matrix A is diagonally dominant [17]. For a diagonally
dominant A, in the lossless case, we require that

∣∣∣∣∣1− 6β
∑

q

αq
q

∣∣∣∣∣ ≥ 6
∑

q

|βαq|
q

. (18)

If we assume that αq ≥ 0 then this reduces to

|β| < 1

12
, (19)

and in the general case |β| has to be sufficiently small. By exam-
ining L it can be seen that the rows pertaining to boundary nodes
will not change (19). This is also left out for brevity.

It can be shown that with each iteration the residual decreases
by a factor of approximately 1/ρ(H) [17], and using Gerschgorin’s
theorem the following bound on ρ(H) can be obtained:

ρ(H) ≤ Υ , Υ :=
6
∑
q

1
q
|βαq|∣∣∣1− 6β
∑
q

1
q
αq

∣∣∣
. (20)

Thus, we can neglect the residual calculation and fix the number of
iterations to M = d− log10(E)/ηe or M = b− log10(E)/ηc,
where η := − log10(Υ). The parameter η represents, approxi-
mately, the number of additional digits of relative accuracy obtained
with each iteration.

6. ISOTROPIC AND FOURTH-ORDER SCHEMES

To reduce the space of free parameters let us introduce some addi-
tional constraints. In the interest of isotropic error we can impose
the following constraint

α2 = 4/3− 2α1 , (21)

with which we get

δ∆u = ∆u+
h2

12
∆2u+O(h4) . (22)

The error will be isotropic (direction-independent) up to the O(h4)
term since the (isotropic) biharmonic operator ∆2 appears in the
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O(h2) term. Through the use of modified equation methods [14],
it is straightforward to arrive at the condition

λ2 = 1− 12β , (23)

to have a fourth-order local truncation error for the IVP

δ�u = �u+O(h4) . (24)

Under the isotropy constraint (21) the stability condition (12) re-
duces to

λmax,β,α1 =

{√
3/4− 4β 1/12 ≤ α1 ≤ 5/12

√
3/(12α1 − 1)− 4β 5/12 < α1

,

(25)
and the constraints (11) and (19) reduce the parameter space of
stable fourth-order schemes to the following

1/12 ≤ α1 ≤ 5/12 , (26)

with λ =
√

5/8 ≈ 0.79 and β = 1/32. Finally, we can optimise
α1 with respect to η. Using (20) it can be shown that

η ∈ [log10(19/3), log10(7)] ≈ [0.802, 0.845] ,

for the region defined in (26). The optimal value, η = 0.845, is
given by α1 = 1/3, which corresponds to a scheme with a 19-point
stencil (α3 = 0).

7. NUMERICAL DISPERSION

At this point, we can analyse the numerical dispersion of the
schemes that are suitable candidates for the Jacobi iterative solve.
To further reduce the space of free parameters, we will restrict our
attention to two cases: α1 = 1/3 and α1 = 5/12. The former
leads to an isotropic 19-point stencil, and the latter is an isotropic
27-point stencil. The resulting finite difference schemes are implicit
generalisations of the “IISO1” and “IISO2” (interpolated isotropic)
explicit schemes [15, 7].

In order to analyse dispersion it helps to define a normalised
spatial frequency ξh := ξh and a normalised temporal frequency
ωk := ωk. We can then write Λ(ξh) as

Λ(ξh) =
∑

q

3αq
|Ωq|d

∑

v∈Ωq

sin2(ξh · v/2) , (27)

and the relative numerical wave speed (ideally unity), also known
as the dispersion coefficient, is defined as

ν(ξh) :=
ωk(ξh)

λ|ξh|
, ωk(ξh) := 2 arcsin

(
λ(Λ−1 − 4β)−

1
2

)
,

(28)
for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenumber cell of
the grid, which is a cube centered at zero with sides of length 2π.
Furthermore, by inverting the dispersion relation (in the region
where it is surjective) we can plot the numerical wave speed as a
function of spherical coordinates, where the radial coordinate rep-
resents the temporal frequency ωk and where the two polar angles
represent a plane-wave direction of propagation in R3 [15]. The
wave speed errors can be seen in Fig. 2a for the schemes α1 = 1/3
and β ∈ {0, 1/32} along the axial (center to face-center of B),
side diagonal (center to edge-center), and diagonal (center to ver-
tex) directions; these are the directions in which the extreme cases
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(a) Relative wave speed for α1 = 1/3 and β ∈ {0, 1/32}
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(c) Dispersion error for α1 = 1/3 and β ∈ {1/32, 0.0465}

Figure 2: Numerical dispersion for various schemes

are generally found [7]. Fig. 2b shows the dispersion coefficient
along the same directions for the scheme with α1 = 5/12 and
β ∈ {0, 1/32}. It can be seen from these figures that the fourth-
order implicit schemes give improvements over their second-order
explicit counterparts in each direction.

The fourth-order condition (23) can also be ignored in order
to find a scheme optimised for some fixed amount of dispersion
error that can be tolerated, where dispersion error is defined as
|1− ν|× 100%. For example, the parameter β = 0.0465 is a good
choice for a 1% dispersion error tolerance. The dispersion errors
for α1 = 1/3 and β ∈ {1/32, 0.0465} are shown in Fig. 2c. More
optimised parameters will be given shortly. Note, the relative wave
speeds are plotted only up to a 5% or 10% dispersion error for the
purposes of showing detail. The minimum directional cutoff fre-
quencies, above which the modal density will be incorrect, are not
seen in the figures, but they are listed in Table 1 (ωk,cutoff). The cut-
off frequencies for the implicit schemes are near to ωk,cutoff for the
IISO1 (or IISO2) explicit scheme, which is (2/3)π rad/sample [7].

7.1. Relative computational efficiency

One can achieve any level of accuracy in the dispersion error up
to any desired temporal frequency (in Hz) with any (convergent)
scheme simply by reducing the spatial-step (for a fixed Courant
number), due to consistency with the model equation. Of course,
oversampling the grid incurs cubic increases in memory usage and
quartic increases in the operation count, so this quickly becomes
an impossible strategy for simulating large spaces. Nevertheless,
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Figure 3: Relative computational efficiencies for various implicit schemes
with α ∈ {1/3, 5/12} and explicit schemes, with the simplest scheme
(SLF) as reference. Table 1 lists relative comparisons where IISO1 and
FCC explicit schemes are reference schemes, also taking into account
Jacobi iterations.

this strategy exists, so we must take into account some measures
of computational costs in order to determine whether these im-
plicit schemes are more or less effective than their simpler explicit
counterparts with oversampled grids. First we will consider the
spatiotemporal density of points required to achieve a certain dis-
persion error globally, and then we will include additional costs
from the iterative solve.

As in [20, 7, 21], we start by investigating the relative compu-
tational efficiency (RCE), which is defined as the spatiotemporal
density of points (T×G) necessary to keep the dispersion error be-
low some tolerance level, relative to that required by some reference
scheme [20]. Thus, the RCE of a scheme, with some chosen refer-
ence scheme, is dimensionless and is a function of the dispersion er-
ror tolerance. As in [15, 7] we use the simplest explicit scheme [4],
also known as the “standard leapfrog” (SLF), as a reference. The
RCEs for the cases α1 ∈ {1/3, 5/12}with various choices of β are
shown in Fig. 3 for a 0.01-10% dispersion error tolerance. Along
the axial directions, the schemes with α1 ∈ {1/3, 5/12} have
the same dispersion (worst-case), so the RCEs for the implicit
schemes with α1 = 5/12 are the same as those with α1 = 1/3.
The explicit IISO2 (α1 = 5/12, β = 0) scheme is also equivalent
to IISO1 (α1 = 1/3, β = 0) in terms of its RCE.

Also included in Fig. 3 are the 13-point face-centered cubic
(FCC) explicit scheme (α1 = 0, α2 = 1) (on its native grid [21])
and the 27-point “interpolated wideband” (IWB) explicit scheme
(α1 = 1/4, α2 = 1/2), for comparison with existing literature [7,
21].1 As can be seen in Fig. 3, the implicit schemes have higher
RCEs than their explicit counterparts and, in particular, the fourth-
order scheme (β = 0.03125) becomes exponentially (linear on a
log scale) more efficient, relative to the second-order schemes, as
the dispersion error tolerance approaches zero.

Now taking into account the additional iterations that are nec-
essary for the Jacobi solve, the implicit schemes should be advan-
tageous if the RCE for some desired dispersion error tolerance is

1It is worth pointing out that the implicit generalisations of the FCC and
IWB explicit schemes were investigated, but they did not offer significant
improvements over the explicit cases. This can be traced to the lack of an
isotropic error term in their discrete Laplacians.

Table 1: Dispersion error tolerance levels where implicit schemes are
more computationally efficient than the FCC and IISO1 (or IISO2) explicit
schemes, taking into account Jacobi solve with M = d− log10(E)/ηe.
Also shown are the minimum directional cutoff frequencies, ωk,cutoff in
rad/sample.

α1 ∈ {1/3, 5/12} more eff. than FCC more eff. than IISO1
β η ωk,cutoff E = εs E = εd E = εs E = εd

0.04650 0.641 0.626π <1.1% − <1.3% −
0.04345 0.677 0.629π <0.98% − <1.2% <0.73%
0.04040 0.715 0.632π <0.92% <0.56% <1.1% <0.67%
0.03735 0.755 0.635π <0.79% <0.48% <0.98% <0.58%
0.03430 0.799 0.638π <0.70% <0.37% <0.88% <0.48%
0.03125 0.845 0.641π <0.53% <0.28% <0.70% <0.36%

greater than d− log10(E)/ηe+ 2 (the residual check is neglected).
Table 1 lists the dispersion error tolerances below which the im-
plicit schemes with α = 1/3 are more efficient than the FCC and
IISO1 (or IISO2) explicit schemes, in terms of point-wise updates
required for the iterative solve to converge in single and double
precision. As can be seen in the table, one can choose β to give an
implicit scheme that is more efficient than the FCC explicit scheme
for any dispersion error tolerance that is less than 1.1%. In double
precision, the implicit schemes become more favourable when the
dispersion error tolerance is less than 0.56%.

Using the same techniques, we could compare the schemes in
terms of the spatial grid densities, leading to memory costs required
for some dispersion error tolerance level. This relative comparison
is similar to what appears in Fig. 3, but the vertical axis would
represent the relative efficiency in terms of spatial grid density, and
it would be scaled by a factor of 3/4 (on a log scale) to reflect the
cubic increase in grid density versus the quartic increase in opera-
tions with oversampling of the grid. As such, we simply summarise
the main result. In terms of the extra memory storage required for
the Jacobi solve (two extra states), the implicit schemes become
more efficient than the explicit FCC and IISO1 schemes when the
dispersion error tolerance is <3.8% (vs. FCC) or <5.3% (vs. IISO1).

8. NUMERICAL EXPERIMENTS

8.1. Modal frequencies of cubic domain

The known analytical modes of a cubic-shaped room with lossless
boundaries provide a simple validation test that can also illustrate
some advantages of the implicit schemes. To this end, the low-
frequency response of a cubic domain with γ = 0 and with dimen-
sions (11 m)3 was simulated using the scheme with α1 = 1/3 in
explicit (β = 0) and implicit forms (β = 1/32). The first two
time-steps, u(0,x) and u(k,x), were set to a spatial Gaussian with
mean (1 m, 2 m, 3 m) (the domain is centered about the origin) and
variance 1 m2. The Courant number was set to λmax respectively
for both schemes and c = 340 m/s. To normalise for computational
costs (total number of operations), the implicit scheme withM = 5
iterations used a coarse grid of size 12x12x12, whereas the explicit
scheme used a finer grid of size 21x21x21. The outputs were read
at the grid points (4,6,3) and (8,12,6) for the implicit and explicit
schemes respectively (counting from one). Spectra of the outputs
from these simulations are shown in Fig. 4. As can be seen, the
implicit scheme results in a better agreement with the analytical
modal frequencies, despite having a coarser spatial grid.

DAFX-5

DAFx-45



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

0   10   20   30   40   50   60   70 
−20

0

20

40

60

m
a

g
n

it
u

d
e

 o
f 

s
p

e
c
tr

u
m

 (
d

B
)

frequency (Hz)

 

 

β=0

β=1/32

  46   48   50   52   54   56   58 
−20

0

20

40

60

m
a

g
n

it
u

d
e

 o
f 

s
p

e
c
tr

u
m

 (
d

B
)

frequency (Hz)

 

 

β=0

β=1/32

Figure 4: Comparison of low frequency responses for cubic room using
IISO1 explicit scheme (α1 = 1/3, β = 0) with grid size 21x21x21,
and fourth-order implicit scheme (α1 = 1/3, β = 1/32) with grid size
12x12x12 and M = 5. Dotted lines denote theoretical modal frequencies.

8.2. Relative residual with fixed number of iterations

It is also worth investigating the relative residual over time using
a fixed number of Jacobi iterations. Using the same test case, the
relative residuals obtained from conducting simulations with var-
ious choices of M are plotted in Fig. 5. As can be seen, the relative
residuals (jagged lines) remain smaller in magnitude than the ex-
pected residuals with magnitude 10−0.845M (dashed lines). In this
test case, the limits of single and double precision are effectively
reached with seven and 17 iterations respectively.

8.3. Stability in finite precision arithmetic

The stability conditions derived in Section 4 may not be sufficient
in practical situations due to unavoidable finite precision effects
(round-off error). Single precision may be preferred to double pre-
cision since GPU cards tend to have a better peak performance
for single precision arithmetic than double, and single precision
variables use half of the memory space on the GPU card. How-
ever, round-off error in single precision has been known to cause
late-time instabilities (after O(104) time-steps) with even the sim-
plest of explicit schemes (SLF) [22], while such instabilities are
rarely seen in double precision. A typical room impulse response
at 44.1 kHz will requireO(105) time-steps to be calculated, so it is
important to ensure the long-time stability of these schemes in sin-
gle precision. These round-off effects have been analysed using the
spectral properties of the one-step recursion (state space) matrix in
the explicit 27-point schemes [23]. Here, we consider the usual two-
step recursion, which does not necessarily encapsulate all round-off
errors, but focuses on the spectrum of the Laplacian matrix.

As described in Section 4.2, the two conditions: ρ(L) ≤ 4Λmax

and L ≤ 0, along with (12), lead to stability of the explicit/implicit
schemes. In practice, it is possible that these conditions will not
hold in the presence of round-off errors. However, measures can
be taken to protect against any consequent instabilities (exponen-
tial growth). Linear growth is possible at the stability limit, but
such growth is undesirable for room impulse responses. Setting
the Courant number slightly below its limit: λ = (1− µ)λmax, for
0 < µ≪ 1 prevents such growth (µ = 1e-4 is a good choice), as
well as any exponential growth near the Nyquist caused by round-
off errors [23]. To buffer against a violation of the second condition,
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Figure 5: Relative residual from implicit scheme (α1 = 1/3, β = 1/32)
after M iterations for simulation of cubic domain. Dashed lines denote ex-
pected residual, 10−0.845M . Jagged lines are measured relative residuals.
Machine epsilon for single and double precision are marked by arrows.

we can replace L with L − σI, for 0 < σ≪ 1, since it follows
from Gerschgorin’s theorem that L − σI ≤ 0 for σ sufficiently
large. This also causes a shift of modal frequencies, but the effect
is negligible for σ � ω/c, and σ should be on the order of 10−7.

To test these counter-measures, the IISO1 explicit scheme
(α1 = 1/3) and its fourth-order implicit counterpart (β = 1/32,
M = 8) were excited with a Kronecker delta (in space and time) on
a grid of size 26x10x10, and run for 106 time-steps. The excitation
was also DC-filtered [24] to eliminate any unwanted, yet valid,
linear drift in the solution.

In Fig. 6a, an exponential drift (DC instability [23]) can be
seen; this is caused by round-off error in single precision and is to
be corrected through the use of the σ parameter. Fig. 6b shows the
effect using a small σ, approximately 2εs, to correct such an insta-
bility (note the scaling on the horizontal axes in Figs. 6a and 6b).
The use of σ > 0 is not necessary in double precision (at least for
O(106) time-steps), as seen in Fig. 6c with σ = 0. Figs. 6d-6f
show the fourth-order implicit counterparts using eight iterations.
In double precision the implicit scheme is stable for 106 time-steps
with M = 8 and σ = 0 (Fig. 6f). Lossy boundaries (γ = 1e-5) are
employed in Figs. 6g-6h, which results in a decay in the responses.

It is important to point out a low-frequency amplitude mod-
ulation in Figs. 6b, 6e, and 6g. This is due to the DC mode
(ω = 0) being shifted by the effect of σ non-zero. A similar effect
arises when a so-called “hard source” is used as an excitation [25].
Here, the oscillation has a normalised frequency of approximately√
σπ rad/sample. The value of σ that will be required in single

precision should scale with the duration of the simulation. Thus, for
a typical room impulse response, σ should scale with the sample
rate, and this low-frequency oscillation should remain inaudible.
If desired, the artefact can be removed by applying another DC
blocking filter [24] to the output, as seen in Fig. 6h.

9. SIMULATIONS ON GPU

In this section, we present timing results from a basic CUDA im-
plementation of the implicit schemes on a single Nvidia Tesla K20
GPU card. The goal here is not to present speed-ups over single-
thread CPU codes, since significant speed-ups have been reported
for 27-point explicit schemes in various studies [12, 13, 26, 22].
The interest here is simply to compare GPU implementations of the
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Table 2: Timing results from computation of 2000 time-steps on a Tesla K20 GPU card for explicit schemes and implicit schemes using M Jacobi iterations
and the compute time increase (CTI) for each implicit scheme over its respective explicit counterpart. The CTIs are expected to be (M + 2) due to the
additional SpMVs required by the implicit schemes.

explicit implicit, M = 8 implicit, M = 12

δ∆ (Nx, Ny , Nz) precision time (s) time (s) CTI time (s) CTI
19-point (640,480,480) single 50 453 9.06 635 12.7
19-point (960,640,480) single 100 894 8.94 1254 12.5
27-point (640,480,480) single 75 608 8.11 846 11.3
27-point (960,640,480) single 148 1201 8.11 1676 11.3
19-point (640,480,480) double 79 801 10.1 1112 14.1
27-point (640,480,480) double 89 910 10.2 1242 14.0
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Figure 6: Responses from cubic box obtained using explicit/implicit
schemes with α1 = 1/3 in single precision (SP) and double precision
(DP), with λ = 0.9999λmax in each case. Implicit schemes use M = 8
iterations. Note that σ is not used in double precision. A DC blocking filter
was applied to the output in Fig. 6h.

explicit schemes and their implicit counterparts for a fixed number
of Jacobi iterations. Specific details on the GPU implementation
will be left out for brevity, but the implementation is similar in
nature to those found in [26, 22]. However, it is important to note
that the memory bandwidth was maximised by making use of the
read-only data cache in the Nvidia Kepler GPU architecture.

Table 2 lists the timing results from computing 2000 time-steps
for 19-point and 27-point explicit schemes (the choice of α is not
important here) and their implicit counterparts (the choice of β > 0
is not important) with a fixed number of iterations M ∈ {8, 12}.
Two different grid sizes were used and the simulations were run in
both single and double precision. Results for the larger grid size
are only given in single precision due to memory limitations on the
GPU card (5 GB).

We expect the implicit schemes to take M + 2 times as long as
their explicit counterparts due to the extra SpMVs (not taking into
account the extra memory bandwidth required). As can be seen in
Table 2, the implicit schemes are 10-20% faster than expected in
single precision. Meanwhile, in double precision they behave ap-

proximately as expected. These variations from the M + 2 increase
are due to cache effects and memory bandwidth bottlenecks.

10. CONCLUSIONS AND FUTURE WORK

In this study, we have presented 19- and 27-point fourth-order ac-
curate and optimised implicit finite difference schemes for the 3-D
wave equation with frequency-independent lossy boundaries on a
box-shaped domain. These schemes can be solved using the Jacobi
method with a convergence rate of nearly one digit of relative ac-
curacy per iteration. Numerical dispersion was analysed and it was
found that the implicit schemes, taking into account the iterative
solve, become more computationally efficient than second-order
explicit counterparts for situations where the amount of dispersion
error that can be tolerated is less than 1%, and exponentially more
efficient as this tolerance level approaches zero. These schemes
were shown to be stable in finite precision arithmetic for as many
as 106 time-steps in double precision, as well as in single precision
at the cost of introducing inaudible artefacts. Timing results were
presented from CUDA implementations run on an Nvidia Tesla
K20 GPU card. It was found that the compute times for the implicit
schemes scaled as expected with the additional SpMVs required.

Future work will investigate further generalisations for these
implicit schemes. The first is to consider a more general form for the
implicit scheme where different sets of α parameters are used for
the implicit and explicit discrete Laplacian operators, as in [14], pro-
viding more free parameters to optimise in order to further minimise
numerical dispersion. Another generalisation is to include viscother-
mal effects, which are necessary for a more detailed model of sound
propagation in air [3]. A third generalisation would be to consider
these schemes in an unstructured finite volume framework (allowing
for the modelling of irregular geometries) with more general (com-
plex) impedance boundary conditions, as in the explicit case [10].

More advanced iterative techniques that are amenable to par-
allel implementations (Krylov subspace methods) could also be
considered; many of which are known, for certain problems, to
converge in fewer iterations than the Jacobi method [17]. However,
preliminary tests with the system (15), using the myriad iterative
methods provided in MATLAB, indicate that while such advanced
techniques can converge in fewer iterations, they do not offer sub-
stantial improvements in compute times. Ultimately, this is because
they require more computation within each iteration (additional
SpMVs and residual checks), not to mention additional storage.
Finally, an important area of research will be to determine the mini-
mum number of Jacobi iterations required to simultaneously ensure
that the residual is inaudible and that stability is maintained for the
duration of a given simulation.
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Comparative sound examples for the implicit and explicit coun-
terpart schemes will be available for listening at:

http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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12. APPENDIX

12.1. 27-point discrete Laplacian

Using a notation similar to [7] we have:

δh∆ = δxx+δyy+δzz+a(δxxδyy+δxxδzz+δyyδzz)+b(δxxδyyδzz)

where a = (α2 + 2α3)/4, b = α3/4, and

δxxu := u(t,x+ exh)− 2u(t,x) + u(t,x− exh)

with the standard unit vector in the x-direction ex. The operators
δyy and δzz are similarly defined.

12.2. 3-D Laplacian matrix with Neumann conditions

The Laplacian matrix corresponding to the centered Neumann con-
ditions from [7] can be constructed as follows. The 1-D Laplacian
matrix with centered Neumann conditions is:

DN =




−2 2
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2


 .

Let IN represent the N ×N identity matrix. Consider a 3-D grid
with dimensions Nx ×Ny ×Nz and let it be decomposed into a
vector, first into z-planes, then y-rows and x-columns. We construct
the matrices

Dxx := INz ⊗ INy ⊗DNx ,

Dyy := INz ⊗DNy ⊗ INx ,

Dzz := DNz ⊗ INy ⊗ INx ,

where ⊗ denotes the Kronecker product. The Laplacian matrix of
interest can then be written as

L = Dxx + Dyy + Dzz

+ a(DxxDyy + DxxDzz + DyyDzz) + b(DxxDyyDzz) .

12.3. Loss matrix

The matrix Q can be constructed as follows. Let qN be the vector:
(1, 0, . . . , 0, 1)T of length N . We construct the matrices

Qx := INz ⊗ INy ⊗ qNx ,

Qy := INz ⊗ qNy ⊗ INx ,

Qz := qNz ⊗ INy ⊗ INx .

Then we have Q = Qx + Qy + Qz .
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ABSTRACT 

We present here a basic model for the synthesis of source spa-
ciousness over loudspeaker arrays. This model is based on two 
experiments carried out to quantify the contribution of early re-
flections and reverberation to the perception of source spacious-
ness.   

1. INTRODUCTION 

The subject of spatial audio covers a vast and wide-ranging array 
of topics from psychology, acoustics, engineering, mathematics, 
and computer science. The varied contributions from these dif-
ferent fields make for a fascinating and challenging path towards 
understanding. One challenge that arises is the exact definition of 
any particular concept.  Our primary concern is the synthesis of 
circumstances under which a certain perceptual attribute of a re-
produced sound field arises in the listener. In particular we are 
interested in source spaciousness i.e. the perceived extent of a 
sound source in three dimensions.  

Spaciousness has been the subject of experiments and studies in 
the past and there is much to learn from the work of [1]-[4]. One 
of the drawbacks of the term spaciousness is its use as an every-
day term as a descriptor for the sense of space. The lack of a 
clear definition can lead to ambiguity in discussions about per-
ceptual attributes such as source spaciousness. There are places 
in the literature where spaciousness is discussed but not defined, 
and others where a definition is offered which do not correspond 
to definitions found elsewhere. With this in mind we offer here a 
concise definition of source spaciousness to remove any possible 
ambiguity for the purposes of the experiments described below.  

1.1. Definitions 

In the scientific disciplines of acoustics and psychophysics there 
is a tendency to define spaciousness in terms of its physical cor-
relates [5]. In some cases the term spaciousness is used as a syn-
onym for Auditory Source Width (ASW) [6]. Griesinger opts for 
a more intuitive definition of spaciousness to mean the impres-
sion of a large and enveloping space [7].  

Since we are using the definition to relate a concept to a group of 
potentially inexperienced listeners, we have opted for a more de-
scriptive definition that describes the perceptual attributes of the 
sound as the three dimensional extent of the perceived source.  

    Source spaciousness is the perceived extent of a sound source 
in three dimensions. It can be expressed as a combination of 

source width, source depth, and source height. Width describes 
the extent of the perceived source from left to right, depth de-
scribes the source extent from front to back, and height is the ex-
tent from bottom to top. 

This definition accommodates an extension of the sound source 
such that the boundaries of the source can expand to include the 
listener “within” the sound. Such a situation may lead to the need 
for terms such as source envelopment and source engulfment as 
special cases of listener envelopment (LEV) [2] and engulfment 
[8].  

With the range of definitions used for the term spaciousness we 
have to tread carefully and state that we are referring to the work 
of others only in as much as it reflects on the work presented 
here, that is to say, we are using the definition of source spa-
ciousness provided above even when we refer to the results of 
others who may themselves be using the term spaciousness to 
mean something else.  

1.2. Past Experiments/Results 

In the area of concert hall acoustics, source spaciousness is treat-
ed as a contributing component of an all-encompassing perceptu-
al attribute referred to as Spatial Impression [1], [9]-[11]. The 
three dimensional nature of a sound image is described in [5] as 
the subjective effect of early reflections. “As the lateral reflec-
tion level is increased, the source appears to broaden and the 
music gains body and fullness”.  

The importance of the frequency content of early reflections to 
source spaciousness is reported in [5] to the degree that it con-
tributes to the source broadening of the image, with the effect 
being most prominent around the 1kHz range. Blauert and Lin-
demann reported on the effect of various frequencies had on both 
the width and depth of a perceived auditory image [1]. Early re-
flections made up of primarily low frequencies were attributed to 
the cause of an increase in depth while the presence of higher 
frequencies resulted in the lateral expansion of the image.   

Since the introduction of elevated speakers into the standard re-
production systems is a relatively new development, experiments 
covering the perception of height as a perceptual attribute are 
fewer in number relative to the number of experiments dealing 
with width and depth.  

1.3. Research Question 

We know from [1] and [5] that a certain amount of source 
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spaciousness is determined by the presence of early lateral reflec-
tions and low frequency reverberation. We also know that the 
degree to which each dimension of source spaciousness is affect-
ed by a lateral reflection is dependent on the frequency content of 
the reflection(s). We present here a preliminary model to imple-
ment these ideas for a system that can synthesize and control the 
perception of source spaciousness.  The purpose of the following 
experiments is to (a) quantify the contribution of early reflections 
and low frequency reverb to the perception of source spacious-
ness and (b) to quantify the contribution of unique frequency 
bands to the perception of width, depth and height independently.   

2. EXPERIMENTAL SETUP 

The experiment was carried out in the Spatialization and Audito-
ry Display Environment (SpADE) at the University of Limerick. 
A description of the acoustic performance of that space can be 
found in [12]. Many of the features of the experiments are similar 
to those found in [1]. 

 

 

Figure 1: schematic of the experimental setup 

2.1. Hardware & Software 

The speaker setup consisted of 5 Genelec 8030 active near-field 
monitors positioned 2m from the listening position at angles of 
0°, ±45° and ±90°. The direct sound was fed through the centre 
loudspeaker at 0° along with a reverb signal. The delayed lateral 
reflections were played back through the speakers to the side 
with the delayed reverb signal. The parameters of each test signal 
being examined in each part of the experiment are outlined be-
low. 

A reverb signal was created using an EMT 140ST with the reverb 
time set to 1.75s. This reverb signal was processed with a low 
pass filter and then mixed with the dry anechoic signal with a 
delay of 75ms. 

Signal processing was applied to the source material in the 
Max/MSP audio environment. The DSP consisted of gain con-
trol, digital delays and 4th-order 24db/oct Chebyshev filters (low-
pass and band pass). Each test signal was recorded to disk for use 
during the experiment to avoid any potential problems with run-

ning the signal processing “live”. The average Sound Pressure 
Level (SPL) at the listening area for each of the sound fields pre-
sented was 76dB ±2dB.  

2.2. Test Signals 

The test signals were generated from an anechoic recording of 
Glinka’s Overture, Russlan and Ludmilla, from the Denon Ane-
choic Orchestral Music Recording CD. The left channel was ex-
tracted from the stereo recording and used as source material for 
both experiments. The spectrum of the opening 15 seconds used 
for the experiment is shown in Fig 1. Each experiment consists of 
a direct signal played back from the front loud speaker, along 
with 2 simulated reflections played back over the left and right 
loud speakers with an applied delay of 20ms and 30ms respec-
tively. In experiment 1 the speakers at angles ±45° were used 
while in experiment 2 the speakers at ±90° were used along with 
the frontal speaker. 

 

Figure 2: spectrum of the test signal used  

2.3. Set 1 

The parameters for the set of 15 signals in Set 1 are outlined be-
low in Tables 1 & 2. The actual values for each variable were 
chosen on the basis of their inclusion in [1] where the emphasis 
was placed on “naturalness” for choosing the parameters outlined 
below. The sound fields were then arranged into pairs, making 
105 pairs for comparison by the participants in the experiment.  

Table 1: variable values for experiment 1 

Cutoff frequency of low 
pass filtered reverb fg 

Step +1: 900 Hz 
Step 0:  650 Hz 
Step -1:  400 Hz 

Level of low pass fil-
tered reverb relative to 
direct sound NT 

Step +1: -12 db. 
Step 0: -14 db. 
Step -1: -18 db. 

Level of early lateral 
reflections relative to 
direct sound S 

Step +1: -3 db. 
Step 0: -5.6 db. 
Step -1: -13 db. 
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Table 2: Variable values for each test signal in Experiment 1

Test Signal  A B C D E F G I J K L M N O P 

Parameter 
Settings 

S 1 1 1 1 1 0 0 0 0 0 -1 -1 -1 -1 -1 
fg 1 -1 1 0 0 -1 1 0 -1 -1 0 0 1 -1 -1 

NT 1 0 -1 -1 1 0 1 -1 1 -1 1 0 0 0 -1 
 

While listening to a pair, it was possible to switch between the 
sound fields freely, and repetition was allowed. In the first part of 
the experiment, the subjects were asked to compare the sound 
fields of the pair and make a judgment as to which was more 
spacious. Judgments of “no difference” were allowed. Their re-
sponses were submitted via a touch screen tablet device via OSC 
and saved in Max/MSP as a text file. 

2.4. Set 2 

The parameters for the filters applied to the simulated early re-
flections of part 2 of the experiment are outlined in Table 3. The-
se sound fields were arranged in pairs resulting in 65 pairs for 
comparison. For each pair, the subject was asked to make a 
judgment as to which sound field was (a) wider (b) deeper, and 
(c) taller of the two. Their responses were in the form of a judg-
ment plus a rating between 1-6 depending on the degree to which 
one was wider/deeper/taller than the other in each pair. Judg-
ments of ‘no difference” were allowed and a rating of 0 was ap-
plied to all such responses. During playback it was possible to 
switch freely between the two sound fields of the pair and repeti-
tion was allowed. 

Table 3:  variable values for experiment 2 

Test Signal Bandwidth 

1 50 Hz – 80 Hz 
2 50 Hz – 200 Hz 

3 50 Hz – 500 Hz 

4 50 Hz – 1250 Hz 
5 50 Hz – 3150 Hz  

6 50 Hz – 8000 Hz 

  
7 80 Hz – 20 kHz 
8 200 Hz – 20kHz 

9 500 Hz – 20 kHz 

10 1250 Hz – 20 kHz 
11 3150 Hz – 20 kHz 

12 8000 Hz – 20 kHz 

 

2.5. Test Subjects 

There were 18 participants in total ranging in age between 19 - 
28 years old. All were post-graduate students who were studying 

courses with a strong emphasis on audio and music. Each report-
ed to have normal hearing. 

2.6. Pre-Experiment Examples 

Prior to the experiment a brief training session was carried out 
where each subject was presented with several example sound 
fields with varying degrees of source spaciousness. The defini-
tion of source spaciousness was defined as described above and 
subjects were allowed to make their own judgments of source 
spaciousness of the example sound fields.  

3. RESULTS 

3.1. Experiment 1 

The participant’s responses to part 1 of the experiment were rec-
orded as source spaciousness scores. For each pair under consid-
eration, a 1 was assigned to the sound field judged to be more 
spacious and a -1 assigned to the sound field judged less spa-
cious. In cases where the elements of the pair were considered to 
be equally spacious, a value of zero was assigned to both. Using 
this scoring scheme we can construct a ranking of spaciousness 
from the data, see Figure 3. The ranking clearly shows the test 
signals grouped into 3 clusters, each representing a different val-
ue for the variable S: level of early reflections. 
 

Figure 3:  spaciousness scores for experiment 1 

 
The existence of a strong relationship between the variable S and 
the source spaciousness score can be established by visually 
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Table 4: Regression model for source spaciousness 
Model Unstandardized Coefficients Standardized Co-

efficients 
t Sig. 

B Std. Error Beta 

1 

(Constant) 12.780 .994  12.851 .000 
Reflections Level 1.668 .031 .944 54.005 .000 
Reverb Filter Cutoff .004 .001 .095 5.408 .000 
Reverb Level .202 .053 .067 3.843 .000 

a. Dependent Variable: Score 
 
 
inspecting the chart in Figure 3 and the contents of Table 2. A 
standard multiple regression was performed between the spa-
ciousness score for each sound field as the dependent variable 
and the variables S, fg and NT as the independent variables.  
 
An analysis of the effect of the variables fg and NT on source 
spaciousness revealed little correlation between either variable 
and the score variable (correlation of .23 & .01 respectively). We 
also found that the contributions to the end score of the inde-
pendent variables fg and NT were quite small (Standardized Co-
efficients of 0.09 and 0.06 respectively). It was proposed that the 
filter cut-off frequency had influence over the perceived source 
spaciousness only in as much as it affected the overall energy in 
the reverberation signal. A new variable was introduced that was 
the measured peak RMS level of the reverberation signal. Three 
level groups were identified, and the sound fields were given a 
new variable with value of -30db, -35db, or -45db according to 
the measured reverb level R.  
 
This proved to slightly decrease the overall apparent contribution 
of the reverb signal to the perception of source spaciousness in 
the analysis. Although the difference is minor it leaves the ques-
tion open as to whether there is an effect on source spaciousness 
by varying the frequency of a low cut filter applied to the reverb 
signal.  
 
The number of cases submitted to analysis was 270, which is a 
sufficient amount to qualify as suitable for regression analysis 
[13]. No outliers were found with criteria for Mahalanobis dis-
tance set to p < 0.001.  
 
Table 4 shows the unstandardized and standardized coefficients 
for the analysis along with the t value and significance levels. 
The 𝑅, 𝑅!, and adjusted 𝑅! values for the model are 0.96, 0.92 
and 0.92 respectively. This high value for 𝑅! signifies how dom-
inant the level of early reflections is in determining source spa-
ciousness.   
 
As expected, the primary contributing variable for the spacious-
ness score is the level of the early reflections. The variation of 
the reverb signal does have and effect on the result but its signifi-
cance is negligible in comparison to that of S. When we control 
for S we found that the effect of the reverb signal on the score 
was dependent on S. At extreme levels of S, the contribution was 
minimized, presumably because of the dominance of S. However 
the effect on the result caused by the reverb became more pro-
nounced when S was in the middle of its range. This effect in-
creased by a factor of 3 compared to its effect at the higher and 
lower values for S. 

3.2. Experiment 2 

The focus of the second experiment was on quantifying the con-
tribution of various frequency bands to each of the three dimen-
sions of source spaciousness i.e. source width, source depth and 
source height. Participants were asked to judge which test signal 
gave the impression of a wider, deeper and taller source. Compil-
ing the scores in a similar way as we did in experiment 1, the 
ranking for each dimension is shown in Figures 4,5, & 6. 
 

 
Figure 4: width scores. Error Bars 95% CI. 
 

 
Figure 5: depth scores: Error Bars 95% CI
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Table 5: Regression model for width score 
Model Unstandardized Coefficients Standardized Co-

efficients 
t Sig. 

B Std. Error Beta 

1 

(Constant) .583 .186  3.135 .002 
fb_200_500 1.819 .279 .294 6.518 .000 
fb_500_1250 1.500 .322 .242 4.654 .000 
fb_1250_3150 1.278 .322 .206 3.964 .000 
fb_3150_8000 2.056 .322 .332 6.377 .000 
fb_8000_20k 1.597 .279 .258 5.722 .000 

a. Dependent Variable: Width Score 
 

 
As there is little energy in the source material between 50 Hz and 
80 Hz, we cannot conclude much about the effect of energy in 
that region on the source spaciousness. Looking at Figure 4 we 
can see that all frequency components contribute to the perceived 
width of the source. Figure 5 indicates that the depth of the per-
ceived source is determined by frequencies below 500 Hz. The 
presence of energy at frequencies above 500 Hz adds nothing to 
the perception of depth and may in fact reduce the effect.  
 
The perceived height of the source is determined according to the 
presence of frequencies above 1250 Hz. The frequencies between 
1250 and 8000 Hz contribute the most to the perception of height 
in the experimental setup. When the higher frequencies (>1250) 
are present, the addition of any energy in the range below 
1250Hz has little effect on the perception of height. However in 
the absence of energy in the upper range of the frequency spec-
trum, the lower frequencies may increase the height of the per-
ceived source.  
 
 

 
Figure 6: height scores: Error Bars 95% CI. 
 

3.3. Models of Width, Depth, and Height. 

The variables defining the test signals in experiment 2 were cod-
ed into non-overlapping frequency bands. If a frequency band is 
present as a reflection in a signal it is assigned a value of 1, oth-
erwise it is 0. To determine the contributions from each frequen-
cy band to the perception of width depth and height we employed 
a standard multiple regression with the scores as the dependent 

variable and the frequency band variables of the early reflections 
as the independent variables.  
 
After some exploratory analysis we found that the maximum 
number of independent variables contributing to the perceptual 
attribute source width is 5. With 216 cases submitted to the re-
gression, the criterion for ratio of cases to independent variables 
is satisfied. No outliers were found. 
 
The amount of variation in the width score is accounted for by 
the five frequency bands is shown in Table 5. The frequency 
range below 200Hz did not make any significant contribution to 
the width score. The model in Table 5 accounts for 81% of the 
variance in width score.  
 
The variation in depth score is accounted for by the two frequen-
cy bands that make up the range between 80 Hz to 500 Hz. The 
coefficients for the depth regression are shown in table 6. The 
contribution of these frequency bands accounts for 39% of the 
total variation in depth score.  
 
The results of the regression analysis with height as the depend-
ent variable are summarized in Table 7. 
 
We have found that the frequency content of the early reflections 
accompanying a direct signal have a significant influence on the 
perception of source spaciousness in terms of the width, depth 
and height of the perceived source. This confirms the results 
found in [1] and [5] although there is some disagreement over the 
exact frequency band which can be said to influence each of the 
dimensions.  

4. SOURCE SPACIOUSNESS MODEL 

Based on the results of the experiments presented above, we have 
devised an equation to represent a linear model of source spa-
ciousness.  
 

𝑆𝑆 =    (𝛼!! +   𝛼!!   + 𝛼!!)𝐺!

!

!!!

+ 𝐼!𝛼!𝐺!                         (1) 

 
where 𝐺! and 𝐺! are the gain of the 𝑖!! frequency band of the 
simulated early reflections and the reverb signal respectively. 
𝛼!! , 𝛼!! , and 𝛼!!  are the regression coefficients from the linear 
approximations for perceived width, depth, and, height respec-
tively. 𝐼! is the scaling factor applied to the effect of the reverb 
due to the value of S. 𝛼! is the reverb coefficient from the regres-
sion applied to the result of experiment 1. 
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Table 6: Regression model for depth score 

Model Unstandardized Coefficients Standardized Co-
efficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 2.352 .237  9.934 .000 

fb_80_200 1.889 .428 .317 4.410 .000 

fb_200_500 2.167 .428 .364 5.059 .000 
a. Dependent Variable: Depth Score 

 
 

Table 7: Regression model for height score 
Model Unstandardized Coefficients Standardized Co-

efficients 
t Sig. 

B Std. Error Beta 

1 

(Constant) 1.863 .244  7.635 .000 
fb_1250_3150 1.896 .423 .343 4.485 .000 
fb_3150_8000 1.250 .535 .226 2.338 .020 
fb_8000_20k .590 .423 .107 1.396 .164 

a. Dependent Variable: Height Score 
 

The first term of (1) represents the contribution of early reflec-
tions while the second term accounts for the reverberation signal. 
Although we found there to be minimal effect of the reverb sig-
nal on the perception of source spaciousness, we kept this term in 
the equation to allow for potential future developments involving 
a reverb signal.  
 
The overall content of the model is based on experiment 1 while 
the details of the filters applied to the early reflections to control 
for perceived width, height and depth independently is derived 
from the results of experiment 2. According to our findings, 
source spaciousness is a three dimensional spatial attribute that 
can be described in terms of width, depth, and height.  
 

5. CONCLUSION AND FUTURE WORK 

We have presented here a preliminary model for source spa-
ciousness that is to serve as a starting point for the development 
of a more comprehensive study of this perceptual attribute. While 
changes in the width are well accounted for by the variables in-
cluded in the experiments, the other two dimensions are less af-
fected. Future experiments could potentially seek to get a more 
detailed picture at how the frequency spectrum of early reflec-
tions affects the perceptual attribute.  The inclusion of elevated 
loudspeakers for the simulation of source height will also be in-
vestigated.  
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ABSTRACT

In this paper methods to determine the group delay of vented boxes
and techniques for the design of filters for group delay equaliza-
tion are presented. First the transfer function and the related group
delay are explained. Then it is shown how the group delay can
be computed or approximated for a certain alignment of the box.
Furthermore it is shown how to derive the required parameters of
the transfer function from a simple electrical measurement of the
box, which allows the determination of the group delay without
knowledge of the box design parameters. Two strategies for the
design and implementation of digital correction filters are shown
where one approach allows for a real-time adjustability of the de-
lay. Finally, the performance with a real speaker is evaluated.

1. INTRODUCTION

Vented boxes have been in use for a long time. Their theory was
described the first time to a great extent by Thiele in [1] and [2].
Later Small refined the theory further [3]-[4]. Both authors pro-
vided a mathematical description of a vented loudspeaker that al-
lowed for a systematic design and an assessment of the transfer
characteristics, which was not the case before. Later on, Bullock
[5] streamlined the design procedure and made the data provided
by Thiele and Small more practically usable.
The advantage of vented boxes w.r.t. closed or dipole speakers
is their enhanced bass response. Their drawback is an increased
group delay at low frequencies, which among other effects, can
lead to the perception of a "muddy", "boomy" or "slow" bass.
These deficiencies at low frequencies are not the only phase errors
of loudspeakers. In general, modern speakers are multi-way sys-
tems and the multiple ways are separated by a crossover, which
can be implemented as a passive, an active analogue or an active
digital system. Ideally, the output of the paths add up to a constant
frequency response. A crossover is made of filters which provide
the desired frequency division, but also introduce unwanted phase
shifts and hence group delay errors. Additionally, the placement
of the speakers relative to each other can introduce time-alignment
errors. The significance and audibility of these phase or group de-
lay errors is subject to ongoing research and discussions, see [6],
[7], [8], [9] for example. Time-alignment correction using group
delay equalization is proposed by [10] and [11]. For example [12]
and [13] propose the correction of phase distortion with allpass fil-
ters.
Most of the present work deals with higher frequencies and equal-
ization in the low-frequency region is rarely discussed. Linkwitz
[14] states that it is not a trivial task, since a lot of delay is needed

at higher frequencies of the spectrum. The authors of [15] focus
on the phase correction at higher frequencies and remind that the
low frequency sound is not perceived independently of the charac-
teristics of the listening room. This is of course true but not limited
to the low frequency range and a loudspeaker as ideal as possible
is desirable.
In this paper we will focus on the equalization of group delay er-
rors that are introduced by the driver-enclosure-system in the low-
frequency range.

2. FUNDAMENTALS OF VENTED BOXES

A vented box is a loudspeaker enclosure with an additional open-
ing called a vent or port, which is usually made of a tube.
The behaviour of a vented box can be described as a fourth order
highpass system. The box itself is a resonator with the air in the
box volume acting as a spring and the air in the port behaving as a
mass, which together are a resonating mass-spring-system. Such a
system is also known as a Helmholtz resonator.
The resonator helps the chassis to reproduce low frequency bass
but has the disadvantage that the onset and offset of its oscillation
is somewhat delayed to the driver signal. At the box resonance fre-
quency the sound output is nearly solely coming from the port and
thus has the group delay of the resonator. For frequencies higher
than the port resonance frequency, the sound output from the driver
and the port are mixed and at higher frequencies the sound from
the driver dominates. Fig.1 illustrates the typical behaviour of a
vented box derived from a LTspice simulation [16]. The group de-
lay in this example exhibits a maximum of about 18 ms slightly
below the port resonance frequency of about 34 Hz.

2.1. Transfer function of a vented box

The sound pressure frequency response of a vented box can be ex-
pressed by the general system function of a fourth order highpass:

Gv(s) =

(
s
ω0

)4

1 + a1
(

s
ω0

)
+ a2

(
s
ω0

)2
+ a3

(
s
ω0

)3
+
(

s
ω0

)4

(1)

There are also higher order systems possible that make use of ad-
ditional electrical filters to shape the low-end frequency response.
These assisted designs are not considered here, since they are quite
unusual. The coefficients of the system function Gv(s) are related
to the design parameters of the vented speaker and are defined by
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Figure 1: Spice simulation of vented box showing magnitude (—)
and group delay (- -) responses of the driver (blue), the port (red)
and the combined output (black).

the relationships

a1 =
1

Ql

√
h

+

√
h

Qts
(2)

a2 =
α+ 1

h
+ h+

1

QlQts
(3)

and

a3 =
1

Qts

√
h

+

√
h

Ql
. (4)

α = Vas/VB is the system compliance ratio. It describes the ra-
tio of the compliance of the air in the box VB to the compliance
of the low-frequency driver Vas. h = fb/fs is the tuning ratio,
which is the ratio of the free-air resonance of the driver fs to the
resonance frequency of the box fb. Both α and h are determined
in the box design process to meet specific requirements. Ql is
the quality factor of the enclosure and depends on the construction
of the box with regard to losses and air tightness. For a medium
sized box with slight damping at the inner walls Ql = 7 can be
assumed. Qts is the total quality factor of the driver including
mechanical and electrical characteristics and additionally resistive
contributions from the crossover [17].
Depending on the values of the coefficients, the response of a box
is classified as a certain alignment. The choice of an alignment de-
pends on the desired frequency response and thus has an influence
on group delay at low frequencies. Not all alignments are possible
with all drivers depending on their parameters.
The alignment is usually derived from the magnitude squared func-
tion setting s = jω and ω̂ = ω/ω0, where ω0 is the corner fre-
quency of the highpass as

|Gv(jω)|2 =
ω̂8

1 +A1 ω̂2 +A2 ω̂4 +A3 ω̂6 + ω̂8
(5)

with

A1 = a21−2a2 , A2 = 2+a22−2a1a3 , A3 = a23−2a2 (6)

The box design parameters are then computed from A1, A2 and
A3.

2.2. B4 alignment (fourth order Butterworth)

For this alignment the transfer function corresponds to that of a
fourth order Butterworth highpass. It is characterized by A1 =
A2 = A3 = 0. The transfer function of a fourth order Butterworth
highpass is

B4(s) =
s4

(s2 +
√

2−
√

2s+ 1)(s2 +
√

2 +
√

2s+ 1)
(7)

If we are interested in the group delay response of a Butterworth
highpass we can look at the slightly more simple transfer function
of a Butterworth lowpass which has the same group delay charac-
teristics. Replacing s as in the previous section it can be expressed
as

B4LP (jω) =
1

1 + 2.613 jω̂ − 3.414 ω̂2 − 2.613 jω̂3 + ω̂4
.

(8)
The general expression for the phase of the fourth order Butter-
worth lowpass filter is then

β = − arctan

(
2.6131 ω̂ − 2.6131 ω̂3

ω̂4 − 3.4142 ω̂2 + 1

)
(9)

from which the group delay can be calculated as τg = −dβ/dω.
The general expression for the group delay of a fourth order But-
terworth filter (highpass or lowpass) can be found in eq. (20) in
the appendix.
As can be seen in Fig.1, the maximum group delay occurs roughly
at the cabinet resonance frequency. The group delay at resonance
frequency is easily obtained by setting ω = ω0 as

τmax ≈ τ(ω = ω0) =
3.695517

ω0
=

0.58816

f0
. (10)

Hence, the approximate group delay maximum for a B4 alignment
of interest can be determined quite simply. Another point of the
group delay response can be estimated. The limit for ω → 0 is

τg(0) =
2.6131

ω0
=

0.4159

f0
. (11)

With the knowledge of these two points of a group delay response,
it is already possible to design a group delay equalizer. However, it
has to be known that the box has a B4 alignment and the value f0 is
needed. Furthermore, the B4 alignment is only usable for drivers
with Qts ≈ 0.4, hence not all vented loudspeakers are designed
using a B4 alignment.

2.3. Other alignments

Beside the B4 alignment there also exist further alignments like
QB3 (quasi third order Butterworth), (S)C4 ((sub) fourth order
Chebychev) and some more [18]. Their transfer functions include
further design parameters that can be chosen to obtain desired re-
sponse characteristics. Hence the determination of the group delay
function for these type of filters is not possible in general.
Furthermore, a vented box is usually designed using one of these
known alignments, but this is not strictly necessary, since the coef-
ficients of the transfer function Gv(s) can be set to any desired
value as long as the design parameters as box size, tuning fre-
quency and driver parameters allow.
Consequently, a more general approach is required to be able to
equalize every loudspeaker.
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3. DETERMINATION OF LOUDSPEAKER GROUP
DELAY

If the alignment of the box is not known or the box is not designed
corresponding to one of the known alignments, the parameters of
the transfer function Gv(s) can be determined by a measurement.

3.1. Acoustic measurement

The frequency response of any speaker can of course be measured
by an acoustical measurement using an appropriate test system.
However such a measurement requires a suitable (measurement-)
microphone, a microphone preamp and software for signal gener-
ation and analysis. Such equipment is not always available, e.g. in
a home environment.
Furthermore the results of an acoustical measurement depend heav-
ily on the measurement room. Noise, reflections and standing
waves can have a big influence on the results. Especially noise
and reflections can cause peaks or ripple in the magnitude as well
as in the phase response. Since the group delay is the derivative of
the phase w.r.t. frequency, these unwanted disturbances influence
the group delay measurement significantly.

3.2. Impedance measurement

The low-frequency behaviour of a loudspeaker can also be deter-
mined with an electrical impedance measurement [2]. In this case
only a sine-generator, a voltmeter and an amperemeter are neces-
sary. In many cases it should be possible to use standard multime-
ters, since even simple ones are dedicated to make measurements
at 50 Hz and hence in the low audio frequency range. Furthermore,
only the frequencies of three extreme values of the impedance re-
sponse are needed, not the impedance values themselves. We have
compared high-precision TRMS (HP 34401A) and simple non-
TRMS multimeters without significant differences in this appli-
cation.
From an impedance measurement the system compliance ratio α,
the tuning factor h andQts of the driver can be computed. With the
knowledge of these values and an assumption for the box quality
factor Ql, the transfer function Gv(s) and thus the low-frequency
transfer characteristic of the loudspeaker is completely defined. In

0 10 20 30 40 50 60 70 80
f/Hz

10

20

30

|Z|/Ω

fl fb fh

Figure 2: Impedance curve of a vented box

Fig.2 a typical impedance for a vented box can be seen. There
are three frequencies of interest where fb is the enclosure reso-
nance frequency and a minimum of the impedance occurs. fl is
the frequency of the impedance maximum below fb, and fh is the

frequency of the maximum above fb. The resonant frequency of
the speaker in the box fsb can be computed as fsb = (fhfl)/fb.
An alternative measurement method which requires blocking of
the port is described in [19].
From the results of the impedance measurement, according to [4]
the compliance ratio α can be computed as

α =
(f2

h − f2
b )(f2

b − f2
l )

f2
h f

2
l

Furthermore the tuning factor can be computed from the impedance
measurement as

h =
fb
fs
≈ fb
fsb

. (12)

The free air resonance frequency fs normally deviates only slightly
from the resonance frequency of the built-in speaker fsb [19], hence
the influence of this approximation on the group delay will also be
small.
With the knowledge of Qts all coefficients of the general trans-
fer function can be determined. Bullock [5] gives an approximate
formula for the total driver quality factor as

Qts =

(
1

20 α

) 1
3.3

. (13)

For the box quality factor Ql, a value of Ql = 7 can be assumed.
A slightly larger value could be applied for smaller boxes and a
smaller value for larger ones.
With the knowledge of α, h, Ql and Qts the coefficients of the
transfer function a1, a2 and a3 of the loudspeaker can be computed
using equations (2) - (4). Hence the transfer function Gv(s) and
the resulting magnitude, phase and group delay responses can be
determined independently of the used alignment. If the measure-
ment is made directly at the terminals of a complete loudspeaker,
the influence of the crossover network, which mainly influences
Qts is already included in the results.
An advantage of this method is, that it directly yields a paramet-
ric description of the transfer characteristics, as only the three fre-
quencies fl, fb and fh have to be determined. Hence no smoothing
is required as it would be the case with a direct acoustic measure-
ment.

4. CORRECTION FILTER DESIGN

If the group delay is known, the next step is the design of the cor-
rection filter for compensation of the vented-box group delay at
low frequencies. Because of the very small ratio of the lower cut-
off frequency f0 to the sampling frequency fs, very long filters are
needed in the case of FIR-filters to obtain a satisfactory frequency
resolution. IIR-filters can work with a significantly lower amount
of coefficients but will have high demands on the precision of the
coefficients necessary for this task.
Consequently, if a suitable filter has been designed, the filtering
process may also require a high resolution, i.e. a powerful proces-
sor in the case of a long FIR-filter or high precision in the case of
an IIR-filter.
The computation of the filter coefficients can be challenging due to
the above reasons. For example an optimization based method as
described in [20] can be applied to design an allpass filter that ap-
proximates the phase response of the loudspeaker. However, this
method may not directly give good results or stable filters in our
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application. This is due to the fact that the phase is only approx-
imated in a very narrow frequency band, for which the numerical
conditions become an issue. Furthermore a suitable phase offset,
which is not directly included in the optimization problem has to
be chosen to ensure good approximation of the phase. We will
show two alternative methods to design a correction filter.
The required equalization filter must have a negative group delay
in a certain frequency range to "speed up" the signal or must intro-
duce additional delay, to "slow down" signals in the complemen-
tary frequency range. In the second case an additional delay will
be introduced into the signal path, which has to be considered, e.g.
in live applications or audio/video synchronous tasks.

4.1. Equalization filters with negative group delay

The use of such filters is not directly possible, because filters show-
ing negative group delay have a high-pass magnitude response
[21]. The frequency range, in which the negative group delay oc-
curs is then in the stopband of the filters. This would attenuate fre-
quencies in the desired low frequency range and therefore would
need an additional equalization (amplification) which would result
in a poor signal-to-noise-ratio.
The use of allpass filters with negative group delay (which would
be the filters with the desired characteristic in our application) is
not possible. These filters are not stable because their poles would
be located outside the unit circle.

4.2. Equalization filters with inverse delay

Such a filter should increase the group delay at all frequencies ex-
cept the ones near resonance frequency of the cabinet, which could
be achieved using allpass filters. This means that a large filter or-
der has to be used to obtain low ripple in the group delay response
for higher frequencies. Furthermore the fact, that the required de-
lay can become quite high at typical audio sampling frequencies
(some 1000 samples) the Q of the group delay for one allpass is
very large since the poles resp. zeros have to be very close to the
unit circle. This further increases the filter order needed to obtain
a low ripple in the group delay response.
Two alternative methods to design such a filter are shown in the
following.

4.2.1. FIR filter with unit magnitude response and inverse
phase response

A frequency response function with a constant magnitude and ar-
bitrary phase can be designed in the frequency domain directly. As
a starting point, the transfer function of the loudspeakerGv(s) can
be transformed to the discrete time domain via the bilinear trans-
form to obtain Gv(z). Then the impulse response h1(n) of this
IIR filter can be computed for a desired number N of samples.
The response can then be transformed to the frequency-domain
using a discrete Fourier transform (DFT). In the next step, in the
frequency domain the magnitudes can be set to an arbitrary value,
e.g. unity if only a phase equalization is required. If the phase has
to be equalized to exactly cancel the original phase and no mag-
nitude equalization is desired, this is the only modification needed
in the frequency domain. To ensure real coefficients of the filter in
the time domain, it has to be ensured that the spectral values of a
length N filter satisfy the relation

H1(k) = H∗
1 (N − k), k 6= 0. (14)

After a transformation back to the time domain via an inverse DFT,
we obtain the impulse response of the FIR filter having only the
phase response of the speaker and unity gain for all frequencies.
To obtain the final equalization filter with inverse group delay w.r.t
the original, the impulse response has to be time reversed.
The disadvantage of this approach is the resulting computationally
expensive long FIR-filter that finally does the group delay equal-
ization. This can make a real time implementation e.g. on an em-
bedded DSP-system difficult. A computation of the convolution in
the frequency domain using overlap-add or overlap-save schemes
would reduce the effort significantly, but requires quite long Fast
Fourier Transforms (FFTs) which require more memory, increase
the delay due to block processing and can decrease the precision
on fixed-point systems.
An advantage of this method is, that more correction can be de-
signed into this filter, e.g. magnitude equalization or highpass fil-
tering for driver protection without increasing the computational
effort of the filtering process. The data for magnitude equaliza-
tion could be obtained via an acoustic measurement whereas the
incorporation of predefined functions like subsonic filters would
not require additional measurements.
A correction filter as described can be designed using MATLAB.
Filters that are not directly based on the modelled frequency re-
sponse of the speaker but can be tuned manually or selected using
presets can be designed with a tool like rePhase [22].

4.2.2. Direct design of an allpass with the same group delay
as the speaker and computation as a time-reversed IIR-filter

In this approach we first design an allpass-filter with a group de-
lay approximating that of the loudspeaker. Mainly, we want to
compensate for the delay introduced by the cabinet, which is a
resonator and hence a second order system, whereas the whole
speaker is modelled as a fourth order system. Hence, the approach
is to assume that it is sufficient to design a resonator as a two-pole
filter

HR(z) =
b0

(1− re−jω0z−1)(1 + rejω0z−1)
(15)

to mimic the group delay response of the box.
Two parameters, the radius r and the angles ±ω0 of a pole pair
p1,2 have to be determined. This can be done based directly on
parameters of the original (measured) group delay response. In
this approach the resonance frequency of the box determines the
angle of the poles of the correction filter. The radius of the poles
determines the rate of change of the phase at the pole frequency
and thus the maximum of the group delay.
The maximum magnitude response of a resonator which corre-
sponds to the maximum group delay does not directly occur at
the pole frequency ω0 but also depends on the pole radius r and
occurs at the frequency

ωr = arccos

(
1 + r2

2r
cosω0

)
(16)

[23]. This shift of the resonance frequency is due to the fact that
we have poles at positive and negative frequencies to get real co-
efficients, i.e. a two-pole system for a single resonance. The pole
at negative frequencies also has an influence on the response eval-
uated on the positive frequency axis in the upper half of the unit
circle and vice versa. For values of r close to unity, the pole of
the respective half-plane dominates and the dependency of the res-
onance frequency from the second pole can be neglected and thus
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ωr ≈ ω0. Hence we set the pole angles to

ω0 = ±2π
fb
fs
. (17)

The required pole radius r can be derived from the phase response
of the resonator. Here also both poles influence the desired group
delay value, which makes the relation quite complicated. The ex-
pression for the group delay at ω0 dependent on r is given in eq.
(21) in the appendix. The expression in eq. (21) is quite unhandy
and not easily to solve for r. A method for the determination of the
required value of r is to compute it iteratively. A suitable starting
point are the pole radii of the original transfer function Gv(z).
In addition to the poles of the resonator, two zeros z1,2 have to
be added to obtain an allpass-system with a constant magnitude
response. With the two zeros

z1,2 =
1

p∗1,2
(18)

we obtain the resulting transfer function of the allpass filter as

H2(z) =
(1− 1

r
ejω0z−1)(1 + 1

r
e−jω0z−1)

(1− re−jω0z−1)(1 + rejω0z−1)
. (19)

The zeros compensate the magnitude and add an additional delay
of the same amount as that of the poles. Since ωr = ω0 is fixed,
the poles have to be complex conjugates and the zeros directly
result from the poles, r is the only parameter to be adjusted for
the whole allpass equalization filter. Fig. 3 shows a pole-zero plot
corresponding to the application example in the next section which
shows the dimension of ω0 and r.
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Figure 3: Poles and zeros of the correction filter before time-
reversal

We now have a second-order recursive filter which approximates
the group delay of the loudspeaker. To equalize the speaker, it
has to be time reversed, which would normally lead to an unsta-
ble filter. This method for the design of the correction filter is not
as exact as the approximation using a long FIR-filter on the basis
of the measured group delay described in the section above. The
advantage of this method lies in the significantly reduced compu-
tational effort required to run the filter in real-time.
The time-reversed low-order allpass H2(z) can be realized effi-
ciently as an IIR-filter using the structure proposed in [24]. The

H2(z)

x(n) y(n)

H2(z)

N
LIFO

N
LIFO

z-2N

0 +

RST T

RST B

Figure 4: Block diagram of time-reversed filter implementation
from [24]

block diagram of this filter is shown in Fig.4. Using this method,
data is buffered for a number of N samples using a Last In First
Out (LIFO) buffer. The output of the buffer is a time-reversed ver-
sion of the input signal and sent through the second order allpass
filter, which requires only 5 multiplies and 6 additions per output
sample. Due to the long time constants it may be necessary to
implement the filter in double precision which would increase the
computation time roughly by a factor of four, which is still much
less than a FIR implementation requires. The result is then again
time-reversed by a second length-N LIFO-buffer and given to the
output. To account for adjacent blocks an overlap-add scheme is
applied. Computing the equalization filter as a time-reversed IIR-
filter significantly reduces the required computational effort com-
pared to an FIR implementation. However, there is no free lunch
and the drawback is, that the delay is increased to 2N samples and
the memory requirements to 4N samples. This would allow to
run the equalization filter on quite simple platforms, provided, that
they have enough memory. The additional delay may not pose a
problem if just a music playback situation is considered.
Another advantage of this approach is, that the delay of the equal-
ization filter can be changed quite easily just by changing pole
radius r and re-computing the 5 filter coefficients of H2(z). The
computation of an inverse DFT and time inversion is avoided. This
would allow to implement an adjustable delay on an embedded
system.
Both approaches, the FIR-filter and the time-reversed IIR-filter use
a truncated impulse response of a recursive system as a correction
filter. The required length N of this impulse response is of course
dependent on the sampling frequency fs and should be chosen to
provide a minimum frequency resolution ∆f = fs/N of about 5
Hz. This results in a value of N ≥ 8820 for fs = 44.1 kHz.
When using an FIR-filter this would mean 8820 multiply and accu-
mulate (MAC) operations per output sample in contrast to about 50
operations and some overhead for the buffering operations when
using the time-reversed IIR approach in double precision.

5. APPLICATION EXAMPLE

The following examples show the application of the proposed cor-
rection technique to a commercial HiFi loudspeaker (JBL TI5000).
This speaker shows an electrical impedance at the loudspeaker ter-
minals as shown in Fig.2. The three frequencies of interest for this
speaker are fl = 13.8 Hz, fb = 30 Hz and fh = 49 Hz. The com-
puted total driver quality factor is Qts = 0.31 and the resonance
frequency fsb = 22.6 Hz. These values are in good accordance
with the data given by the manufacturer with fb = 30 Hz, fs = 24
Hz and Qts = 0.29. From the measured frequency values the ad-
ditional parameters are computed as α = 2.32 and h = 1.33,
which are reasonable values for a QB3 alignment.
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With these values the coefficients of the transfer function Gv(s)
can be computed. The original magnitude and group delay re-
sponses of the speaker as computed from the data of the impedance
measurement are shown in Fig.5. The maximum value of the group
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Figure 5: Original Magnitude and group delay response of the
loudspeaker

delay τgmax is about 16.5 ms at a frequency of 29.5 Hz, which is
close to the measured cabinet resonance frequency of 30 Hz. The
-3 dB corner frequency of the system is at about 32.5 Hz.
The resulting pole radii of the discrete-time fourth-order highpass
Gv(z) are: 0.99803, 0.99803, 0.99853 and 0.99454. A correction
filter has been designed as described in 4.2.2. The pole angles are
chosen as ω0 = 2π(fb/fs) with fb = 30 Hz and fs = 44.1 kHz
and the pole radii r were determined iteratively as r = 0.9968.
This leads to the pole-zero configuration as shown in Fig. 3.
In Fig.6 the frequency response of the time-reversed correction fil-
ter is shown. The group delay correction is not exact, as expected
because the box is a fourth order system and the correction fil-
ter a second order system and only models the cabinet resonance.
Furthermore the magnitude is unity because of the additional ze-
ros placed at the mirror position of the poles. For evaluation of
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Figure 6: Magnitude and group delay response of the correction
filter before time-reversal

the equalization performance, the group delay of the correction fil-
ter has been subtracted from the original group delay of the loud-

speaker. The result is shown in Fig.7. The correction filter does
not affect the magnitude response of the speaker but reduces the
group delay error of the box in the audible frequency range sig-
nificantly. The group delay error is about 4 ms at a frequency of
10 Hz, where the magnitude is already at about -35 dB w.r.t. the
passband and about -2.4 ms at a frequency of 47 Hz. This error of
-2.4 ms is much smaller than the original group delay of 9.3 ms at
this frequency before equalization. In [15] it is stated that a delay
below 1-2 ms will practically never be noticed and 3-5 ms errors
are safe for most program material. At the cabinet resonance fre-
quency of 30 Hz, the group delay is zero as expected.
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Figure 7: Magnitude and group delay response of the corrected
speaker

The performance of the filter can be fine tuned by manually adjust-
ing ω0 and r to further reduce the errors or to adjust the equaliza-
tion to personal preferences.

5.1. Results

The result has been evaluated in an informal listening test, where
the correction was clearly audible for all participants. The low-
frequency reproduction gets tighter and more defined. Rhythmic
instruments like bassdrums have a better coherence of bass and
subbass frequencies and thus are fusing more into one sound. Due
to the change introduced by the equalization, the resulting sound
is also a little unusual since the listener is in most cases used to
listening to uncorrected speakers for a long time.
Another observation is, that the crestfactor of the output signal of
the correction filter can change due to the phase shifts in the low-
frequency range. To avoid clipping, the level of the output signal
may have to be reduced or limited according to the capabilities of
the signal processing system.

6. CONCLUSIONS

A way to determine the transfer function and thus the group de-
lay of a vented box in a simple applicable way via an electrical
impedance measurement has been shown. The group delay defi-
ciencies of the speaker can be equalized with an FIR-filter, into
which further equalization can be incorporated. This method can
give very accurate equalization but is computational demanding.
The correction filter can also be designed as a time-reversed allpass
by choosing the appropriate resonance frequency and pole radii of
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a second order resonator whose magnitude is then corrected with
additional zeros. This approach does not account for all sources of
unwanted group delay and but delivers good results. Furthermore
it allows for a parametric filter design and thus an implementation
of a simple real-time control of the delay. Additionally, it reduces
the computational load of the filtering process significantly with
the cost of introducing some additional delay into the signal path.
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8. APPENDIX

The general expression for the group delay of a fourth order But-
terworth filter (highpass or lowpass) is

τgB4(ω) =
9.28986ω0 ω

6 + 3.84786ω0
3 ω4 + 3.84786ω0

5 ω2 + 9.28986ω0
7

3.55511ω8 − 0.000386ω0
2 ω6 + 0.000635ω0

4 ω4 − 0.000386ω0
6 ω2 + 3.55511ω0

8
. (20)

The expression for the group delay introduced by a pole pair at
±ω0 with both poles having the radius r is

τg(r) = − 3r3 sin2 (2ω0) +
(
6r3 cos2 (ω0)− 2r2

)
cos (2ω0) +

(
2r − 4r2

)
cos2 (ω0)− 2r4

2r3 sin2 (2ω0) + (4r3 cos2 (ω0)− 2r2) cos (2ω0) + (4r − 4 r2) cos2 (ω0)− r4 − 1
. (21)
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ABSTRACT

This paper presents the time variant vectored comb filter. It is an
extension of the feedback delay network to time variant and non-
linear domains. Effects such as chorus and flanger, tap delay and
pitch shifter are examined in the context of the feedback scheme.
Efficient implementation of a stateless vectorizable LFO for modu-
lation purposes is presented, along with a recursive formulation of
the Hadamard matrix multiplication. The time variant comb filter
is examined in various effect settings, and presented with source
code and sound examples.

1. INTRODUCTION

A feedback delay network is a well established for method for
implementing efficient synthetic reverberators. The algorithm is
a simple yet elegant generalization of the comb filter; the signal
and filter parameters are vectored and the feedback attenuation be-
comes a matrix multiplication.

Different extensions to the comb filter are also ubiquitous. The
extensive design space of modulation–delay effects can be seen as
comb filter variants. This leads into an intriguing possibility of
further generalization, the vectored modulation delay.

This paper explores the addition of vectored delay time and
amplitude modulation to the FDN. Effects resembling modulation
delay staples such as chorus and flanger are examined and ex-
tended. Since all these effects are just parametrizations of the vec-
tored time variant comb filter, various hybrids are also presented.

The fundamentals of feedback delay networks are presented
first, in Section 2, Background. The generalization into Vectored
Time Variant Comb Filters is discussed in Section 3, Exploring
the Design Space. This section discusses the implementation and
applications of the effect as well as efficient implementation of the
modulation structure on vector hardware. A summary of the paper
is given in Section 5, Conclusion.

2. BACKGROUND

The standard comb filter is shown in Figure 1. For high filter or-
ders, it will be perceived as an echo effect. Lower order filters that
result in very fast echoes are perceived as frequency response col-
oration. Comb filters are ubiquitous, especially in artificial rever-
beration. The traditional design by Schröder[1] employs a bank of
these filters, tuned to generate a series of decaying echoes resem-
bling the diffuse reverberation field.

∗ This work was supported by MuTri Doctoral School, Sibelius
Academy, University of Arts Helsinki

x[n] y[n] + 

K 
α

Delay

Figure 1: Comb Filter

The seminal work on feedback delay networks for artificial
reverberation was done by Gerzon in the 1970s[2]. Since then,
the algorithm has become a staple of synthetic reverberation. The
overall schematic is similar to the comb filter: the delay and feed-
back coefficient are vectorized, the feedback gain stage becomes a
matrix multiplication.

In contrast to the comb filter bank, each delay line feeds back
into several or even all the other delay lines, giving FDN the prop-
erty of an echo density that increases over time. Real acoustic
spaces exhibit a similar property, unlike the constant echo density
comb filter bank.

The exact nature of the FDN sound field depends on the prop-
erties of the feedback matrix. Much of the research since its dis-
covery has been on tuning the counterintuitive algorithm. Seminal
work on the subject has been done by Jot[3]. Rocchesso and Smith
present important techniques and constraints for the feedback ma-
trix design, as well as equivalences to classes of digital waveguide
networks [4].

Time varying variants of the simple comb filter are also widely
used. An overview of these modulation delay effects is in the
literature[5]. The contribution of this paper is to explore the com-
bination of these: the vectored, time variant comb filter, and to
demonstrate an efficient implementation on SIMD hardware.

3. EXPLORING THE DESIGN SPACE

The example implementation of the vectored time variant comb fil-
ter is designed to explore the possibilities of delay and amplitude
modulation of significant depth. Typically, modulation techniques
in the context of feedback delay networks have been used to break
the modes of the reverberator. The analogy to vectored comb filters
suggests the possibility of vector chorus, vector flanger and even
complicated doubler type effects. Since these are just parametriza-
tions of the filter, hybrid effects combining features of several ef-
fects are also potentially interesting.
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Figure 2: Overview of the waveshaping LFO

An 8-dimensional vectored time variant comb filter is imple-
mented for the purposes of this study. The filter consists of a delay
bank with loss filters and a feedback matrix. Two LFOs are pro-
vided per delay, one for delay time modulation and one for ampli-
tude modulation.

This design should be easily adaptable for efficient processing
on common SIMD units which tend to be 4 or 8 units wide at
the time this article was written. The reference implementation
can optionally use the Intel AVX instruction set to run most of
the comb filter on a parallel SIMD code path. It should be easily
adaptable to most similar vector architectures.

3.1. Implementation

3.1.1. Vectorized LFO

This section presents an LFO algorithm capable of producing con-
trol waveforms of triangle and square variety, with adjustable sym-
metry and slopes for ramps and pulses as well. All waveforms
can be continuously morphed between linear and pseudosinusoid
shape. The oscillator is designed for control signals and is not band
limited.

The algorithm is designed for modern hardware and vector
processing, which essentially preclude the use of nondeterminis-
tic code path or memory access. Wavetables and branch logic are
thus out of question. The algorithm is a pure function waveshaper
that acts on a simple phasor. Stateful or stateless phasors can be
chosen according to the target hardware.

The waveshaper is presented as a cascade of stages follow-
ing the phasor producing a periodic ramp in the range [0, 1]. An
overview is given in Figure 2.

The triangle/ramp/square base shape is accomplished by two
linear functions and three clipping stages. The base waveform is
parametrized by three degrees of freedom, (x1, x2, x3), as shown
in Figure 3. The linear functions for Sup and Sdown follow triv-
ially from these points and are given in Equations 1 and 2. For the
linear segments to be defined, x1 > 0∧x2 > x1 ∧x3 > x2. How
small the deltas can be depends on the numerical characteristics of

x1 x3x2

Figure 3: LFO degrees of freedom

the target hardware.
The waveform is combined by clipping Sup below one and

Sdown below zero. Summing these and clipping above zero yields
the final waveform in the unipolar range of [0, 1]. Sdown should be
computed in the form k(x − x2) to preserve numerical precision
near zero – the section that will actually be used.

A pseudo-sinusoid waveform can be accomplished by a fur-
ther waveshaping polynomial (Equation 3). This shaping turns the
linear segments in the LFO into S-shape curves that are continuous
in the first derivative when applied to a triangle-like wave. A con-
tinuous control parameter from linear to pseudo-sinusoid segment
can be introduced. All in all, the pseudo-sinusoid shape morphing
roughly doubles the computational complexity of the LFO. The
S-curve is potentially useful for all of the waveforms: triangle,
skewed pulse and ramp.

Sup(x) =
x

x2 − x1
(1)

Sdown(x) =
x− x2
x2 − x3

(2)

h(x) = 6(
x2

2
− x3

3
) (3)

3.1.2. Delay and Filter Bank

The delay and attenuation filter banks used in the effect are straight-
forward. The filter bank is based on the standard first order loss
filter. The delays are implemented as circular buffers.

The one pole filter bank is an easy fit for vector hardware.
The same can not be said for the delay bank, due to non-uniform
ring buffers. This leads to the memory access pattern requiring a
scatter/gather idiom.

The modulation of delay lines makes the signal path nonlin-
ear. This undermines the canonical stability criteria for feedback
delay networks. The described modulation is attenuation rather
than boost, so an unstable situation is not expected. However, the
attenuation effect of amplitude modulation is unpredictable and
program dependent. That is why a manual adjustment of feedback
beyond 100%, is provided per delay line, with total stability guar-
anteed by an additional stage for soft saturation.

3.1.3. Feedback Matrix

As in reverberators, a lossless feedback matrix is the starting point.
Such matrices are unitary. For the purpose of this study, the orthog-
onal Hadamard matrix with computationally beneficial features is
used. The matrix is generated by taking a N -fold Kronecker prod-
uct of seed matrices and scaling for orthogonality, as shown in
Equation 4. This matrix caters for a network of 2N delay lines.

Hn =
1√
2N

[
1 1
1 −1

]⊗N

(4)
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Table 1: Permute–flip–add sequence for 8× 8 Hadamard matrix

permute a 0 0 2 2 4 4 6 6
permute b 1 1 3 3 5 5 7 7
sign + - + - + - + -
permute a 0 1 0 1 4 5 4 5
permute b 2 3 2 3 6 7 6 7
sign + + - - + + - -
permute a 0 1 2 3 0 1 2 3
permute b 4 5 6 7 4 5 6 7
sign + + + + - - - -

In the case of two delay lines (N = 1), the matrix computa-
tion trivially results in a vector containing their sum and difference.
A larger feedback matrix can be constructed by computing pair-
wise feedback vectors, then recursively combining pairs of them
by concatenating the vector sum and difference. Each level of re-
cursion corresponds to a Kronecker product, doubling the number
of diffuse feedback channels. This algorithm results inN2N addi-
tions, or by the number of delay lines, nlog2(n) additions as noted
in the literature for FDN reverberators[6]. The matrix scaling co-
efficient 1√

2N
can be integrated into the delay line loss filters.

The feedback matrix is also amenable to SIMD computation.
Each Kronecker product can be reduced to a vectored permute,
sign flip and addition. An example with N = 3 is demonstrated
in Table 1. Three products are shown. The permute rows a and b
correspond to element indices for the left and right hand side of the
addition; the sign row denotes sign flips for the right hand side. For
architectures with a vector width of 2N , the entire feedback matrix
can be computed in 4N vector operations, corresponding to two
permutes, sign flip (xor) and addition per Kronecker product.

Alternatively, the Hadamard matrix could be vectorized as a
time-parallel computation in block processing. This choice could
be considered as it saves the permute operations described above;
however, it is less appealing due to the matrix appearing in a feed-
back loop of a modulation delay. The various techniques to work
around the latency of such an algorithm would likely cost more
than the simple permutation instructions, both in terms of compute
efficiency and algorithmic complexity.

3.1.4. Control Surface and Parameter Mapping

The internal parameter set used for each delay line in the effect is
shown in Table 2. A one to one mapping from the internal param-
eter set to a user interface is not likely very attractive. For eight
delay lines, the interface would contain 144 parameters. Macro
controls would be more useful; this should be studied in the fu-
ture.

3.2. Applications and Qualitative Evaluation

This section briefly discusses some of the creative possibilities of
using the effect described in this study. The evaluations are the
subjective impressions of the author; they shouldn’t be read as sci-
entific results. For a more detailed perspective, please refer to the
example code and sound files that are available at the code reposi-
tory specified at the conclusion of this paper.

Table 2: Time Variant Vectored Comb parameter set

parameter unit description
delay ms delay time
in gain dB input signal to delay line
out gain dB delay line to output signal
out pan linear stereo panorama
tone linear loss filter to feedback matrix
fb gain % delay line to feedback matrix
LFO rate Hz
DM depth ms delay time modulation
DM offset linear DM phase offset
DM shape 4× linear x1, x2, x3, shape
AM depth linear amplitude modulation
AM offset linear AM phase offset
AM shape 4× linear x1, x2, x3, shape

3.2.1. Vector Chorus–Flanger

The vectored chorus–flanger revolves around delay times and de-
lay modulation depth of 0 − 40 ms and LFO rates in the range of
0.1 − 5 Hz. Adding feedback creates a flanger-like moving reso-
nance effect, but the tonal color is a lot more complicated as the
feedback network system has a large number of poles.

With longer delay times and feedback, the effect acquires spring
reverb characteristics, especially with faster LFO rates.

Complex stereo imaging can be achieved by using variations
of similar settings on multiple delay lines and panning them across
the image.

3.2.2. Multitap Delay

By using delay times a lot longer than those in a diffuse field re-
verberator, a sparse multitap delay effect is created. What is es-
pecially interesting is the echo density escalation over time. The
sparse echoes gradually become a diffuse tail. The effect is capa-
ble of generating interesting transitions from percussive textures to
static ones.

3.2.3. Pitch Shifter

By using ramp-shape delay time modulation together with phase
shifted triangular amplitude modulation results in a simple pitch
shifter. The ramp modulator adjusts momentary playback speed,
while the triangular envelope is aligned to hide the discontiuity in
the ramp. An even overrall amplitude can be attained by using
overlapping shifters with orthogonal phase shifts.

The complex feedback is the distinguishing feature from stan-
dard slicer shifters. The effect is less useful as a plain transpo-
sition, as an infinite number of high order transpositions are gen-
erated by the feedback, but can result in extremely full ensemble
thickening effects with subtle pitch shift factors.

3.2.4. Hybrid Effects

Interesting combinations of effects can be realized by mixing de-
lay line settings from several of the above categories. Reverb-like
settings together with pitch shifter and chorus effects appear to be
the most immediately useful.
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3.2.5. Semi-Stable Self Oscillation

By utilizing very short delay times in the range of 0 − 20 ms and
feedbacks in excess of 100%, a self-oscillating network can be cre-
ated. Soft saturation in the feedback loop prevents the blow-up and
introduces both harmonics and non-harmonic aliasing frequencies.
The tonalities due to complex feedback paths are interesting, but
the pitch is quite hard to predict and control.

4. PERFORMANCE EVALUATION

4.1. LFO

The performance of the LFO reference implementation was mea-
sured by accumulating its output over 100 000 000 sample frames
to ensure timing accuracy. The accumulator is in place to pre-
vent dead code optimization by the compiler. A vectorized LFO
with eight independent waveforms was measured. The test pro-
gram was compiled with Microsoft Visual Studio 2013, with AVX
architecture and the fast floating point model enabled. The mea-
surement was run on Windows 7 with the dual core Intel i5-3317U
CPU clocked at 1.70GHz.

The vectorized LFO was able to produce 1.14286 × 109 out-
put frames of 8 discrete signals per second – roughly 16 CPU cy-
cles per frame, or 2 cycles per sample. This translates to a real
time CPU core utilization of 0.0039% per modulation signal on
the machine the measurement was performed on, when processed
at 44.1kHz.

4.2. Time Variant Vectored Comb Filter

The entire effect consists of the following modules:

1. delay bank (8)

2. modulation LFOs (16)

3. loss filter bank (8)

4. feedback matrix (8× 8)

5. input and output routing matrices

The loss filter, modulation LFOs and all gain and summation
stages trivially vectorize to SIMD code. The feedback matrix is
also fully vectorized, as explained in Section 3.1.3. The modula-
tion delay bank remains scalar, as the requisite scatter/gather oper-
ations defeat the purpose of vectorization on current hardware.

In a test harness like the one described in 4.1, the entire comb
filter implementation produced 3.57 × 106 stereophonic output
frames per second. This translates to a real time CPU core utiliza-
tion of 1.23% at 44.1kHz. Roughly 80% of the time is spent in the
scalar delay line bank. This suggests that the additional computa-
tional load from a comprehensive feedback matrix, in contrast to a
plain modulation delay bank, is far from prohibitive in the context
of suitable vector hardware.

5. CONCLUSION

This paper examined the extension of feedback delay networks
into the realm of modulation delay effects. Efficient vectorized
implementation of the parallel modulation structure and a diffu-
sive feedback matrix were demonstrated.

The generalized time variant vectored comb filter is interesting
in the sense that it is a superset of a large number of delay-based ef-
fects. It offers musically relevant and divergent possibilities when

complicated feedback structures are used. In particular, hybrids
between spatial and ensemble effects offer novel sounds. Con-
tinuous morphing from one effect state to another is also easily
attainable.

Possible future work could involve a deeper investigation of
the feedback matrix. The current implementation uses a fixed feed-
back matrix for maximum efficiency. Control over the diffusion
between the submatrices of the Hadamard tree could be especially
interesting, as it could be seen as a way to isolate or combine sec-
tions of the network. The impact of advancing scatter/gather im-
plementations could be interesting in improving the performance
of the scalar delay bank. The user interface is also an open ques-
tion: the exposal of the extensive parameter set via a higher level
control surface could increase the viability of the effect from the
end user point of view.

A reference implementation of the effect in C++, along with
sound examples, is available on Bitbucket under the MIT license,
at https://bitbucket.org/vnorilo.
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ABSTRACT

A variety of methods are available for implementing time-varying
digital filters for musical applications. The considerations for mu-
sical applications differ from those of other applications, such as
speech coding. This domain requires realtime parametric control
of a filter such as an equalizer, allowing parameters to vary each
sample, e.g. by user interaction, a low-frequency oscillator (LFO),
or an envelope. It is desirable to find a filter structure that is time-
varying stable, artifact-free, computationally efficient, easily sup-
ports arbitrary filter shapes, and yields sensible intermediate filter
shapes when interpolating coefficients. It is proposed to use the
state variable filter (SVF) for this purpose. A novel proof of its
stable time-varying behavior is presented. Equations are derived
for matching common equalizer filter shapes, as well as any z-
domain transfer function, making the SVF suitable for efficiently
implementing any recursive filter. The SVF is compared to state of
the art filter structures in an objective evaluation and a subjective
listening test. The results confirm that the SVF has good audio
quality, while supporting the aforementioned advantageous quali-
ties in a time-varying digital filter for music. They also show that
a class of time-varying filter techniques useful for speech coding
are unsuitable for musical applications.

1. INTRODUCTION

In digital audio effects, filters are rarely time-invariant. A filter is
time-variant if it has a user-controllable parameter. A time-variant
filter is also a useful building block for an effect such as a phaser or
filter controlled by an LFO or envelope. For these applications, it
is important that the filter remain stable, and that the time-varying
behavior not introduce perceptible artifacts. Here, we focus on
realtime musical applications, where parameters may be varied
every sample, as with an LFO, and it should be computationally
efficient to do so. An ideal method will allow implementation
of any filter shape. As the parameter changes may be smoothed,
the transfer functions resulting from the intermediate coefficients
should maintain a similar magnitude response to the shapes be-
ing interpolated. This study is restricted to second-order recursive
filters because higher order filters are typically decomposed into
second-order sections.

The choice of filter structure has a large influence on time-
varying behavior, including whether the filter will remain stable.
Even stable filters can still produce objectionable artifacts, as will
be shown in Sec. 6.

In order to implement time-varying filters, given a desired trans-
fer function, one option is to select a time-varying stable filter
structure, and configure this structure to realize the transfer func-
tion. Another option is to use a time-varying unstable structure
such as Direct-Form II transposed, and stabilize it.

A variety of approaches have been proposed to improve time-
varying behavior. One category of methods is transient suppres-
sion [1] [2] [3], and another is stabilization [4] [5]. These are
discussed in more detail in Sec. 2.

One filter structure that is often used to realize realtime, per-
sample time-varying behavior is the state variable filter (SVF).
Empirically, it is known to remain stable and artifact-free, but
these properties have not previously been proven. A proof of time-
varying stability will be shown here. By taking the output of this
filter from different nodes, it is possible to obtain second-order
lowpass, bandpass, or highpass filters. The SVF also maps intu-
itively to common audio equalization filters, providing indepen-
dent control over frequency and resonance, which results in a low
computational burden. Due to this relation, directly interpolating
SVF coefficients also tends to result in sensible intermediate fil-
ter shapes, unlike some other structures [6]. Here we will also
show how to choose SVF coefficients to realize any desired trans-
fer function. Thus, the SVF satisfies the desired qualities of a time-
varying filter for musical applications.

Prior approaches to time-varying filtering are reviewed in
Sec. 2. In Sec. 3, we review the proposed digital implementation
of the SVF. In Sec. 4, we derive formulas for using the SVF to
realize some common filter types for audio equalization, and gen-
erally, any second-order z-domain transfer function. This allows
the SVF to be easily used to implement any digital filter. In Sec. 5,
the time-varying stability of this structure is proven. In Sec. 6, the
time-varying behavior is compared with state of the art methods
in an objective evaluation of DC response, as well as a subjective
listening test, which confirms its good audio quality, and suggests
criteria for perceptually good time-varying behavior.

2. PRIOR WORK

A variety of filter structures have been studied in the time-varying
case, e.g. [5] [4]. Structures such as Direct-Form II, lattice, and
normalized ladder are not necessarily stable when coefficients are
changed. Coupled form, also known as normal form or Gold
and Rader [7] [8], is stable in the time-varying case. Stability
here refers to bounded-input/bounded-output (BIBO) stability [5],
meaning that the output of the filter will be bounded so long as the
input is bounded.

In addition to these structures, there are several methods for sta-
bilizing a filter or eliminating transients from it. Consider a change
from state space matrix S1 to S2 at time n=m. Let y1[n] be the
output when filtering the entire signal with S1 and y2[n] be the
output when using S2. The output switching model [1] [3] has the
ideal response of

y[n]=

{
y1[n] :n<m
y2[n] :n>=m

(1)
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2.1. Transient Minimization

Transient minimization techniques consider the transient signal,
defined as the difference between the actual output signal, and the
output switching model from equation (1). Transient minimization
techniques decrease this transient signal.

Zetterberg and Zhang [1] propose a method, motivated by LPC-
based speech coding, that realizes equation (1). It works by recom-
puting the state vector, but this requires the entire input signal to
achieve this, making it unsuitable for realtime use. Välimäki and
Laakso [3] propose an approximation to Zetterberg-Zhang which
only requires a finite signal history, allowing realtime usage. How-
ever, this method is designed for sparsely occurring coefficient
changes. Supporting audio-rate coefficient changes, e.g. when
modulating a filter with a LFO, would require many filters running
at once, making it computationally prohibitive for this application.

Rabenstein [2] uses an intermediate set of coefficients, which
minimizes the variance of the transient signal. This method is also
intended for coefficient changes that are spaced far apart in time.

2.2. Stabilization

While transient minimization deals with correcting a filter’s out-
put, stabilization allows use of a filter structure that is ordinarily
not stable when time-varying, by forcing it to stay stable.

Rabenstein and Czarnach [4] present a method of transforming
the state vector to stabilize any filter structure. It works by relating
a filter in its state space structure to the coupled form. This can be
performed every sample, making it suitable for audio-rate coeffi-
cient changes. It can be incorporated into the coefficient matrix,
allowing the filtering operation to incur no additional cost, while
making coefficient computation more costly.

3. THE STATE VARIABLE FILTER

3.1. State Space Form

The continuous-time state variable filter in state space form [9] has
the differential equation

ẋ1=u−2Rx1−x2
ẋ2=x1

(2)

where x1, x2 are the state variables, and u is the input to the fil-
ter. The ẋ superscript indicates a time derivative. The parameter
R controls the resonance, and this continuous-time formulation
places the center frequency at unity, i.e. it is normalized. It will be
useful to render this system in matrix form, so that

ẋ=Ax+Bu (3)
In this case, we have

A=

[
−2R −1
1 0

]
(4a)

B=
[
1 0

]T (4b)

x=
[
x1 x2

]T (4c)

u=
[
u
]

(4d)

3.2. Bilinear Transform

We will apply the bilinear transform to obtain a discrete-time fil-
ter. This is equivalent to trapezoidal integration, preserves stabil-
ity, and maps the entire continuous frequency axis to the discrete-
time frequency axis [10] [11].

In audio signal processing literature, cases are encountered
where the application of the bilinear transform to a continuous-
time filter results in a delay-free loop: a feedback loop that con-
tains no delay elements, where the state at time n appears to de-
pend on itself instantaneously. For example, Smith [9] and Du-
tilleux [12] both remark that the bilinear transform cannot be used
with the SVF for this reason. The Chamberlin filter structure is
another discretization of the SVF, using Forward Euler and Back-
ward Euler integrators [13] [9] [14], but this structure becomes
unstable for some parameters.

These difference equations are actually implementable with
some extra computation. The K-Method [10] [15] is an algebraic
method for discretizing and solving systems in state space form,
and Zavalishin [16] presents a graphical method that is equivalent,
which is also applied to the SVF.

The K-Method involves writing a difference equation for the in-
tegrator to be used and then substituting the system to be simulated
in state space form into that difference equation. Delay free loops
are handled by solving the resulting system, which will be linear
in this case.

3.3. Discretization

We apply the K-Method using a Direct-Form II transposed (TDF-
II) trapezoidal integrator [11], which is the same integrator as used
in [16]. This form is canonical with respect to delay. Introducing s
as the state vector, the TDF-II trapezoidal integrator update rule is

xn=gẋn+sn−1 (5a)
sn=sn−1+2gẋn (5b)

where the coefficient g is chosen to map a specific analog fre-
quency wa=2πfa to a digital frequency wc=2πfc, at a sampling
rate fs= 1

T
, known as prewarping [11]:

g=
tan(πTfc)

wa
(6)

We can substitute the state space formulation from equation (3)
into the integration and update rules from equation (5) to discretize
an arbitrary continuous-time state space system. This is similar to
how the K-Method is used in [10] and [15], except that we use the
TDF-II realization of the trapezoidal integrator, instead of DF-I.
Solving for xn and sn, we have

H=(I−gA)−1 (7a)
xn=gHBun+Hsn−1 (7b)
sn=sn−1+2gAxn+2gBun (7c)

This is how the K-Method handles delay-free loops: upon substi-
tuting (3) into (5), xn appears on both sides of the equation. The
matrix inverse H is used to solve this linear system, making it ex-
plicit in xn.

Now we use (7) to implement the SVF. By substituting the SVF
state space matrices from equation (4) into this TDF-II trapezoidal
integration rule (7), we obtain a discrete-time realization of the
SVF:

H=
1

g2+2Rg+1

[
1 −g
g 2Rg+1

]
(8a)

xn=gH

[
1
0

]
un+Hsn−1 (8b)

sn=sn−1+2g

[
−2R −1
1 0

]
xn+2g

[
1
0

]
un (8c)

DAFX-2

DAFx-70



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

By expanding the individual expressions for x1[n] and x2[n], the
elements of x, it can be verified that this is the same as the discrete-
time model of the SVF in [16], where x1=yBP and x2=yLP . The
filter can now be implemented by computing equations (8) in or-
der.

3.4. Alternate Implementation

If the filter is implemented with equations (8), the integrator out-
puts are directly available as the elements of xn, but additional
algebra is required if the integrator inputs ẋn are desired.

It is possible to realize the same filter topology by first comput-
ing ẋn as an intermediate variable. A general form can be found
by substituting equation (7b) into equation (3):

ẋn=(gAHB+B)un+AHsn−1 (9)

If this alternate realization is used, first equation (9) is com-
puted, and then the generic TDF-II trapezoidal integration rule
from equation (5) is used. Note that equation (5) does not depend
on the specific state space matrices A or B, only on the integrator
gain g.

This realization will be convenient for the next section, where
ẋ1 will be needed. It can be verified that ẋ1 is the same as yHP

from [16].

4. REALIZING OTHER FILTER TYPES

One useful property of the SVF is that various transfer functions
can be obtained by taking the output from different nodes, as
demonstrated in [12] and [16]. Most directly, x1 is a bandpass
filter, x2 is a lowpass filter, and ẋ1 is a highpass filter:

HHP (s)=
s2

s2+2Rs+1
(10a)

HBP (s)=
s

s2+2Rs+1
(10b)

HLP (s)=
1

s2+2Rs+1
(10c)

When the filter is digitally implemented, x1[n] and x2[n] are avail-
able as elements of the state vector xn. If the alternate implemen-
tation from equation (9) is used, ẋ1[n] is immediately available as
well, otherwise it can be computed from equation (2).

Zavalishin [16] presents some ways of combining these outputs
to produce other filter types, such as band-shelving, notch, and
allpass. However, difficulty is noted in producing other shapes,
such as low- and high-shelf filters. Here we will demonstrate how
to obtain these shapes, as well as others that are useful for audio
equalization.

4.1. Filters for Audio Equalization

Some common filter types are presented in [17]. To enable broad
applicability of the SVF, we will show how to implement some
of these filters. The technique presented here is suitable to be
used with other s-domain filter design methods, e.g. [18]. The fil-
ter types that we will implement are presented as continuous-time
transfer functions with unity cutoff in Table 1.

These filters share some parameters: Q controls the filter reso-
nance, and A= 10G/40 controls the gain, where G is the gain in
decibels.

Table 1: Filters for audio equalization.

Type Transfer Function

Lowpass H(s)=
1

s2+1/Qs+1

Bandpass H(s)=
s

s2+1/Qs+1

Highpass H(s)=
s2

s2+1/Qs+1

Peaking H(s)=
s2+A/Qs+1

s2+1/AQs+1

Low Shelf H(s)=A
s2+

√
A/Qs+A

As2+
√

A/Qs+1

High Shelf H(s)=A
As2+

√
A/Qs+1

s2+
√
A/Qs+A

The general strategy is to write the desired transfer function as
a linear combination of the lowpass, bandpass, and highpass trans-
fer functions from equation (10). This requires adjusting the res-
onance parameter R and the trapezoidal integrator coefficient g to
scale the filter to the correct frequency. The general form is

H(s)=cHPHHP (ks)+cBPHBP (ks)+cLPHLP (ks) (11)

The lowpass, bandpass, and highpass filters can be obtained
trivially by picking R= 1/2Q. For the rest of the filters, it is nec-
essary to solve for R, and possibly to use frequency scaling as
in [16]. Frequency scaling maps an analog frequency wa to the
digital frequency wc, using equation (6), with wa = k. The SVF
denominator can be made equal to the target transfer function by
manipulating R and k in this way, and then the numerator can be
matched by choosing cHP , cBP , and cLP .

This strategy is used to generate filter coefficients, which are
displayed in Table 2. In addition to the filter type, each filter is
controlled by the critical frequency wc, the resonance Q, and pos-
sibly the gain A. For the SVF, compute 2R and k according to the
table, and use k to compute the integrator gain g from equation (6).

Then, process a sample through the filter, and combine the sig-
nals using the gains cHP , cBP , and cLP to form the output:

y[n]=cHP ẋ1[n]+cBPx1[n]+cLPx2[n] (12)

Table 2: Filter coefficients

Type 2R k cHP cBP cLP
Lowpass 1/Q 1 0 0 1
Bandpass 1/Q 1 0 1 0
Highpass 1/Q 1 1 0 0
Peaking 1/Q 1 1 A/Q 1

Low Shelf 1/Q
√
A 1 A/Q A2

High Shelf 1/Q 1/
√

A A2 A/Q 1

4.2. Arbitrary Digital Filters

In the previous section, common audio equalization filters, de-
signed by applying the bilinear transform to a continuous-time
transfer function with unity cutoff, were matched with the SVF.
This technique is generally applicable when given a continuous-
time transfer function. There are a variety of other representations
available for a digital filter, but some filter design methods, e.g.
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those of Berchin [19] and Christensen [20] operate directly in the
digital domain, yielding transfer function coefficients. Though the
filter was discretized with the bilinear transform, it can be used to
realize any second-order filter. Therefore, we now derive SVF fil-
ter coefficients for arbitrary second-order digital filters, to enable
use of these techniques.

4.2.1. Discrete-Time SVF Transfer Functions

First we must derive discrete-time transfer functions for the SVF.
This can be done by substituting s ← 1

g
1−z−1

1+z−1 for each of the
transfer functions from equations (10), in order to apply the bilin-
ear transform in the z-domain, or with the Z-transform. Solving,
we find

HHP (z)=
1−2z−1+z−2

1+g2+2Rg+(2g2−2)z−1+(1+g2−2Rg)z−2

(13a)

HBP (z)=
g−gz−2

1+g2+2Rg+(2g2−2)z−1+(1+g2−2Rg)z−2

(13b)

HLP (z)=
g2+2g2z−1+g2z−2

1+g2+2Rg+(2g2−2)z−1+(1+g2−2Rg)z−2

(13c)

4.2.2. Matching a Z-domain Transfer Function

Now that we have the discrete-time SVF transfer functions, we
want to choose coefficients to match a given second-order digital
filter. Without loss of generality, let that filter be specified as

H(z)=
b0+b1z

−1+b2z
−2

1+a1z−1+a2z−2
(14)

Like equation (11), we will write the desired filter as a linear
combination of the three transfer functions (13):

H(z)=cHPHHP (z)+cBPHBP (z)+cLPHLP (z) (15)

Thus, there are five coefficients as input, and five degrees of
freedom to match that filter: g, R, cHP , cBP , and cLP . To find
these parameters, we normalize the SVF transfer functions (13) by
dividing the numerators and denominators by 1+ g2 +2Rg, and
then set equation (15) equal to (14). This system can be solved by
setting all the coefficients of z, as well as the constant terms in the
numerator, equal. Solving for positive g and R, we find

g=

√−1−a1−a2√−1+a1−a2
(16a)

R=
a2−1√−1−a1−a2
√−1+a1−a2

(16b)

cHP =
b0−b1+b2
1−a1+a2

(16c)

cBP =− 2(b0−b2)√−1−a1−a2
√−1+a1−a2

(16d)

cLP =
b0+b1+b2
1+a1+a2

(16e)

Note that it is possible for both square roots to be purely imagi-
nary, but the imaginary parts will cancel when they are multiplied
or divided, yielding real numbers. Using these coefficients, it is
possible to design a digital filter using any design method, decom-
pose it into second-order sections, as noted in [16], and then realize
the filter using the SVF. This allows the time-varying stability and
artifact-free behavior of the SVF to be used for any digital filter.

5. STABILITY

Stability is more complex in the time-variant case. This topic is
treated thoroughly by Laroche [5]. To summarize, a time-variant
filter that has the coefficients of a stable time-invariant filter at each
point in time may still be unstable. There are stricter criteria for
time-variant filters, two of which are presented in [5]. Here we
will prove the stability of the TDF-II realization of the SVF.

5.1. Transition Matrix

The stability criteria apply only to the state transition matrix,
which describes the linear contribution of the state vector from
time n−1 to time n. To derive this matrix, solve for sn in terms
of sn−1 by substituting equation (7b) into equation (7c):

sn=Psn−1+(2g2AHB+2gB)un (17)
P=(I+2gAH) (18)

where P is the state transition matrix. Next, substitute in the SVF
matrices from (4) to find the SVF state transition matrix.

P=
1

g2+2Rg+1

[
1−g2−2Rg −2g

2g 1−g2+2Rg

]
(19)

Criterion 1 presented in [5] immediately fails for this matrix.
The criterion is that there exist a real constant 0 ≤ γ < 1 such
that ‖P‖≤ γ, where the standard Euclidean matrix norm is used.
Assuming g>0 and R>0, it can be seen that ‖P‖=1.

Instead, we must use Criterion 2 from [5], which requires a
change of basis matrix T. Then, the criterion is that there exist
a real constant 0≤γ<1 such that ‖TPT−1‖≤γ. This approach
was attempted but not completed in [21].

5.2. Change of Basis

Pick a change of basis matrix of the form T=

[
1 k
0 1

]
. We will

show that it is possible to pick k > 0 such that g and R can take
on an arbitrarily large range. This work is done with the aid of a
computer algebra system, Mathematica version 8.0.1.0 (Wolfram
Research, Inc.; 2011), and some intermediate results will be omit-
ted for brevity. Throughout, the assumptions g > 0, R > 0, and
k>0 will be used.

First, solve for ‖TPT−1‖. The resulting expression is very
long, so it is omitted here. To simplify, make the substitutions α=√

16+4k2+k4

2k
and β= 4+k2

2k
, and solve for the stable region of pa-

rameter values g and R, and coefficient k, where ‖TPT−1‖<1.
This stable region is the union of the following inequalities:

(g≤β−α∧k
2
<R<β) (19a)

(β−α<g<1∧(k
2
<R<

g2+1

2g
∨ g

2+1

2g
<R<β))

(19b)
(g=1∧(k

2
<R<1∨1<R<k2+2

2k
∨k2+2

2k
<R<β))

(19c)

(1<g<α+β∧(k
2
<R<g2+1

2g
∨g2+1

2g
<R<β)) (19d)

(g=α+β∧k
2
<R<g2+1

2g
) (19e)

(g>α+β∧k
2
<R<β) (19f)

(β−α<g<α+β∧R=g2+1
2g

) (19g)

(g=1∧R=k2+2
2k

) (19h)
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Next, we want to show that for any choice of gmin, gmax,
Rmin, and Rmax, the region 0<gmin<g < gmax, 0<Rmin<
R<Rmax is included in these inequalities, so that the filter is al-
ways stable. Split the inequalities into three cases: g < 1, g = 1,
and g>1.

For g > 1, consider the union of (19d) and (19g). Inspection
of β − α reveals that it attains a maximum of 2−

√
3 at k = 2.

Therefore we have β−α<1, so the union contains the region

1<g<α+β∧ k
2
<R<β (20)

For g<1, consider the union of (19b), (19a), and (19g). For k>0,
we have α+β>1, so this union contains

0<g<1∧ k
2
<R<β (21)

Finally, for g=1, use (19c), (19h), and (19g). Substituting g=1
into (19g) and combining, we find that the union of these three
inequalities contains

g=1∧ k
2
<R<β (22)

Combining (20), (21), and (22), we see that the filter is stable in
the region

0<g<α+β∧ k
2
<R<β (23)

Note that equations (19e) and (19f) have not been used; it will be
seen that stability where g≥α+β is unnecessary.

To prove stability over the entire range of parameters, note that
as k→ 0, α+β→∞, and β→∞. Therefore, for any choice of
gmin > 0, gmax, Rmin > 0, and Rmax, it is possible to choose
a k > 0 to simultaneously satisfy α+β > gmax, k

2
<Rmin, and

β>Rmax. In other words, the parameters g andR can be allowed
to vary over an arbitrarily large range, and the filter will remain
stable in the time-variant sense, by Criterion 2 of [5].

6. EXPERIMENTS

The SVF is compared to state of the art time-varying filter struc-
tures in objective and subjective tests, in order to evaluate its qual-
ity with respect to artifacts. The code, audio files, and data associ-
ated with the experiments are available online1.

Both tests are composed of five trials. In each trial, a different
filter shape is used, with a single discontinuous parameter change.
Within each trial, different filter structures are compared. In this
way, the effects of parameter changes on different filter structures
can be evaluated. A constant gain was applied across all excerpts
within each trial, to normalize peak levels. The filters for each trial
are listed in Table 3.

Table 3: Filter parameters for each trial

Trial Filter Frequency (Hz) Q Gain (dB)
1 Lowpass 80 to 120 6 n/a
2 Lowpass 100 0.6 to 4 n/a
3 Peaking 80 to 120 6 4
4 Peaking 100 6 −4 to 4
5 Peaking 120 0.6 to 4 4

1https://github.com/iZotope/time_varying_
filters_paper

The filter structures compared are Direct-Form II (DF2), cou-
pled form (GR), SVF, SVF using Rabenstein’s transient minimiza-
tion [2] (SVFR), SVF using Rabenstein and Czarnach’s stabiliza-
tion [4] (SVFRC), TDF-II (TDF2), TDF-II using Rabenstein and
Czarnach’s stabilization (TDF2RC), and output switching (ZZ).
Note that the SVF is already stable, but transient minimization is
used to evaluate the perceptual impact of this technique, and stabi-
lization is used for comparison against the stabilized TDF-II struc-
ture. Although DF-II and TDF-II are not stable, and Zetterberg-
Zhang is not suitable for realtime, continuously varying parame-
ters, they are included as points of comparison. Välimäki-Laakso
is not included because it is an approximation to Zetterberg-Zhang,
so the results are likely to be similar.

6.1. Objective Evaluation

One possible way to objectively evaluate the quality of a filter
when parameters vary with time is to analyze the response during
steady state DC. The response can be measured by supplying con-
stant DC to a filter’s input until the filter reaches a steady state, and
then changing the parameters instantaneously while continuing to
pass DC. If the DC gain does not change, then there should be
no change in the output, which corresponds to the output switch-
ing model. Note that if the gain does change, output switching
may not be the perceptually best ideal. This will be shown in the
subjective evaluation.

This evaluation method was mentioned by Berners [22], and a
plot demonstrating it is present at [23], in order to show the suit-
ability of a particular filter structure.

Fig. 1 compares the SVF used as a lowpass filter against a DF-
II realization of the same transfer function. It can be seen that the
SVF performs ideally, while the DF-II realization exhibits a large
transient followed by ripple until it settles back into a steady state.

0 20 40 60 80 100 120 140 160

n (samples)

−20

−10

0

10
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y L
P
[n
]

SVF
DF-II

Figure 1: Comparison between lowpass state variable filter and
Direct-Form II topology of steady state DC response when pa-
rameters are changed. At sample 50, the parameters are changed
from g=0.0458 and R=0.4545 to g=0.2679 and R=0.1111.

For each filter output, the `2 norm of the difference from the
ideal DC response was computed after the parameter change. The
errors are displayed in Table 4. Zetterberg-Zhang is omitted be-
cause it passes this test by definition.

As can be seen, the SVF and the stabilized SVF are the only
structures besides Zetterberg-Zhang that perform perfectly in this
test, with no deviation from the ideal. Transient minimization ac-
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Table 4: Objective test results with DC stimulus. The reported
values are the `2 norms in decibels of the error as compared to the
output switching model. Lower values are better, and−∞ is ideal.

# DF2 GR SVFR SVFRC SVF TDF2RC TDF2
1 18 10 15 −∞ −∞ −36 −9
2 −25 13 13 −∞ −∞ 18 18
3 3 −5 0 −∞ −∞ −3 −2
4 −65 −27 −12 −∞ −∞ 7 7
5 −42 −4 −3 −∞ −∞ 17 15

tually worsens the response of the SVF. Other filter structures per-
form acceptably for some trials and poorly for others. This ideal
DC response can be proven to hold for the SVF over all parame-
ters.

First, let us determine the filter’s state, sn, in a steady DC state,
where the input un =

[
k
]

for all n, where k is the magnitude of
the DC signal. Because the output at x1 is a bandpass filter, and
x2 is a lowpass filter, we know xn =

[
0 k

]T , since the lowpass
filter passes DC, and the bandpass filter rejects it. Substituting the
values of un and xn into equation (7b), we find that

sn=
[
0 k

]T (24)

For DC input, both xn and sn are independent of the filter pa-
rameters. Therefore, time-varying parameters do not cause switch-
time transients in the DC response of the filter’s state, which proves
the observed behavior.

6.2. Subjective Evaluation

Listening to the transient elimination methods in a musical con-
text suggests that for use on musical signals, with rapid parameter
changes, output switching is the wrong goal. A sinusoidal input
can be used to illustrate: an instantaneous change in filter param-
eters corresponds to an instantaneous change in the amplitude and
phase of the signal. The spectrum centered at the point of co-
efficient change reveals high sidebands, which are audible as an
impulsive "click", shown in Fig. 2.
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Figure 2: Spectrum of filtered 100 Hz sinusoid during parameter
change with output switching, using 85 ms Hann window (Y ).
Spectrum of the signal before (Y1) and after (Y2) shown for
reference.

Output switching removes the transients that result from the
state vector reacting to a change in coefficients. However, it also
emphasizes discontinuous changes in filter parameters, resulting

in this click. Apparently, the transient caused by a filter structure
when its parameters are changed can smooth the change out, re-
ducing these sidebands. This is simply a case of differing goals:
Zetterberg and Zhang were motivated by LPC-based speech cod-
ing, while here, we consider musical applications.

To better understand the impact of these transients, and to com-
pare the SVF to other solutions, we have subjectively evaluated
different filter structures, and schemes of transient elimination and
stabilization. A 100 Hz sinusoid at 48 kHz was chosen as the test
signal, because it masks the transient very little, allowing artifacts
to be easily heard.

6.2.1. Experimental Setup

To evaluate the time-varying response of these filter structures, we
performed listening tests using the MUSHRA method [24]. The
test was performed with 21 subjects, all of whom have experience
playing and recording music, and many of whom perform critical
listening professionally. Subjects listened with headphones in a
quiet room. They were asked to rank the excerpts in quality, in
terms of how unpleasant they found any artifacts they might hear.

In addition to the filter structures, a high-quality reference and
hidden low-quality anchor were included. The reference is made
by applying a gain envelope corresponding to the gain of the filter
at each point in time, smoothed with a 10 millisecond Hann filter
kernel. The anchor is made using the unsmoothed gain envelope,
with an impulse added when the coefficients change. The ampli-
tude of the impulse is three times greater than the maximum filter
gain applied.

6.2.2. Listening Test Results

Fig. 3 displays the average MUSHRA scores over all trials. Ta-
ble 5 presents the MUSHRA scores separated by trial, so that per-
formance can be compared across filter shapes.
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Figure 3: Average MUSHRA scores and 95% confidence intervals
for each filter structure, over all trials. Filter structures that are
time-varying stable and support efficient per-sample coefficient
update are in bold.

The results confirm the SVF’s good performance, in compari-
son to other filter structures. The output switching filter consis-
tently received scores ranging from "bad" to "poor". However,
of the time-varying stable filters, the stabilized TDF-II structure
(TDF2RC) has the best score.
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Table 5: Average MUSHRA scores for each filter structure,
separated by trial.

# DF2 GR SVF SVFR SVFRC TDF2 TDF2RC ZZ
1 18 29 63 20 60 69 63 18
2 99 27 96 22 95 70 64 7
3 26 28 72 23 71 77 71 13
4 43 34 43 37 41 95 94 38
5 25 24 25 27 23 64 59 26

The efficacy of Rabenstein and Czarnach’s method of stabiliza-
tion is confirmed. For both the SVF and TDF-II structures, this
state vector adjustment causes only a small decrease in scores.
This technique need not be applied to an already stable filter such
as the SVF, as it decreases the quality without providing any ben-
efit. Interestingly, this method is derived by transforming a sys-
tem into the Gold and Rader structure, which received significantly
worse scores.

Choice of filter structure is a trade-off: if interpolation of pa-
rameters is needed, or if there are performance constraints, the
SVF may be a better choice, as interpolating TDF-II coefficients
can give less sensible intermediate transfer functions, and the
method of Rabenstein and Czarnach requires several more trigono-
metric function evaluations. On the other hand, if interpolation is
not necessary, stabilized TDF-II may be a better generic choice.
Though the TDF-II performed well in these listening tests, recall
that it performed poorly in the objective test of DC response, while
the SVF had an ideal response.

The per-trial scores in Table 5 also suggest that choice of filter
structure may depend on the type of transfer function being im-
plemented, and what parameters will be modulated. For example,
the SVF performs better than stabilized TDF-II for both lowpass
filter trials, and more or less the same when the peaking filter fre-
quency is changed, but significantly worse when the peaking filter
resonance or gain are changed.

The transient minimization methods (Zetterberg-Zhang and
SVF with Rabenstein’s method) both achieve their stated goals,
yet they received scores of "poor". This confirms the hypothesis
that output switching is the wrong goal in this musical context.
The peak signal levels are decreased, and Rabenstein’s method
successfully decreases the variance of the transient signal in the
SVFR excerpts. However, the results indicate that transient min-
imization degrades the quality of the SVF. Fig. 4 shows that the
transient signal and the MUSHRA scores are essentially uncorre-
lated. While transient minimization may be useful for applications
such as speech coding and synthesis [3], it appears to be undesir-
able for equalization of musical signals.

If transient minimization is not a desirable criteria for musical
time-varying filters, what is? Sideband energy appears to be nega-
tively correlated with MUSHRA scores, with Pearson’s r=−0.59
and p=7.02×10−5, as can be seen in Fig. 5. This is a crude psy-
choacoustic measure, but perhaps it would be possible to design
an optimal time-varying structure by minimization of sideband en-
ergy, rather than variance of the transient signal.

7. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of choosing a structure suitable for digi-
tal filtering in a musical context with per-sample time-varying pa-
rameters has been addressed. In this problem domain, important
qualities include support for arbitrary transfer functions, computa-
tional efficiency, zero-latency realtime implementation, and good
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Figure 4: Scatter plot of transient signal variance versus
MUSHRA score, excluding anchor and reference, showing little
correlation. Pearson’s r=0.11, p=0.48.
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Figure 5: Scatter plot of sideband energy versus MUSHRA score,
excluding anchor and reference, showing correlation. Sideband
energy was measured using an 85 ms Hann window centered
around the parameter change, by computing the magnitude
spectrum, removing the energy inside one equivalent rectangular
band (ERB) [25] at 100 Hz, and computing the RMS of the
remaining signal.

intermediate filter shapes when interpolating parameters. The SVF
discretized with the TDF-II bilinear integrator was reviewed and
proposed as a good general purpose solution to this problem.

In order to make the SVF useful for this purpose, equations were
derived for implementing common audio equalization filters, as
well as any z-domain transfer function, and its time-varying sta-
bility was also proven for the first time. These results allow the
SVF to be applied to this problem domain.

The audio quality of the SVF during parameter changes was
evaluated in both objective and subjective tests. In the objective
test, the SVF was the only filter structure supporting realtime per-
sample parameter changes that was found to have an ideal DC re-
sponse. The results of the subjective listening test confirmed that
the SVF performs well, though the stabilized TDF-II performed
better, on average. The results also indicated that different struc-
tures perform differently depending on the transfer function being
realized.

The listening test results also revealed that output switching,
i.e., eliminating the transient response of a filter, is not desirable
in musical applications. The sideband energy was proposed as one
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measure of quality, with low sidebands being most desirable.
Some considerations for the SVF can be drawn by considering

the experimental results alongside the presented theory. For exam-
ple, as the SVF was proven to respond instantaneously to changes
in DC gain, and these abrupt discontinuities were shown to cause
perceived artifacts, it may be desirable to smooth the changes in
coefficients cHP , cBP , and cLP , which set the filter’s zeros. In fact,
Table 2 shows that the peaking filter’s zeros are affected by both
gain and resonance, which corresponds with the findings in Ta-
ble 5: that the SVF performs the worst when the peaking filter gain
or resonance are changed. It appears that changes in these three co-
efficients is responsible for audible artifacts, while the transient re-
sponse resulting from changes in the poles is perceptually pleasant.

Future research could concentrate on schemes for improving
subjective quality in musical contexts. For example, as Raben-
stein [2] derived intermediate coefficients to minimize transient
signals, perhaps perceptually important factors such as sideband
energy could be minimized. Another potential area of research is
further perceptual evaluation of a greater variety of structures and
transfer functions, using other musical stimuli. From such experi-
ments, it might be possible to determine mathematical criteria rel-
evant to perceived quality as alternatives to transient minimization.
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ABSTRACT

This paper deals with the approximation of a given frequencyre-
sponse by a low-order linear ARMA filter (Auto-Regressive Mov-
ing Average). The aim of this work is the audio synthesis, then
to improve the perceptual quality, a criterion based on human lis-
tening is defined and minimized. Two complementary approaches
are proposed here for solving this non-linear and non-convex prob-
lem: first, a weighted version of the Iterative Prefiltering,second,
an adaptation of the Gauss-Newton method. This algorithm is
adapted to guarantee the causality/stability of the obtained filter,
and eventually its minimum phase property. The benefit of the
new method is illustrated and evaluated.

1. INTRODUCTION

The goal of this paper is the approximation of a given frequency re-
sponse by a low-order linear ARMA filter (Auto-Regressive Mov-
ing Average), with a high sampling rate,Fs ≥44.1 kHz. The con-
text of this work is the low-cost sound synthesis of musical tones
using theSource-Filterprinciple which consists of the filtering of
an excitation signal. Then, because the aim is an audio application,
the obtained filter must be as close as possible to the original one
in a perceptual sense, rather than using a physical or signal-based
criterion.

It is known that in a general case a spectral envelope has a
sparser representation with an ARMA model than a purely AR
or MA model. It is especially the case for nasal speech, and for
musical instruments. For example, even if an ARMA(q, p) filter
and an AR(q+p) filter have approximately the same complexity for
the time simulation, the ARMA modeling will be more efficientin
most of the cases. Some ARMA approximations exist, cf. e.g.:
Prony’s method [1], Shanks’s method [2], the Iterative Prefiltering
[3], Durbin’s method [4] or the Inverse Linear Prediction [5] (or
cf. e.g. [6] for a partial review). Nevertheless, with thesemethods
the cost function is adapted to facilitate the algorithm, and is never
adapted to the perception.

A usual idea is to adapt the model to the frequency resolution
of the ear. In [7, 8, 9] a warped frequency scale is used to fit the
Bark scale, cf. [10, 11], and a warped AR filter is obtained. Un-
fortunately, first we have shown in [12] that for low-orders,the
warped modeling is not satisfying in a perceptual sense. This ob-
servation can be explained because the optimization criterion is not
fully perceptually based. Moreover, the time-domain implementa-
tion of the warped AR filter is two or three times more expensive
than a linear AR filter with the same order, cf. e.g. [8].

∗ This work is funded by the Marie Curie Action project ESUS 299781.

In this work, we propose to directly estimate a linear ARMA
filter on the linear frequency scale using the minimization of a
perceptually-based criterion. In the context of the Source-Filter
principle, the target frequency response is obtained by a spectral
envelope estimation of an original sound, which can be periodic.
This estimation can be done by the DAP method of [13], the True
Envelope of [14, 15], or the True Discrete Cepstrum of [16]. Note
that it is also possible to use a post-processing, MTELPC [17]
or PCF [18], which provide a “quasi-perceptual” pre-smoothing.
These points are not detailed in this work.

This paper is organized as follows: in Sec. 2, the ARMA
model is given, and the perceptually-based criterion is defined step
by step in Sec. 3. Then, the two parts of the algorithm are given
in Sec. 4. Section 5 gives one practical example, and presents a
perceptual comparison of the proposed method with other standard
methods. Finally, section 6 concludes this paper and gives some
perspectives.

2. MODEL

Given a complex frequency responseH(f), wheref is the fre-
quency in [Hz], this work deals with its approximation by thefol-
lowing ARMA(Q, P ) filter

H̃(z) =
B(z)

A(z)
=

b0 +
∑Q

q=1 bqz
−q
)

1 +
∑P

p=1 apz−p
) , (1)

whereQ andP are the orders of the numeratorB and the denomi-
natorA respectively.z is the complex variable of thez-transform,
which is z = ej2πf/Fs on the unit circle, withf the frequency
variable andFs the sampling rate in [Hz]. The polynomial coeffi-
cientsbq andap are the variables to optimize.

3. PERCEPTUAL CRITERION

3.1. First criterion

Let us define the following criterion which provides a distance be-
tween the targetH(f) and the model̃H(f):

C1 =

∫ Fs
2

0

[
σ(H(f), f) − σ(H̃(f), f)

]2

σ(H(f), f)2
) M(df). (2)

This cost function is perceptually meaningful because of the fol-
lowing reasons.
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Loudness conversion First, the functionσ(X,f) is the conver-
sion of the (physical) sound pressure levelX in pascals [Pa], to
the (perceptual) loudness in sones, depending on the frequency
f . The conversionσ is here calculated with the consecutive con-
versions: σ(X, f) = s(ℓ(δ(X), f)), whereXdb = δ(X) =
20 log10(|X|/p0) is the standard scale in [dB SPL], withp0 = 2×
10−5 Pa the reference sound level,Lp = ℓ(Xdb, f) is the conver-
sion from the decibel scale to the phon scale, relative to theequal
loudness curves cf. e.g. [19, 20], andLs = s(Lp) = 2(Lp−40)/10

is the conversion to the sone scale, cf. e.g. [21].

Frequency scale Second, the measureM(df) takes the frequen-
cy resolution of the ear into account, as the standard warping men-
tioned earlier. Withm(f) the conversion from the linear frequency
scale in [Hz] to any warped scale, we writeM(df) = dm(f) =
m′(f)df . For example, with the Mel scale of [22],m(f) =
2595 log10(1 + f/700).

Relative error Third, note that the sone and the phon scales are
respectively linear and logarithmic scales in the loudnessdomain,
such as the pascal and the decibel scales in the sound level domain
respectively. Then, the relative error is computed in (2) inorder
to take into account the logarithmic sensitivity of the ear.Remark
that it would be also possible to directly defineC1 with the absolute
error in the phon scale, logarithmic, but it is equivalent upto the
first order and the denominator will be used in next section.

3.2. Modified criterion

For a numerical computation, first a new version ofC1 is derived
using a discrete sum. Second, the loudness conversion is simpli-
fied using a first-order limited development ofσ(H̃, f) aroundH .
Thenσ(H̃, f) ≈ σ(H,f)+σ′(H,f)(|H̃ |−|H |) with σ′(X, f) =
∂σ(X,f)/∂|X|, and the criterion becomes:

C2 =

M∑

m=1

(
|Hm| − |H̃m|

)2
σ′(Hm, fm)2

σ(Hm, fm)2
) m′(fm), (3)

where the frequenciesfm uniformly sample the range[0, Fs/2]
andHm = H(fm). Note that in this workσ and its derivative are
computed using the analytical expression of [23].

If the phase of the target responseH is known, we can replace
(|Hm| − |H̃m|)2 by |Hm − H̃m|2. This actually simplifies the
optimization procedure and facilitates the convergence. Note that,
only knowing |H |, its phase can be recovered assuming a mini-
mum phase system, cf. e.g. [24].

Since a sound with a level below the auditory threshold is im-
perceptible in principle, the functionσ is not defined below this
threshold which corresponds to 0 phon. Then withX0(f) the au-
ditory threshold in pascals, such thatσ(X0(f), f) = s(0) = 2−4

sons, we define the saturated function

σ(X, f) =

{
σ(X, f) if |X| ≥ X0(f)
2−4 if |X| < X0(f)

(4)

and the saturated derivativeσ′ in the same way. Finally, the crite-
rion to minimize is written as

C =
M∑

m=1

∣∣Hm − H̃m

∣∣2 W 2
m (5)

with Wm =
σ′(Hm, fm)

σ(Hm, fm)

√
m′(fm). (6)

In consequence, the criterionC is just the weighted squared sum
of the error, with a weightWm which takes into account the sensi-
tivity of the ear to the frequencies viam(f), to the sound level via
σ, and to the auditory threshold via the “saturated”σ.

3.3. Remarks

Because most of the time the sensitivity of the recording device
is not available, a possible way to adapt the unscaled recording
sound to the pascal scale is just by applying a gain which gives the
desired sound level. For exampleXdb = 70 dB SPL is a normal
level for a single musical instrument.

In (4),X0(f) is the absolute auditory threshold. It is also pos-
sible to combine it with the simultaneous masking threshold, cf.
e.g. [25], calculated from the target responseH(f). Neverthe-
less, this strategy seems hazardous becauseH(f) andH̃(f) are
not “concrete” spectra, but “abstract” spectral envelopes.

4. OPTIMIZATION ALGORITHM

With an ARMA modelingH̃ = B/A, the minimization of (5) is
not trivial because the error is non-linear with the coefficientsap of
the denominatorA and this optimization problem is not convex. In
this section two complementary iterative algorithms are proposed
to minimize the cost functionC. The first approach is based on the
Iterative Prefilteringof [3]. It is referred as the Mode 1 because
its result is used as initialization of the second one, the Mode 2,
which is based on the Gauss-Newton algorithm, cf. e.g. [26].

4.1. Mode 1: Weighted Iterative Prefiltering

Instead of optimizing a non-linear problem, the Iterative Prefilter-
ing method, initially proposed in [3], consists in iteratively solv-
ing linear sub-problems using the Least Mean Square optimization
(LMS). For that, the criterionC is modified at every iteration using
the previous estimation.

4.1.1. Secondary criterion

With A′ the estimated denominator of the previous iteration, the
multiplication of the errorem := (Hm − Bm/Am)Wm of (5) by
Am/A′

m, leads to the secondary criterion which follows

C′ :=

M∑

m=1

∣∣∣Am
HmWm

A′
m

− Bm
Wm

A′
m

∣∣∣
2

. (7)

SinceA′ is known, the new defined error is linear with the parame-
tersap andbq, and the minimization ofC′ can be solved using the
standard LMS. This procedure is equivalent to the IterativePre-
filtering method of Steiglitz and McBride, cf. [3, 27], with an
additional frequency weightW (f). It is important to note that at
the convergence, if it happens,A/A′ goes toward 1, consequently
the secondary criterionC′ gets closer to the primary criterionC.

4.1.2. Linear optimization

In (7), C′ is given in the frequency domain, but considering the
Hermitian symmetry ofH , H̃ , andW , and using the Parseval the-
orem, we can write it in the discrete time domain to avoid complex
numbers. Whereas the computation ofhn, the time response ofH ,
does not cause any issue, the direct inverse Fourier transform of W
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makes a non-causal response becauseW is real. Nevertheless,C′

is invariant by adding a phase toW , then to avoid time aliasing,
we definewn as the minimum phase solution ofW , cf. e.g. [24].

With y := (h ∗ w)/A′ andx := w/A′, where the symbol∗
denotes the convolution product and./A′ denotes the prefiltering
by the AR filter1/A′, the secondary criterionC′ is written

C′ =
1

2

N−1∑

n=0

(
yn +

P∑

p=1

apyn−p −
Q∑

q=0

bqxn−q

)2

, (8)

Note that, even if the computations ofw and(h ∗ w) may be quite
expensive, they are done only once before the first iteration.

Then, forn ∈ [1, N ], p ∈ [1, P ] andq ∈ [1, Q + 1], and with
the matrix transpose.T , we define the column vectorsY andµ
such thatYn = yn−1 andµ = [a1, . . . aP , b0, b1, . . . bQ]T , and
we define the block matrixΦ = [−Φy , Φx], with the Toeplitz
matricesΦy [n, p] = yn−1−p andΦx[n, q] = xn−q . Note that
considering causal signals,yn = 0 andxn = 0 for n < 0.

Consequently, the matrix form of the secondary criterion is:
C′ = 1

2
(Y − Φµ)T (Y − Φµ), and if Φ is full rank, the optimal

solution in the LMS sense is given by solving the linear problem
(ΦT Φ)µ = (ΦT Y ), which can be written, cf. e.g. [26],

µ =
(
ΦT Φ

)−1
ΦT Y = Φ†Y. (9)

As it is implicitly mentioned in [3], at the first iteration, we
simply chooseA′ = 1. Note that without weightW , at the first
iterationxn = δn, the Dirac distribution, and the first estimatedB
andA are the solutions of Prony’s method.

4.1.3. Properties

Remark that the positions of the roots ofA andB are not ensured
to be inside the unit circle, which means that the causality/stability
and the minimum phase property cannot be controled. Even if this
problem occurs rarely if the targetH checks these properties, it
may be overcome by testing the desired properties at every itera-
tion, using the Jury criterion for example [28], and by recomputing
the LMS solution with lower orders,P andQ. This strategy usu-
ally leads to good properties, but with eventually a worseC′.

As mentioned in [3], the convergence of this iterative proce-
dure is not guaranteed. Nevertheless, we observed in every exper-
iment an efficient decrease in the criterionC and we observed the
convergence of the coefficients ofA. Unfortunately, first, some
conditioning problems usually appear after some iterations, when
ΦT Φ is numerically singular, and second, even ifC′ get closer to
C, the partial derivatives ofC′ are different from those ofC, which
explains why this algorithm usually does not converge to a local
minimum in the sense ofC.

In [3], a second iterative procedure, the respective Mode 2,has
been proposed to improve the estimation of the first one. Thispoint
is not detailed here, we refer the interested readers to [3].In favor-
able cases, this new mode converges to the closest local minimum,
but again, the convergence is not guaranteed, and may diverge if
its initial value is far from a local minimum. Moreover, in our ex-
periments, some conditioning problems may still appear. Finally,
as with the Mode 1, the causality/stability, and the minimumphase
property, of the obtained filter cannot be clearly guaranteed.

In the next section, we proposed another Mode 2 which is
based on the Gauss-Newton algorithm. First, this method hasa
better convergence, second, the conditionning is efficiently im-
proved, and third, this approach can guarantee the causality/stabili-
ty and the minimum phase property of the estimated filter.

4.2. Mode 2: Non-linear optimization

We propose in this section an adaptation of the iterative Gauss-
Newton algorithm, cf. e.g. [26], with constraints for the causal-
ity/stability of the filter, and eventually its minimum phase prop-
erty. Compared to the standard gradient descent, its convergence is
usually faster, and it avoids the successive 1D optimizations along
the direction of maximal descent.

4.2.1. Gauss-Newton algorithm

Newton’s algorithm is based on a second-order limited develop-
ment of the criterion. Starting from an initial parametrization of
the model, the parameters are iteratively updated by the optimum
solution of the quadratic form given by the limited development
around the previous parameters. If the cost function is quadratic,
the algorithm converges in one step, and if it is not quadratic but
sufficiently regular, it naturally converges to the nearestlocal min-
imum in some iterations.

With µk the column vector collecting the current parameters
of the model, the following parameters are given by:

µk+1 = µk − Ω−1
C (µk)∇C(µk), (10)

with ∇C(µ) the gradient vector andΩC(µ) the Hessian matrix:
∇C [i] = ∂C/∂µi andΩC[i, j] = ∂2C/∂µi∂µj .

The Gauss-Newton algorithm differs from the previous one
by the approximation of the Hessian matrix. This approximation
facilitates the computation and is justified by the fact thatthe cri-
terion is the squared sum of the magnitude of the errorem, cf. e.g.
[26]. With

em := (Hm − H̃m)Wm, (11)

the criterion is writtenC = EHE, whereE is the column vector
of the errorem and.H is the Hermitian transpose.

Now, definingJe(µ) as the Jacobian matrix ofE, such that
Je[m, i] = ∂em/∂µi, the gradient vector ofC becomes∇C(µ) =
2Je(µ)HE(µ), and the approximated Hessian matrix is written
ΩC(µ) = 2Je(µ)HJe(µ). Consequently

Ω−1
C ∇C =

(
JH

e Je

)−1
JH

e E = J†
e E. (12)

Nevertheless, with (10), the algorithm may diverge in some
cases. Then, it is usual to introduce a relaxation factorλk ≤ 1,
and the algorithm becomes

µk+1 = µk − λkΩ−1
C (µk)∇C(µk). (13)

A simple strategy for the choice ofλk is to successively reduce
its value untilC(µk+1) < C(µk). Note that if the Hessian ma-
trix is positive-definite, there always exists aλk > 0 providing a
decreasing criterion. Here, we first testλ = 1 to accelerate the
convergence, and we divide it by 2 ifC does not decrease.

4.2.2. Optimization of the ARMA model

Starting from the standard ARMA modeling of (1), to improve
the conditioning we introduce a gaing and we forceb0 = 1,
without loss of generality. The model is then given byH̃(z) =
gB(z)/A(z), and the parameters to identify are the gaing and the
coefficientsap andbq of the polynomialsA(z) andB(z) respec-
tively, with p ∈ [1, P ] andq ∈ [1, Q]. Moreover, to avoid the
singular case ing = 0, we do the change of variableg = ζ eγ ,
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whereζ is the sign of the initial gain, and we optimizeγ on R
instead ofg.

With zm = ej2πfm/Fs andµ = [γ, a1, . . . aP , b1, . . . bQ]T ,
the Jacobian matrixJe(µ) is given by





∂em

∂γ
= −ζ

B(zm)

A(zm)

∂ eγ

∂γ
Wm = −H̃(zm)Wm,

)

∂em

∂ap
= g

B(zm)

A(zm)2
∂A(zm)

∂ap
Wm = z−p

m
H̃(zm)

A(zm)
Wm,

)

∂em

∂bq
=

−g

A(zm)

∂B(zm)

∂bq
Wm = z−q

m
−g

A(zm)
Wm.

)

Remark that in (2) and (5), we only have considered unilateral
spectra forf ∈ [0, Fs/2]. Then the solution given by (13) could
lead to complex coefficientsg, ap andbq, with no consideration
of the range[Fs/2, Fs]. Instead of summing the error on the full
range[0, Fs], we prove the equivalence of the following update
equation

µk+1 = µk − λkRe{ΩC(µk)}−1Re{∇C(µk)}. (14)

where Re{.} is the real part operator, and whereΩC and∇C are
still computed on the frequency range[0, Fs/2]. This equation can
be fastly computed by splitting the real parts and the imaginary
parts ofJe andE, cf. (12).

Concerning the causality/stability of the obtained filter,and
eventually its minimum phase property, it is necessary to add this
constraint in the algorithm. Remind that an ARMA filter is a min-
imum phase system if and only if both poles and zeros are strictly
inside the unit circle. To guarantee the desired property atevery
iteration, we adapt the choice of the relaxation factorλk as it is
done in Sec. 4.2.1 for the convergence. To study the locationof
the roots of the polynomialsA andB, we use the Jury stability
criterion. Note that at some iterations, at the pointµk, the local
properties ofC may attract the algorithm outside the constraint do-
main, even if the nearest local minimum is inside. Then, choosing
a smallλk allows to stay inside the domain, and most of the time,
from the new positionµk+1 the algorithm naturally reconverges to
the minimum.

4.2.3. Summary of the algorithm

To summarize the complete algorithm, first the Mode 1 iterations,
weighted Iterative Prefiltering, are computed using the initializa-
tion A′ = 1. As mentioned above, even if the Mode 1 usually
converges, the primary criterionC may not be strictly decreasing,
which means that with a finite number of iterations, the last re-
sult may not be the best one in the sense ofC. Then, to initialize
the Mode 2, the Gauss-Newton algorithm, among all successive re-
sults of the Mode 1, we retain this one which minimizesC. Finally,
since the convergence of the Gauss-Newton is well-defined, we
can use standard stop criteria. Here the algorithm is stopped when
the maximal number of iterations is attained, or when the relative
difference of two consecutive criteria is smaller than a threshold
defined in[%].

5. EXPERIMENTATIONS

5.1. Illustration

The proposed method, which we call thePerceptual Linear Filter
(PLF), is illustrated in Fig. 1. Using an Oboe tone, B3 (∼ 247
Hz), first the spectral envelope has been estimated with the True
Envelope (TE) of [14] and has been slightly smoothed using the
PCF approach of [18]. Then, from the magnitude of the obtained
frequency response, the phase has been recovered assuming amin-
imum phase system, cf. e.g. [24]. Finally, the PLF is computed
by the algorithm presented in Sec. 4, Mode 1 and 2, using an
ARMA(8,8) model, and is compared to Prony’s method with the
same orders. All frequency responses are displayed in the dBSPL
scale, together with the auditory threshold.

As a general trend, we observe that the PLF method focuses
the approximation at the lower frequencies, as the standardwarp-
ing technique (cf. [8, 9]), but especially to those frequencies where
the target responseH(f) is above the auditory threshold. We can
observe that Prony’s estimatẽH1(f) does not fitH(f) around 4.5
kHz, but it fits the last formant after 14 kHz which is imperceptible
in principle. On the contrary, thanks to the perceptual weighting
W (f), cf. (6), the PLF filterH̃2(f) fits H(f) when it is audible,
and it strongly smooths it when it is imperceptible.
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Figure 1: Illustration of the Perceptual Linear Filter (PLF). The
orders of the ARMA model areQ = 8 andP = 8.

5.2. Perceptual evaluation

This section proposes a perceptual evaluation by comparingthe
PLF method and other methods, using periodic signals imitating
instrument sounds. We prefer to perform automatic and objective
perceptual tests in order to have an exhaustive evaluation;with
many orders, fundamental frequencies, and instruments. A listen-
ing test would have required too much time to be done in practice.

First, we define the perceptual measure of the approximation
error following some concepts of the PEAQ method, cf. [29, 30].
Then we describe the procedure of the objective tests, and finally
the results are presented. Note that to use a neutral evaluation,
which does not favor the PLF method, we have to choose an error
measure which is as different as possible from the criterionC.

5.2.1. Perceptual Mean Square Error

Let Gref
m andGtest

m be the magnitudes in [Pa] of them-th harmonic
of the reference and the test sounds, with the frequenciesfm =
mF0 in [Hz] with F0 the fundamental frequency. Because the ap-
proximation is evaluated here,Gref

m andGtest
m sample the responses

of the targetH(f) and the estimatẽH(f), at the frequenciesfm.
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First, the effect of the middle-ear response is taken into ac-
count by multiplying the magnitudes byΓ(f) = 10γ(f)/20 where

γ(f) = −3.6

(
f

1000

)−0.8

− 0.001

(
f

1000

)4

+6.5 e−0.6( f
1000

−3.3)
2

(15)

The functionγ(f), which is similar to the middle-ear modeling of
[29], is actually the inversion of the auditory threshold modeling
given in [31]. Hence, the auditory threshold just corresponds to
Γ(fm)Gm = p0 with p0 = 2×10−5 Pa the reference sound level.

Then, to imitate the auditory system’s critical bands, the power
of the corrected harmonics,(Γ(fm)Gm)2, is summed by process-
ing a filter bank as done with the PEAQ or the MFCC computation,
cf. e.g. [32]. We use here a triangular window with a single over-
lapping, and 100 filters uniformly spaced in the Bark scale of[10].

Finally, with Lk the outputs of the filter bank, the measure of
the perceptual errorε is given by

ε =
1

K

(
K∑

k=1

(
Lref

k − Ltest
k

)2

(Lref
k + p0)(Ltest

k + p0)

) 1
2

(16)

Here, the auditory threshold is implicitly taken into account be-
cause ofp0 which imitates the presence of an inner-ear noise, as
with the PEAQ method. Moreover, a relative difference is used
here in order to take account for the logarithmic sensitivity of the
ear to the sound level. Note that this choice is similar to this one of
Sec. 3, but it does not favor the PLF method because all the other
methods also minimize a relative error in frequency, as the LPC,
cf. [5].

Even if the error measureε and the criterionC are based on
similar concepts, they are different. This fact allows unbiased re-
sults, which does not favor the PLF method.

5.2.2. Experimental procedure

For every half-tone between 220 and 440 Hz, the spectrum enve-
lope of a frame is estimated using the True Envelope of [14]. This
frame is chosen around the middle of the sustain part. Then, an
accurate AR modeling is done using the TELPC method of [33].
This high-order modeling of the spectral envelope gives thetarget
responseH(f).

All tested ARMA methods are computed for the obtained fre-
quency responsesH of all half-tones. They provide an ARMA(q,q)
approximation in the linear frequency scale. The tested methods
are the following:

• Prony: The well-known Prony method of [1].

• StMcB: The Iterative Prefiltering of Steiglitz and McBride,
cf. [3], Mode 1 and 2.

• WLP∗: The warped LPC modeling, cf. [7, 9], for which
the warping factorλ∗ is this one which optimally fits the
Bark scale, cf. [11]. ForFs = 44.1 kHz, λ∗ = 0.7564.

• WLP.6: The warped LPC modeling withλ = 0.6.

• PLF1: The Mode 1 of the proposed PLF method, cf. Sec. 4.1.

• PLF1&2: The proposed PLF method, Mode 1 and Mode 2
of Secs. 4.1 and 4.2.

Remark that a warped AR(q) filter can be converted in principle
into a linear ARMA(q,q) filter. Because the purpose of this paper
is the low-cost simulation, we prefer to compare the methodswith
equal simulation complexity, even if the warped methods have less
degrees of freedom.

To cancel the effect of the fundamental frequency, the results
of the perceptual tests are printed as a function of the adimensional
orderα = q/nh, wherenh = 0.5Fs/F0 is the number of har-
monics between0 andFs/2. We tested the adimensional orders
α ∈ {0.1, 0.2, 0.3}. Table 1 summarizes the used ordersq for the
lower and the higher fundamental frequencies,220 and440 Hz.

α = 0.1 α = 0.2 α = 0.3

F0 = 220 Hz 10 20 30

F0 = 440 Hz 5 10 15

Table 1: Value of the orderq as a function of the adimensional
orderα and the fundamental frequencyF0, for Fs = 44.1 kHz.

For all targetH(f) and all approximations̃H(f), we derive
five harmonic spectra which uniformly sample the associatedre-
sponses. The fundamental frequenciesFk are chosen on a range
of two half-tones around the original fundamental frequency F0,

which meansFk = F0 2
k

2×12 , with −2 ≤ k ≤ 2. This procedure
allows to have a refined evaluation of the response approximation.

Finally, every test spectrum, which samples the approximation
H̃(f), is compared with its associated reference spectrum, which
samplesH(f). The perceptual measure of the distance is detailed
in Sec. 5.2.1.

5.2.3. Results

The results of the objective evaluation are printed in Fig. 2. The
original musical sounds come from the sound database of [34].
Since for all the 13 estimations (half-tones between 220 and440
Hz), 5 discrete spectra have been synthesized and compared,the
mean and the standard deviation of Fig. 2 are computed using
65 computations of the perceptual distance, separately foreach
method, each tested instrument, and each orderα. Here the tested
instruments are: clarinet, horn, trumpet and violin; we also tested
other sustained instruments, such as: trombone, cello, saxophone,
flute, and similar results are obtained.

As a general trend, we observe that the proposed PLF method
is among the best methods in all cases, whereas the other meth-
ods fail at least once. In consequence, even if the PLF method
is not clearly the best method in all cases, it is significantly the
more robust. Moreover, comparing with the PLF Mode 1 alone,
we observe a slight improvement due to the Mode 2 as expected.

Additionally, the behavior of the warped methods has been al-
ready observed in [12] using a listening test. With the optimal
warping factorλ∗ = 0.7564, in the sense of [11], for the lower
orders the results are sometimes worse than the results ofλ = 0.6.
This phenomenon has been explained by analyzing the frequency
responses. Indeed, with a strong warping, the high frequencies are
compressed aroundFs/2, and the natural slope of the spectrum
becomes stronger in the warped frequency scale. As a result,be-
cause of the properties of the LPC, cf. [5], the frequency response
at high frequencies is overestimated. One solution is then to reduce
the value ofλ.
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Figure 2: Results of the perceptual evaluation of six ARMA approximation methods, for four instruments and three adimensional ordersα.
The mean of the perceptual square error (PMSE) is displayed in the decibel scale together with the standard deviation. The tested methods
are: Prony’s method (Prony), the Iterative Prefiltering Modes 1 and 2 of Steiglitz and McBride (StMcB), the optimal warped LPC (WLP∗),
the warped LPC withλ = 0.6 (WLP.6), the PLF method Mode 1 (PLF1) and the PLF method Mode 1and 2 (PLF1&2).

6. CONCLUSION

In this paper, a novel ARMA approximation for audio signals is
presented. It is based on a perceptually meaningful criterion which
takes into account the sensitivity of the ear to the frequencies and
to sound level via the loudness conversion. The solving algorithm
is split into 2 consecutive modes: the first one is a weighted ver-
sion of theIterative Prefilteringof [3], and the second one is an
adaptation of the Gauss-Newton algorithm.

Let’s remark that the perceptually-based criterion and thepro-
posed algorithm are two independent contributions of this paper.
First the proposed criterion may be optimized using anothermodel
or method, second the proposed algorithm can be used with a dif-
ferent frequency weighting. Moreover, even without weighting,
for the reasons mentioned earlier (convergence, stabilitycontrol
and conditioning), the proposed Mode 2, is preferable compared
to the original Mode 2 of [3].

As illustrated in Fig. 1, this method efficiently focuses thecri-
terion where the original frequency response is audible, and pro-
vides less accurate fitting where it is inaudible but with coherent
results. A perceptual evaluation is given in Sec. 5.2. Even if the
proposed approach does not lead to outstanding results, we no-
tice its stronger robustness. Whereas the other methods mayfail
in some cases, the PLF method always provides one of the best
results.

As a possible improvement of the proposed method, we en-
visage to apply it with a warped ARMA modeling, cf. [11]. For
example, we can notice that a warped ARMA(q,q) filter can be

directly converted to an equivalent linear ARMA(q,q) filter. The
benefit is to better adapt the model to the criterionC, together with
the same number of degrees of freedom, and the same simulation
cost. Unfortunately, with a high warping factorλ or high orderq,
some numerical problems usually occur. In this case, even ifthe
equivalent linear ARMA filter is stable in theory, the finite preci-
sion of the floating numbers makes the filter numerically unstable.
For example, withq = 15, these problems might appear ifλ > 0.4
with the single-precision floating-point.

Unfortunately, this approach may not be suitable in the caseof
a frame-by-frame analysis-synthesis framework. Indeed, we usu-
ally observe strong discontinuities between the estimatedspectra
of two consecutive frames, which leads to annoying effects.Note
that it is also the case in many other ARMA approximation meth-
ods. Nevertheless, in the case of the synthesis of a quasi-static
spectral envelope, which is under interest in the context ofour
work, cf. e.g. [35], the proposed PLF method is fully satisfying.
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ABSTRACT

In recent work, the construction of non-uniform generalized Gabor
frames for the time-frequency analysis of signals has been intro-
duced. In particular, while preserving perfect reconstruction, these
frames allow for tilings of the time-frequency plane with arbitrary
allocation of partially overlapping frequency bands or time inter-
vals.

In a recent paper, the author demonstrated that the construc-
tion of such frames can be entirely based on warping operators,
which are specified by the required frequency or time warping
maps, which, in turn, interpolate the desired frequency or time
intervals edges. However, while the online computation of Ga-
bor expansions on non-uniform time intervals presents little or no
problem, the computation of Gabor expansions on non-uniform
frequency bands requires knowledge of the Fourier transform of
the entire signal, which precludes online computation.

In this paper we introduce approximations and ideas for the de-
sign of nearly perfect reconstruction analysis and synthesis atoms,
which allow for the online computation of time-frequency repre-
sentations on non-uniform frequency bands.

1. INTRODUCTION

Adapting time-frequency representations, such as the phase
vocoder or Short-Time Fourier Transform (STFT), to features of
the sound signals or to characteristics of perception, such as glis-
sando, vibrato and 12-tone note system, is a desired goal in the
analysis, synthesis and processing and in several contexts ranging
from music information retrieval to transformations and special ef-
fects.

The STFT’s uniform frequency bands can be transformed into
non-uniform frequency bands by means of a frequency map, i.e. a
monotonically increasing function remapping the frequency axis,
as shown in Fig. 1 for adaptation to an equally tempered scale with
a constant Q 1/3 octave band splitting.

In a similar way, non-uniform analysis time intervals can be
allocated by remapping the time axis of the signal prior to per-
forming uniform time-frequency analysis. The uniform analysis
of the time warped signal achieves non-uniform time resolution.

Warping the signal prior to STFT analysis is equivalent to in-
verse warping the representative elements, i.e. the atoms of the
representation.

However, being a time-shift dependent operation, frequency
warping disrupts the time organization of signals. Uniform time-
frequency analysis of the frequency warped signal results in a
frequency dependent distortion of the time axis in the warped
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Figure 1: Frequency warping uniform frequency bands according
to a 1/3 of octave scale (top); resulting frequency band character-
istics (bottom). Here b is the frequency shift in Hz of the original
uniform bands.

time-frequency representation. Similarly, the time warped time-
frequency representation shows time dependent distortion of the
frequency axis. Thus, warping one variable prior to uniform time-
frequency analysis affects the conjugate variable in the representa-
tion plane.

In recent work [1, 2, 3], the problem of the construction of
flexible frames that allow for arbitrary selection of the frequency
bands of their atoms was addressed. In [3] it is shown that the
required allocation of generalized Gabor atoms can be specified
according to a frequency or time warping map. In [4] the STFT
redressing method is introduced, which, with the use of additional
warping in time-frequency, shows under which conditions one can
have generalized Gabor frames. These conditions are dictated by
the interaction of sampling in time-frequency and frequency or
time warping operators.

The results in the previously cited work show that arbitrary al-
location of the atoms is generally possible in the so called painless
case, i.e. in the case of finite time support of the windows for arbi-
trary time interval allocation and of finite frequency support of the
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windows for arbitrary frequency band allocation.
Since online computation of the generalized Gabor analysis /

synthesis is only possible with finite duration windows, the arbi-
trary frequency band allocation is not exactly feasible in applica-
tions that require real-time, while the arbitrary time interval allo-
cation presents little or no problem.

In this paper, we address the problem of online computation
of generalized Gabor analysis with arbitrary frequency band allo-
cation, resorting to approximations that lead to near perfect recon-
struction methods.

The paper is organized as follows. In Section 2 we review
the concept of applying time and frequency warping to time-
frequency representations derived from the continuous time Short-
Time Fourier Transform, pointing out the problems introduced by
dispersion and resolving them with the redressing method, which
involves a further warping operations in the time-frequency do-
main. In Section 3 we apply the redressing method to frames,
which allow for sampled time-frequency analysis and synthesis,
and we provide the conditions by which the redressing of disper-
sion is exact. In Section 4 we introduce approximations suitable
for the online computation of redressed frame expansions. In Sec-
tion 5 we draw our conclusions.

2. REDRESSED WARPED TIME-FREQUENCY

In this section we review concepts that lead to the redressing
method for the time alignment of the frequency warped Short-
Time Fourier Transform (STFT).

In order to set the notation, the uniform STFT is obtained by
applying the operator S to the signal s:

[Ss] (τ, ν) = 〈s, hτ,ν〉 = 〈s,TτMνh0,0〉 =
∫ +∞

−∞
s(t)h0,0(t− τ)e−j2πν(t−τ)dt,

(1)

where Tτs(t) = s(t − τ) is the time-shift operator, Mνs(t) =
ej2πνts(t) is the modulation operator and the overbar denotes
complex conjugation. The operator S acts over time signals and
the frequency ν is considered as a parameter. In (1), the analysis
windows

hτ,ν(t) = [TτMνh0,0] (t) = h0,0(t− τ)ej2πν(t−τ) (2)

are modulated and shifted versions of a unique time window h0,0.
Their Fourier transforms are related to the Fourier transform of the
original window ĥ0,0 as follows:

ĥτ,ν(f) = ĥ0,0(f − ν)e−j2πfτ , (3)

which are frequency shifted and modulated versions of the Fourier
transform of the window h0,0.

Since [Ss] (τ, ν) = s(τ) ∗ h0,ν(−τ), where the symbol ∗
denotes convolution, one can rewrite (1) in the frequency domain
w.r.t. τ as follows:

[
Ŝs
]
(f, ν) = ĥ0,ν(f)ŝ(f) = ĥ0,0(f − ν)ŝ(f). (4)

Non-uniform time-frequency representations can be obtained from
uniform ones via time and / or frequency warping, as discussed in
Section 2.2, after we formally introduce warping operators in the
next section.

2.1. Warped STFT

The warped STFT can be obtained by warping the signal prior
to applying the STFT operator. The most general warping op-
erator involves combined time-frequency warping, i.e. time de-
pendent frequency warping or, equivalently, frequency dependent
time warping. For the purpose of this paper we consider separa-
ble warping, which can be computed by cascading time invariant
frequency warping with frequency independent time warping. We
mostly focus on pure frequency warping.

A 1D warping operator performs a remapping of the abscissae,
as obtained through function composition. A time warping oper-
ator Wγ is completely characterized by a function composition
operator in the time domain:

stw = Wγs = s ◦ γ, (5)

where γ is the time warping map and stw is the time-warped sig-
nal. Similarly, a frequency warping operator Wθ̃ is completely
characterized by a function composition operator Wθ in the fre-
quency domain:

ŝfw = Ŵθ̃s = Ŵθ̃ ŝ = Wθ ŝ = ŝ ◦ θ, (6)

where θ is the frequency warping map, which transforms the
Fourier transform ŝ = Fs of a signal s into the Fourier trans-
form ŝfw = Fsfw of another signal sfw, where F is the Fourier
transform operator and the hat over a symbol denotes the Fourier
transformed quantity (signal or operator). We affix the˜symbol
over the map θ as a reminder that the map operates in the frequency
domain. Accordingly, we have Wθ̃ = F−1Ŵθ̃F = F−1WθF .

If the warping map is one-to-one and almost everywhere dif-
ferentiable then a unitary form of the warping operator can be
defined by amplitude scaling, as given by the square root of the
derivative of the map (dilation function). For example, a unitary
frequency warping operator Uθ̃ has frequency domain action

ŝfw(ν) =
[
Ûθ̃s

]
(ν) =

√∣∣ dθ
dν

∣∣ŝ(θ(ν)), (7)

where ν denotes frequency. We assume henceforth that all warping
maps are almost everywhere increasing so that the magnitude sign
can be dropped from the derivative under the square root.

2.2. Warped Time-Frequency Representations

Remapping signals prior to STFT allows for a reinterpretation of
the representation elements: while the organization of the repre-
sentation (tiling) remains the same, the elements capture differ-
ent components of the signal. Time warping dilates / shrinks and
displaces the characteristic analysis time intervals (resolution and
centers) w.r.t. signals. Frequency warping remaps the character-
istic analysis frequency bands w.r.t. signals (bandwidths and cen-
ters).

Given a frequency warping operator Wθ̃ , the warped STFT is
defined through the operator Sθ̃ as follows

[Sθ̃s] (τ, ν) = [SWθ̃s] (τ, ν) =

〈Wθ̃s, hτ,ν〉 =
〈
s,W†

θ̃
hτ,ν

〉
,

(8)

which is indeed a warped version of (1), where W†
θ̃

is the adjoint
of the warping operator. If the warping operator is unitary then
we have W†

θ̃
= W−1

θ̃
= Wθ̃−1 . In that case, warping the signal
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prior to STFT is perfectly equivalent to perform STFT analysis
with inversely frequency warped windows. The warped STFT is
unitarily equivalent to the STFT so that a number of properties
concerning conditioning and reconstruction hold [5].

The Fourier transforms of the frequency warped STFT analy-
sis elements are

ˆ̃
hτ,ν(f) =

[
̂Wθ̃−1hτ,ν

]
(f) =

√
dθ−1

df
ĥ0,0(θ

−1(f)− ν)e−j2πθ−1(f)τ ,

(9)

which shows how the analysis elements are obtained from fre-
quency warped modulated windows centered at frequencies f =
θ(ν). The windows are time-shifted with dispersive delay, where
the group delay is τ dθ

−1

df
.

Frequency warping generally disrupts the time organization of
signals. Indeed, the time-shift operator Tτ does not commute with
the frequency warping operator:

[
Ŵθ̃Tτs

]
(ν) =

[
WθT̂τs

]
(ν) = e−j2πθ(ν)τ ŝ(θ(ν)), (10)

which is different from
[
T̂τWθ̃s

]
(ν) = e−j2πντ ŝ(θ(ν)), unless

the map θ is the identity map. Thus, an event that starts at time
T in the original signal, is dispersed into events starting at times
φd(ν)T , where φd(ν) = θ(ν)/ν is the phase delay of the warping
map, which depends on frequency unless the map is linear.

In the applications we would like to produce spectrograms
with non-uniform time or frequency resolution but the dispersion
introduced by warping results in misalignment and spreading of
the time-frequency components in the conjugate variable of the
warped one. In the next section we will show how further warp-
ing in the time-frequency plane can redress the warped representa-
tions.

2.3. Redressing the Warped STFT

To address the problem of realigning the frequency warped STFT
[Sθ̃s] (τ, ν), consider its Fourier transform w.r.t. the time variable
τ . This can be written in the form (4) by replacing the Fourier
transform of the signal with that of the frequency warped signal:

[
ŜWθ̃s

]
(f, ν) = ĥ0,0(f − ν)

√
dθ
df
ŝ(θ(f)). (11)

Recall that f is the frequency variable conjugate to time τ in the
time-frequency plane. Performing unitary frequency warping on
this variable by means of the inverse frequency map θ−1 one ob-
tains:

[
̂Wθ̃−1SWθ̃s

]
(f, ν) = ĥ0,0(θ−1(f)− ν)ŝ(f), (12)

where we have used the fact that

1 =
d[θ(θ−1(f))]

df
= dθ

dα

∣∣
α=θ−1(f)

dθ−1

df
. (13)

The redressed frequency warped STFT (12) is again in the form of
a time-invariant filtering operation (convolution in time domain)
where the filters are frequency warped versions of the modulated
windows in (4). As a result, the dispersive delays in the analysis

elements (9) are brought back to non-dispersive delays, the Fourier
transform of the redressed analysis elements being

ˆ̃̃
hτ,ν(f) =

[
̂TτWθ̃h0,ν

]
(f) = ĥ0,0(θ

−1(f)− ν)e−j2πfτ .
(14)

It is possible to interpret (12) as the similarity transformation
W†

θ̃
SW

θ̃
on the STFT operator, which is time-shift covariant.

3. REDRESSED WARPED GABOR FRAMES

In this section we review the definition of Gabor and warped Gabor
frames. We would like to apply the same redressing method used
in the previous section to counteract dispersion and realign time.
However, the Gabor expansion coefficients are time-frequency
samples of the STFT so that only a discrete version of time-
frequency unwarping can be set forth.

3.1. Gabor frames

Given a window function h and two sampling parameters a, b > 0,
the set of functions

G(h, a, b) = {TnaMmbh : q, n ∈ Z} (15)

is called a Gabor system. A signal s can be projected over a Ga-
bor system by taking the scalar products 〈s,TnaMmbh〉. These
are exactly evaluations of the STFT of a signal with window h
at the time-frequency grid of points (na, qb). Here we have de-
fined the Gabor system using the same convention as in the def-
inition (1) of the STFT. Usually, Gabor systems are defined with
a reverse order of time-shift and frequency modulation operators,
i.e. {MmbTnah : q, n ∈ Z}. However, the extra phase fac-
tors that are introduced to convert from one definition to the other
are perfectly irrelevant when establishing properties of the system.
Even in the computation the extra phase factors cancel out in the
analysis-synthesis algorithm, so they can be ignored.

A sequence of functions {ψl}l∈I in the Hilbert space H is
called a frame if there exist both positive constant lower and upper
bounds A and B, respectively, such that

A‖s‖2 ≤
∑

l∈I
|〈s, ψl〉|2 ≤ B‖s‖2 ∀s ∈ H, (16)

where ‖s‖2 = 〈s, s〉 is the norm square or total energy of the
signal. Frames generate signal expansions, i.e., the signal can be
perfectly reconstructed from its projections over the frame.

A Gabor system that is a frame is called a Gabor frame. In this
case, the signal can be reconstructed from the corresponding sam-
ples of the STFT. While not unique, reconstruction can be achieved
with the help of a dual frame, which in turn is a Gabor frame gen-
erated by a dual window h̃. Perfect reconstruction depends on the
choice of the window and the sampling grid. One can show that
there exist no Gabor frames when ab > 1.

3.2. Warping Gabor frames

From (16) it is easy to see that any unitary operation on a frame
results in a new frame with the same frame boundsA andB [5]. In
particular, unitary operators can be applied to Gabor frames to ob-
tain new frames. Depending on the operator, the resulting frames
are not necessarily of the Gabor type, as the atoms are not gener-
ated by shifting and modulating a single window function.
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Conceptually, starting from a Gabor frame (analysis)
{ϕn,q}q,n∈Z and dual frame (synthesis) {γn,q}n,q∈Z:

ϕn,q = TnaMqbh

γn,q = TnaMqbg,
(17)

where h and g are dual windows, warped frames can be generated
by unitarily warping the signal s prior to analysis and unitarily
unwarping it after the synthesis:

s = U†
θ̃

∑

n,q∈Z
〈Uθ̃s, ϕn,q〉γn,q =

∑

n,q∈Z

〈
s,U†

θ̃
ϕn,q

〉
U†
θ̃
γn,q,

(18)

where Uθ̃ is a unitary frequency warping operator. Defining the
frequency warped frame (analysis) {ϕ̃n,q}q,n∈Z and dual frame
(synthesis) {γ̃n,q}n,q∈Z as follows:

ϕ̃n,q = U†
θ̃
ϕn,q = Uθ̃−1TnaMqbh

γ̃n,q = U†
θ̃
γn,q = Uθ̃−1TnaMqbg,

(19)

one obtains the signal expansion

s =
∑

n,q∈Z
〈s, ϕ̃n,q〉γ̃n,q. (20)

Just as Gabor frames can be obtained by uniformly sampling
the integral STFT, the warped frames can be obtained as a result
of nonuniform sampling in time-frequency. Nonuniform sampling
theorems based on a time warping map were introduced in [6] and
their adaptation to frequency sampling is immediate. Applications
of frequency warping to time-frequency analysis date back to [7].
However, warped Gabor frames suffer from the same problem as
the warped STFT: as a result of frequency warping, the time or-
ganization of the analysis and synthesis systems is disrupted; the
windows are time-shifted with frequency dependent shifts. Indeed
the Fourier transforms of the warped Gabor frame elements are

ˆ̃ϕn,q(f) =
√

dθ−1

df
ĥ(θ−1(f)− qb)e−j2πθ−1(f)na, (21)

which bear frequency dispersive delays. In other words disper-
sive time samples are produced by the direct application of the
warped frame analysis. Similar problems are encountered when
time-warping Gabor frames.

The magnitude Fourier transforms ĥ(θ−1(f)− qb) of a set of
frequency warped modulated windows corresponding to 1/3 oc-
tave frequency resolution is shown in Fig. 1, together with a scaled
version 1

b
θ−1 of the warping map, which maps warped frequency

to fractional band number, i.e., the integer values of 1
b
θ−1 corre-

spond to the center frequencies of the bands.

3.3. Redressing Warped Gabor Frames

The evaluation of the warped Gabor expansion coefficients

c̃n,q = 〈s, ϕ̃n,q〉 (22)

is identical to that of a time-frequency sampled warped STFT. In
order to redress the frequency warped STFT into a time covari-
ant representation we have introduced additional inverse frequency

warping with respect to the time variable τ in the time-frequency
plane. However, in the warped Gabor frames (19) this variable is
sampled at instants na. Therefore, in order to parallel our warped
STFT redressing procedure in the warped Gabor frames case, one
can only apply a discrete-time form of frequency warping to the
time index n.

It is possible to show [8, 9] that if the discrete-time frequency
warping map ϑ is one-to-one and onto [− 1

2
,+ 1

2
[, and almost ev-

erywhere differentiable there, then the set of sequences

ηm(n) =

∫ +
1
2

− 1
2

√
dϑ
dν
ej2π(nν−mϑ(ν))dν, (23)

where n,m ∈ Z, forms an orthonormal basis of `2(Z). These
are recognized as generalized Laguerre sequences [10, 11, 12],
which are the inverse discrete-time Fourier transforms of warped
harmonic complex sinusoids in the frequency domain interval
[− 1

2
,+ 1

2
[. The map ϑ can be extended over the entire real axis

as congruent modulo 1 to a 1-periodic function.
Given a sequence {x(n)} in `2(Z), the scalar products

x̃(m) = 〈x, ηm〉`2(Z) (24)

generate another sequence {x̃(m)} in `2(Z), which satisfies

ˆ̃x(ν) =

√
dϑ−1

dν
x̂(ϑ−1(ν)), (25)

where theˆsymbol, when applied to sequences, denotes discrete-
time Fourier transform. Thus, ηm(n) defines the nucleus of an
inverse unitary frequency warping `2(Z) operator D

ϑ̃−1 = D†
ϑ̃

.
Clearly, the transposed conjugate sequences µm(n) = ηn(m)
form the nucleus of a unitary frequency warping `2(Z) operator
Dϑ̃.

In order to limit or eliminate time dispersion in the frequency
warped Gabor expansion, one can apply the discrete-time fre-
quency warping operator Dϑ̃−1 to the time sequence of expansion
coefficients over the warped Gabor frame (22), i.e., with respect
to index n. Since the operator is applied only on the time index,
for generality, one can include dependency of the map and of the
sequences ηn on the frequency index q, which will be useful in the
sequel. The new coefficients are obtained as follows:

˜̃cn,q =
[
D
ϑ̃−1
q
c̃•,q
]
(n) =

∑

m∈Z
ηn,q(m) 〈s, ϕ̃m,q〉 =

〈
s,
∑

m∈Z
ηn,q(m)ϕ̃m,q

〉
.

(26)

In order to reconstruct the signal from the coefficients ˜̃cn,q one can
first recover the coefficients c̃n,q , which stems from the complete-
ness and orthogonality of the set {ηn,q}n∈Z, and then combine
them with the dual warped frame elements:

s =
∑

n,q∈Z
c̃n,qγ̃n,q =

∑

n,q∈Z

∑

m∈Z

˜̃cm,qηm,q(n)γ̃n,q. (27)

Hence, defining the redressed frequency warped Gabor analysis
and synthesis frames as follows:

˜̃ϕn,q = D
ϑ̃−1
q
ϕ̃•,q =

∑

m

ηn,q(m)ϕ̃m,q

˜̃γn,q = D
ϑ̃−1
q
γ̃•,q =

∑

m

ηn,q(m)γ̃m,q,
(28)
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from (26) and (27) we have:

s =
∑

n,q∈Z

˜̃cn,q ˜̃γn,q =
∑

n,q∈(Z)

〈
s, ˜̃ϕn,q

〉
˜̃γn,q. (29)

Indeed, the redressing discrete-time warping transformation is
based on an orthonormal and complete expansion in `2(Z), which
leads to the unitary equivalence of the redressed warped frames
with the warped frames.

Exploiting the periodicity of the discrete-time redressing fre-
quency warping map one can show that the Fourier transforms of
the redressed frame is

ˆ̃̃ϕn,q(f) = A(f)ĥ(θ−1(f)− qb)e−j2πnϑq(aθ
−1(f)), (30)

where

A(f) =
√

dθ−1

df

√
dϑq

dν

∣∣∣∣
ν=aθ−1(f)

. (31)

Hence, the effect of the dispersive delays would be counteracted if

ϑq(aθ
−1(f)) = dqf (32)

for any f ∈ R, where dq are positive constants controlling the time
scale in each frequency band. In this case, the Fourier transforms
of the redressed frame elements simply become:

ˆ̃̃ϕn,q(f) =

√
dq
a
ĥ(θ−1(f)− qb)e−j2πndqf . (33)

Furthermore, if all dq are identical, all the time samples would be
aligned to a uniform time scale throughout frequencies.

However, each map ϑq is constrained to be congruent modulo
1 to a 1-periodic function, while the global warping map θ can be
arbitrarily selected. Furthermore, having to be one-to-one in each
unit interval, the functions ϑq can at most experience an increment
of 1 there.

The problem of linearizing the phase is illustrated in Fig. 2,
where the black curve is the amplitude scaled warping map dqθ(ν)
and the gray curve represents the map ϑq(aν), which is 1/a-
periodic, both plotted in the abscissa ν = θ−1(f). Amplitude
scaling the warping map θ allows the values of the map to lie in
the range of the discrete-time warping map ϑq . The amplitude
scaling factors are the new time sampling intervals dq of the re-
dressed warped Gabor expansion.

If the window h is chosen to have compact support in the fre-
quency domain, which is the so called “painless” case, one can
exactly eliminate the dispersive delays with the help of (28). In
fact, suppose for simplicity that the bandwidth of the window h is
Kb, with K a positive integer, i.e., ĥ(f) = 0 for |f | ≥ Kb/2.
The choice of the initial sampling interval a allows all the maps
{ϑq}q∈Z to be arbitrarily specifiable to match dqθ(ν) in the inter-
vals where the Fourier transforms of the warped modulated win-
dows (warped frame elements) are nonzero. Hence, condition (32)
only needs to be satisfied by the map ϑq in this interval. Equiva-
lently, we require

ϑq(aν) = dqθ(ν), (q − K
2
)b < ν < (q + K

2
)b, (34)

which is possible if on one hand the variation of the argument of
the map ϑq in (34) satisfies

a[(q + K
2
)b− (q − K

2
)b] = Kab ≤ 1 (35)

n  =(q -   )b

J (a n)q

d q(n)q

q

n=q    ( f )-1

d  q(n ) 1

1
a

K
2

n- n+

-

n  =(q +   )bK
2

+

qd  q(n )
+

-

Figure 2: Locally eliminating dispersion by means of discrete-time
frequency warping. Black line: curve derived from the original
map θ by amplitude scaling. Gray line: discrete-time frequency
warping characteristics for local delay linearization.

and, on the other hand, if also the variation of the map ϑq over the
warped modulated window bandwidth satisfies

dq[θ((q +
K
2
)b)− θ((q − K

2
)b)] = dqBq ≤ 1, (36)

where Bq = θ((q + K
2
)b) − θ((q − K

2
)b) is the full bandwidth

of the warped modulated window. The first of these conditions
only requires ab ≤ 1/K, which does not depend on q and can
be satisfied assigning sufficient redundancy (oversampling) of the
initial Gabor frame. Incidentally, this is the same condition for the
original Gabor system to form a frame. A valid choice is K = 2,
which requires ab ≤ 1/2. For the second condition, one needs
to select dq ≤ 1/Bq , as intuitively clear from the sampling theo-
rem. If there is an upper bound B to the bandwidths Bq then one
can choose identical dq = 1/B, q ∈ Z, to satisfy the sampling
condition with uniform rates.

In the general case, a perfect time realignment of the compo-
nents is not guaranteed. By construction, the redressed warped
Gabor systems are guaranteed to be frames for any choice of the
maps ϑq satisfying the stated periodicity conditions, even when
the phase is not completely linearized. Locally, within the essen-
tial bandwidths of the warped modulated windows it is possible to
linearize the phase of the complex exponentials in (30).

4. ONLINE COMPUTATION AND APPROXIMATIONS

The warping map design method to eliminate dispersive sampling
in the frequency warped Gabor elements is exact when the ele-
ments are compactly supported in the frequency domain. This type
of frames are definitely suitable for offline computation using sim-
ple and efficient frequency domain techniques [1].

Since the computation of Gabor expansion coefficients is not
causal, in online computation one requires the frame elements to
have compact support in the time domain. Starting with a finite
duration window, one can linearize the phase and choosing suit-
able sampling parameters, one can eliminate dispersion within the
essential bandwidths of the warped modulated windows [4]. How-
ever, this is still not sufficient for online computation purposes.
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In fact, generally, the modulated frequency warped windows will
not have compact support in the time domain even if the original
window had this property.

In order to provide an approximation suitable for online com-
putation, one can observe that the window h is narrow band low
pass and the warping map is differentiable. Therefore, in the argu-
ment of ĥ in (30) one can expand θ−1(f) in Taylor series around
the point θ(qb). Truncating to first order, which corresponds to a
local linearization of the warping map within the bandwidth of the
window, one obtains:

θ−1(f) ≈ qb+ 1

τq
(f − θ(qb)), (37)

where
τq =

dθ
df

∣∣∣
f=qb

(38)

is the group delay associated to the warping map θ(f) at frequency
f = qb. Thus, we have the following approximation:

ĝq(f) = ĥ(θ−1(f)− qb) ≈ ĥ
(
f−θ(qb)
τq

)
(39)

Thus, in this approximation, the window gq(t) is simply obtained
by dilating and modulating the prototype window h, in which the
local group delay acts as scaling factor:

gq(t) = τqh(τqt)e
j2πθ(qb)t. (40)

Hence, if the prototype window has compact support in the time
domain, all its approximate warped modulated versions will have
compact support.

In order to perform online computations of the redressed fre-
quency warped Gabor expansion, one can start from a prototype
window h that has compact support in the time domain, where
aliasing is canceled in the time-domain through overlap-add, such
as the time-domain cosine window, given by

h(t) =

{ √
2b
R
cos πt

T
if − T

2
6 t < +T

2

0 otherwise
(41)

where T is the total duration of the window, R > 1 is an inte-
ger, b is the frequency sampling interval and we let the time shift
parameter a = T/R.

In the redressed frame (30) one replaces the warped modulated
windows by the scaled windows in (39). Furthermore, one per-
forms redressing in the essential bandwidth and considers uniform
time sampling within each analysis band. This requires suitable
setting of the time-frequency sampling rates, which we are goind
to illustrate for the cosine window example.

The Fourier transform of the cosine window, given by

ĥ(ν) =
√

b
2R

(sinc(νT − 1
2
) + sinc(νT + 1

2
)), (42)

is plotted in Fig. 3, from which one can see that the main lobe
has bandwidth 3/T = 3/Ra. Assuming this as the essential
bandwidth in which to linearize the phase, in order to satisfy
(32) here, one needs to select R ≥ 3, which is the analogon of
(35), and dqBq ≤ 1, which is the analogon of (36), where now
Bq = θ(qb+ 3

2T
)− θ(qb− 3

2T
).

Concurrently, the parameter T can be selected according to
the smallest required essential bandwidth. For example, in the
case of a tempered scale warping map, in order to have sufficient

2T
-3 0

Frequency
2T
-5

2T
+3

2T
+5

Figure 3: Magnitude Fourier transform of the cosine window.

frequency resolution one can select 3
2T

= f0, where f0 is the
frequency of the smallest tone to be represented, so that adjacent
tones fall away from the main frequency lobe of the window, which
gives a = 3

2Rf0
.

The frequency shift parameter b must be chosen so that ab ≤
1/R for the original Gabor system to be a frame. For R = 3
and the chosen value of a, this gives b ≤ 2f0/3. However, in
practice one would like the tones of the scale to be adequately
represented by the warped bands; moreover, narrower bands im-
prove the approximation of the warped modulated windows with
the scaled modulated cosine windows. In our examples we chose
b = f0/3. The quality of the approximation can be evaluated by
comparing the magnitude Fourier transform of the widows, shown
in Fig. 4 for the case of 1/3 octave warping map for the centerband
frequency of 356.02 Hz. The two modulated windows are shown
in the time domain in Fig. 5. One can see that the scaled cosine
modulated window closely approximates the warped window on a
finite interval, truncating its tails.

As a refinement of the finite length window approximation,
one can consider the truncation of the modulated warped windows
on a larger interval than that offered by the approximating scaled
cosine. The length of the interval can be estimated at 1.5 the sup-
port of the approximating cosine window. In this case one can ob-
tain a reconstruction error norm in the order of 10−5 of the norm
of the signal for the 1/3-octave warping map. Informal perceptual
tests show no audible artifacts attached to the approximate analysis
and synthesis procedure. A deeper analysis of the approximation
error will be the object of a forthcoming paper.

Since the center frequencies of the warped Gabor frames are
not equally spaced, the computation of the transform cannot be di-
rectly performed by means of the Fast Fourier Transform. Real
multirate filterbanks can be designed by combining the complex
conjugate channels. Therefore the complexity is linear in the num-
ber of samples, where the number of channels is a proportional
factor.
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Figure 4: Magnitude Fourier transforms of the warped modu-
lated window (dotted line) and of the approximating modulated
scaled cosine window (solid line), calculated for a 1/3 octave time-
frequency representation.

5. CONCLUSIONS

In this paper, we have introduced approximation methods suit-
able for the online computation of the analysis and synthesis of
time-frequency representations with arbitrary allocation of the fre-
quency bands based on frequency warping. The problems arising
from the dispersive sampling introduced by warping are solved by
introducing a further warping operation in time-frequency.

The approximation of the frequency warped modulated win-
dows consists in a local linearization of the warping map, which
corresponds to time scaling and modulating a prototype window.
The effect of dispersion is minimized within the essential band-
widths of the frame elements when these are selected, in order to
fulfill causal computational needs, to have compact support in the
time domain. A further refinement is obtained by directly truncat-
ing the modulated windows on larger intervals than the approxi-
mating cosine windows, obtaining higher accuracy in the recon-
struction at the cost of larger storage, as the windows can be pre-
computed offline.
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ABSTRACT

This paper presents a hybrid reverberation processor, i.e. a real-
time audio signal processing unit that combines a convolution re-
verb for recreating the early reflections of a measured impulse re-
sponse (IR) with a feedback delay network (FDN) for synthesizing
the reverberation tail. The FDN is automatically adjusted so as to
match the energy decay profile of the measured IR. Particular at-
tention is given to the transition between the convolution section
and the FDN in order to avoid audible artifacts. The proposed
reverberation processor offers both computational efficiency and
flexible perceptual control over the reverberation effect.

1. INTRODUCTION

During the last decades, two main approaches for digital artificial
reverberation processing have been widely used in music and film
production [1]: convolution reverbs and delay-network techniques.
In this paper, we present and discuss a novel hybrid reverberation
processor that combines both methods and overcomes some of the
limitations of earlier approaches. A hybrid reverberation effect
processor should have the following properties:

• the hybrid reverberation effect should be perceptually in-
distinguishable from a pure convolution reverb for a given
room impulse response;

• the algorithm should fulfill the constraints for real-time au-
dio signal processing;

• the algorithm should be computationally efficient and thus
attractive for practical applications;

• the processing method should provide a flexible high-level
control over the perceived room effect.

This paper is organized as follows: The remainder of Sec-
tion 1 briefly discusses the motivation for this study and offers a
summary of earlier works and current state of the art methods for
reverberation effect processing. Section 2 details the technical as-
pects of the proposed method. In Section 3, we present the results
of a case study. In Section 4, we extend the hybrid reverberator
with a perceptual control paradigm. Section 5 discusses some of
the limitations of the proposed method and outlines possible future
improvements.

1.1. Convolution-based reverberators

The acoustic transfer path between an emitter and a receiver in a
room is usually modeled as a linear time-invariant system, which
is fully characterized by its impulse response (IR). With this linear
model, the room reverberation can be reproduced by convolving an

anechoic input signal with the respective room impulse response.
This convolution-based "auralization" approach guarantees for an
authentic and natural listening experience.

Due to the increase in available processing power and recent
advances in the development of computationally efficient low la-
tency algorithms for frequency domain filtering (such as, e.g., the
block-partitioned FFT convolution [2] and frequency delay lines
[3]), convolution-based reverberation processing became widely
applied during the last few decades. However, the computational
cost of this method depends on the length of the processed IR.
This may become a problem when recreating the reverberation of
large concert halls and opera houses, where the length of the IR is
typically in the order of a few seconds.

A survey on available convolution-based reverberation render-
ing software and hardware devices shows that the control over the
reverberation effect is, in general, limited to only a few low-level
parameters. Typically, the early-to-reverb ratio can be modified by
adjusting the gains of the respective time sections of the IR. Often
the decay time can be varied too, i.e., either increased or reduced.
This can be achieved, for example, by resampling the original IR
or by applying an exponentially decaying gain curve to the late
reverberation tail. More advanced IR transformations often yield
artifacts that result in an unnatural or unpleasant sounding reverb.
This clearly limits the range of possible IR transformations in cur-
rent convolution-based reverberators.

1.2. Parametric reverberators (FDNs)

Jot and Chaigne [4] used feedback delay network (FDN) process-
ing structures for digital reverberation rendering. FDN simulate
the statistical properties of the late room reverberation in a com-
putationally efficient way. They are scalable and allow for a con-
tinuous tuning of the time and frequency behavior of the room
response.

A commonly reported drawback of FDN rendering is the lack
of authenticity in the early part of the room response. This is typi-
cally linked to transient coloration effects or from insufficient echo
and/or modal densities, as it takes some time to build up dense re-
flection patterns with feedback loop structures.

1.3. Motivation for developing hybrid reverberators

This work aims at developing a hybrid reverberator that combines
both convolution processing for the early part of the IR and FDN
for late reverberation rendering. The hybridization approach shows
several advantages over full convolution processing. Early reflec-
tions (ER) typically arrive within less than 50−200ms. Applying
convolution filtering to this part of the IR comes with a low com-
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putational cost, while it preserves the naturalness and spectral sig-
nature of the room response. The late reverberation decay, which
may be several seconds for large rooms, can be accurately modeled
with computationally efficient FDNs. The feedback loop structure
offers flexible control over the rendering parameters and can be
adapted to perceptually-motivated control methods (see Sec. 4 for
further details). The two main challenges for the design of such
hybrid processor are:

• the estimation of model parameters from the original (e.g.,
measured) IR for automatic tuning of the FDN;

• to guarantee smooth transitions between the two processing
stages (i.e. at the transition between early reflections and
reverberation tail) without perceptible artifacts.

1.4. Related works

The idea of combining FIR filter for early reflection modeling
with a recursive topology for modeling late reverberation decays
dates back to early works on digital artificial reverberation (see e.g.
[5–7]), even though actual attempts at hybridization only appeared
in the late 2000s.

Stewart [8,9], for instance, proposed a hybrid reverberator us-
ing a 16-channel FDN for generating the late reverberation. This
reverberator automatically estimates the FDN parameters from the
energy decay relief (EDR). More precisely, the reverberation time
(RT) is estimated in each frequency band. The initial spectrum of
the FDN is, however, not taken into account. A Hann window as-
sures smooth cross-fading between the concatenated sections (i.e.
early reflections and late reverberation) and minimizes perceptible
artifacts. Although Stewart et al.’s method is very similar to what
is proposed in this paper (see Sec. 2), they only demonstrate that
such a hybrid reverberator is viable. To the authors’ knowledge,
it has never been realized in practice. It should be further noted
that this cross-fading approach is not well suited for real-time im-
plementations. The rising edge of the Hann window is applied at
the beginning of the late reverberation, which is not possible in
real-time.

A similar approach is taken in [10], without providing detailed
information on the crossfade in between the two sections. Here,
the reverberation decay times are estimated in only two frequency
bands and a 16-channel FDN is adjusted to match the original IR
at the transition points. No additional spectral shaping is applied
to the FDN.

Abel et al. [11] model a plate reverberator with a hybrid pro-
cessing unit. This method (which is inspired from [8]) first esti-
mates the spectral decay times and then applies them to the FDN.
For equalizing the FDN a short FIR filter, which is obtained from a
minimum-phase version of the impulse response, is applied to the
transition region. The transition between the convolution section
and the FDN is accomplished by means of a power-complementary
crossfade.

Greenblatt et al. [12] further extended the methods presented
in [8] and [11] by improving the window-based crossfade between
the convolution and FDN sections. This method allows for any
arbitrary window shape and length as it is subtracted from the con-
volution part.

In [13], Lee et al. generate the ER section using conventional
convolution techniques and the late reverberation part with a so-
called “switched convolution (SC)” technique. The SC processor
consists of a recursive comb filter that is convolved with a short

noise segment. The transition between the two processes uses the
cross-fading technique developed in [11].

Other works mainly focus on the optimization of the different
processes: Heise et al. [14] proposed an optimization strategy for
matching the settings of two different audio processors. As a case
study they tune an algorithmic reverb so that it mimics a convo-
lution reverb processor. The optimization procedure evaluates the
differences between the actual response and the target response on
the basis of psychoacoustic features. As a principal measure the
euclidian distance between MFCC vectors is applied.

A hybrid reverberation processor with a Moorer structure for
the reverb tail is used by Primavera et al. [15–18]. It is based on an
iterative optimization algorithm (see [19] for details) to determine
the parameters of an IIR filter structure (i.e. delay line lengths,
gains, and damping factors) that jointly minimize different cost
functions. The cost functions are obtained by comparing the syn-
thesized IR with the real IR in both the time and frequency domain.

Holm-Rasmussen et al. [20] apply linear predictive coding to
fit a synthesized reverberation tail to a measured IR. For synthesis
sparse FIR filters are used.

Several works investigate different time-frequency represen-
tations to estimate the model parameters that best approximate a
given room impulse response (see e.g. [21–23] for further details).
Most methods apply the short-time Fourier or wavelet transform;
the parameters of the filter structures are estimated using the Prony
or Steiglitz-McBride method.

2. PROPOSED METHOD

In this paper we propose a method that (automatically) tunes a
FDN unit to best approximate the time-frequency response of the
original IR. Schroeder (see e.g. [24, 25]) statistically modeled the
late reverberation of a room as exponentially decaying Gaussian
random process. It is shown in the following that, when apply-
ing Schroeder’s statistical model, the FDN can be fitted with arbi-
trary accuracy to both the reverberation decay profile and the initial
spectrum of the original IR.

2.1. IR truncation

A time-domain room impulse response can only be Gaussian when
a sufficient number of reflections overlap, i.e. when the echo den-
sity in a room is sufficiently high enough. The stochastic model
for late reverberation is thus only valid for frequencies higher than
the Schroeder frequency [24] and times later than the mixing time
(tmix). The mixing time determines the transition between the
ER and the reverberation tail and thus defines the cross-over point
between the convolution section and the FDN section of a hybrid
reverberator. Several estimators for the mixing time have been
proposed in literature (see e.g. [26–32]), with varying results that,
in general, strongly depend on the estimation parameters (e.g. the
size of the analysis window). An objective comparison of the per-
formance of these various estimators is beyond the scope of this
paper and is postponed to future publications. (Note that Lindau
et al. [33] presented a comparative study on the estimation of the
perceptual mixing time). For the remainder of this article it is as-
sumed that the mixing time is estimated with sufficient accuracy
and that the IR can be modeled as decaying Gaussian random pro-
cess for times t ≥ tmix.
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2.2. Feedback delay network reverberator

The hybrid reverberation engine presented in this paper is based
on IRCAM’s parametric reverberation engine, which is part of the
sound spatialization software “Spatialisateur” (Spat~). This FDN-
based reverberator consists of a “lossless prototype” (i.e. a rever-
berator with infinite reverberation time that is based on lossless
unitary feedback matrix structures) combined with absorptive IIR
filters (see [34] for more details). With this processing structure
one can achieve arbitrary time and modal densities, low tonal col-
oration, and independent control of the frequency envelope and
decay characteristics [4]. The Spat~ reverberation processor can
be controlled by a set of perceptual descriptors (see Sec. 4). These
descriptors rely on a simplified model of the IR’s time-frequency
energy distribution that is reduced to four time segments and three
frequency bands (cf. Fig. 1). The Spat~ model separates the IR
into three sections: (a) “early” for the very first discrete echoes,
(b) “cluster” for the late and more diffuse early reflections with a
dense reflection pattern, and (c) “late reverb” for the late reverbera-
tion. The cluster is synthesized with multi-tap delay lines feeding a
decorrelation unit; the late reverb is generated by a delay-network
(that is fed by the output of the cluster section) with typically 4 to
16 feedback channels.

Figure 1: Time-frequency IR model of the FDN-based reverberator
Spat~: echogram (top) and time-frequency distributions (bottom).

Hybridization requires to adjust the FDN model parameters
(i.e. the reverberation profile and the initial frequency spectrum)
to the time-frequency envelope of the original IR. This is achieved
by analyzing the energy decay relief of the original IR.

2.3. Energy decay relief analysis

The energy decay relief (EDR) is the ensemble average of the time-
frequency representation of the reverberation decay after the inter-
ruption of the excitation signal (see [35]). It represents the spectral
energy density of the IR over time. The EDR is a generalization
of Shroeder’s energy decay curve (EDC), which allows for a time-
frequency representation of the IR. It can be used to accurately es-
timate the model parameters of exponential reverberation decays.
Given an impulse response h(t), the EDR writes:

EDRh(t, f) =
∣∣∣∣
∫ τ=∞

τ=t

h(τ)e−j2πfτdτ

∣∣∣∣
2

. (1)

Eq. (1) can be efficiently computed, e.g., through backward inte-
gration of the short-time Fourier spectrum of the impulse response.
Following the procedure of [35], the reverberation time RT(f) can
be estimated for any frequency f . Measured impulse responses
are usually corrupted by measurement noise, which distorts the
computed EDR and results in biased estimates of the decay times.
In practice, the analysis of the EDR is restricted to a frequency-
dependent time interval in which the hypothesis of exponential en-
ergy decay holds.

The absorptive filter gi in the ith feedback channel of the FDN
is then chosen such that the logarithm of its magnitude response is
proportional to the delay length and inversely proportional to the
reverberation time. With reference to [4] and by neglecting the
absorptive filter’s phase response, the filter equation writes as

20 · log10
∣∣∣gi(ej2πf )

∣∣∣ = −60
RT(f)

· τi, (2)

where τi is the delay length (in seconds) of the ith inner chan-
nel. Spat~ implements the absorptive filter gi as a three-band para-
metric filter with adjustable crossover frequencies. The estimated
RT(f) is thus averaged and reduced to three frequency bands.

Figure 2: Hybrid reverberator processing structure. Blocks with
dashed-lines indicate offline processing. The “direct/early/cluster
convolution” module performs the convolution of the IR truncated
to the time interval [0− tmix].

2.4. Transition filter (spectral correction filter)

With reference to Jot et al. [4, 26], the EDR is not only character-
ized by the reverberation time RT(f) but also by the initial power
spectrum P(f). In theory, the FDN’s initial power spectrum is a
zero-mean white Gaussian process that is independent of the decay
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characteristics. This assumption does not always hold in practice,
due to approximations in the derivation of the FDN’s correction
filter [4] and the FDN-channel lowpass filters that simulate the air
absorption of the reflection paths [36]. Note that the air absorption
filters are not compensated by the FDN’s correction filter.

An additional spectral correction is thus introduced to match
the initial spectrum of the FDN with the EDR of the original IR at
the mixing time:

correction(f) =

√
EDRh(tmix, f)

EDRFDN(tmix, f)
. (3)

A linear-phase filter is derived from the magnitude response
of the spectral correction in Eq. (3) and then applied to the FDN
(see Fig. 2). This spectral correction filter guarantees for a smooth
and continuous time-frequency envelope of the hybrid reverbera-
tion processor at time t = tmix.

2.5. Statistical aspects

The modal density Dm (i.e. the average number of modes per Hz)
of a FDN with N feedback channels is related to the total length
of the delay units by the following equation:

Dm =
N∑

k=1

τk. (4)

A crucial requirement for convincing artificial reverberation is to
satisfy the assumptions of Schroeder’s statistical model, i.e. to
operate above the “Schroeder frequency”. This condition corre-
sponds to a modal overlap of at least 3:1 (see [35] for details),
which is equivalent to

Dm ≥ RT0, (5)

where RT0 denotes the average reverberation time. Eqs. (4) and
(5) are used to adjust the delay times of the inner loops of the FDN
structure.

2.6. Current real-time implementation

The proposed hybrid reverberator is implemented in C++ and avail-
able as an external object (spat.hybrid∼) for Max/MSP R© as part
of the Spat~ package. The external object first loads the IR and
then performs the above-mentioned EDR analysis. This initial
processing step is performed offline. Once all IR parameters are
determined the external object enables the real-time processing of
the input audio stream. To ease perceptive comparisons, one can
switch between convolution and FDN modeling for the late rever-
beration tail (cf. Fig. 2). The real-time convolution is implemented
as a zero-latency partitioned FFT algorithm adapted from [2]. The
N uncorrelated output channels of the FDN can be either summed
up to produce a mono output signal, or distributed over several
loudspeakers creating a convincing spatial diffuse field out of a
mono IR.

3. RESULTS

This section presents the results of a case study applying the above-
mentioned algorithms to the IR of a large factory hall. In order to
preserve a certain objectivity the IR was taken from a commercial

library. The file is about 9 s long and the average decay time is
RT0 ≈ 4.5 s. The mixing time is taken as tmix ≈ 200ms. The
FDN consists of N = 8 feedback channels and the crossover fre-
quencies are set to 2.5 and 7 kHz.

Fig. 3 (bottom figure) demonstrates that the EDCs of the orig-
inal and the hybrid IR are in good agreement; the upper figure
compares the frequency-dependent reverberation time before and
after applying the hybridization process. For frequencies higher
than 1.5 kHz, the decay profile is in good agreement with that of
the original IR. However, for lower frequencies an error of approx-
imately ±10% can be observed. This error results from the use of
2nd-order absorptive filters in the FDN loop, which determines
the overall shape of the RT(f) curve. For the given example, the
2nd-order shelving filters cannot approximate the original RT(f)
curve with sufficient accuracy in the low and very high frequency
bands.

The choice of 2nd-order filters is motivated by the results of
earlier studies on the perceptual characterization of the acoustic
quality of concert halls, opera houses, and auditoria. Kahle [37]
showed that controlling the reverberation time in three frequency
bands covers the full range of perceptual attributes for a large set
of room acoustic qualities. First informal listenings tests using the
shown case study (among other examples) indirectly confirm these
results. Despite the biased RT(f) depicted in Fig. 3, preliminary
results indicate that listeners cannot distinguish sounds processed
with the hybrid reverberator from those that have been convolved
with the original IR. Anyway, more detailed listening experiments
are needed to verify these early results.

The proposed hybrid reverberation processing model does not
limit the number of absorption filter frequency bands. Higher-
order parametric filters have been successfully implemented, but at
the expense of a higher computational cost. The presented three-
band filter model provides a good trade off between model accu-
racy and computational load.
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Figure 3: Estimated reverberation time (top) and energy decay
curve (bottom) for both the original and the hybrid IR.

Fig. 4 (top figure) compares the EDR derived from the original
IR with that from the FDN, both evaluated at the transition time,
tmix. The high frequency damping in the FDN spectrum (red dot-
ted curve) results from the air absorption filters. Fig. 4 (bottom

DAFX-4

DAFx-96



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

figure) depicts the magnitude response of the spectral correction
filter that provides a smooth transition in between the convolution
and the FDN. We perform a critical band smoothing before the
magnitude response is transformed into a 256-taps FIR filter for
real-time implementation. The actual length of the spectral cor-
rection filter is a tradeoff between the modeling accuracy and the
computational efficiency.
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Figure 4: EDR of the original IR and the FDN at the transition time
(top) and the magnitude response of the transition filter (bottom).

Fig. 5 illustrates the EDR of the original and the hybrid IR.
Visual inspection confirms a good agreement between the EDRs.
A closer look at the right figure shows that the reverberation time
is slightly underestimated, i.e. the RT of the hybrid model is too
short in a frequency range from 500 to 1500Hz. The spectral cor-
rection filter shapes the FDN to match the spectrum of the original
IR at the transition point. Without this correction filter, the hy-
brid reverberator would not reproduce the frequency boost around
5000Hz. In this regard, the proposed processing method clearly
outperforms standard FDN implementations.

Informal listening experiments confirm that the hybrid model
generates perceptually indistinguishable results for various test sig-
nals (e.g. Dirac impulse, percussive sounds, male/female speech,
music, etc.). As mentioned above, more detailed listening experi-
ments are needed to verify these early results.

The computational advantage of the proposed hybrid reverber-
ation processor over a pure convoler depends on many parameters,
such as the length of the original IR (i.e. the reverberation time),
the mixing time, the number of feedback channels in the FDN, the
audio I/O latency of the processing environment, and so on. There-
fore, it is difficult to draw general conclusions on the cpu load from
comparisons with a pure convolution processor. With the different
parameter settings that were tested in this case study, we gained
about 35% of cpu load compared to an optimized real-time convo-
lution algorithm.

4. PERCEPTUAL CONTROL

In the 1980s and 1990s, IRCAM has undertaken a series of room
acoustic measurements and listening tests in different European

concert halls. The aim was to establish a set of perceptual descrip-
tors for the acoustic quality of concert halls (see e.g. [37–40]).
Multidimensional data analysis (more specifically Individual Dif-
ferences Scaling analysis, INDSCAL; see [41]), revealed a set of
nine mutually independent perceptive descriptors for describing
the room acoustic quality. It has been shown that these descrip-
tors correlate well with some objective room acoustic criteria (see
[38] for more details). In order to control the room effect along the
relevant perceptual dimensions most of the proposed descriptors
require both a temporal and spatial weighting; some of them do
also require a spectral weighting in order to obtain satisfactory re-
sults. An in-depth discussion of the set of descriptors is beyond the
scope of this paper. We only give one example to allow for a more
general understanding of the perceptual control of the hybrid re-
verberator. For instance, the “DirE” descriptor refers to the energy
of the “temporally extended” direct sound energy and controls the
perceived presence of a sound source in a reverberant environment.
It is computed from the temporally segmented impulse response as
illustrated in Fig. 1. In the following, ER0 refers to the estimated
energy of the direct sound (0 − 20ms), ER1 to the energy of the
early reflections (20−40ms), ER2 to the energy of the cluster (i.e.
the late reflections; 40−100ms), andER3 to the energy of the late
reverberation tail (> 100ms), respectively. DirE can be computed
from these energy estimations as follows:

DirE = ER0 + ER1 + ER2,excess + 0.18× ER2,masked (6)

with

ER2,excess =max(0, ER2 − ER40),

ER2,masked =min(ER2, ER40),

ER40 =ER|[0,40ms] = ER0 + ER1.

Jullien and Kahle [38–40] have, for instance, shown that the DirE
parameter represents well Lochner and Burger’s “energy ratio cri-
terion” [42] for the intelligibility of speech. As a result one can
control the perceived presence of sound source by controlling the
gain of the different time sections of the impulse response. For
more details on the perceptive descriptors, please refer to [37–40].

IRCAM’s parametric FDN-based reverberator applies the per-
ceptive descriptors in a similar way, and they have been proven
useful in many music productions. If we now apply them to the
hybrid reverberation process, we have to modify the signal pro-
cessing structure given in Fig. 2 so that it represents the time-
segmented structure given in Fig. 1. The convolution segment (i.e.
for the time interval from t = 0 to t = tmix) is split into three
sub-segments corresponding to the sections “direct”, “early”, and
“cluster”. The output signals of these subsections are first time
aligned with delay lines and then filtered with three-band paramet-
ric shelving filters, which are controlled by the perceptual model
parameters. Fig. 6 depicts the extended processing model (for
simplicity, the data analysis modules are not shown in this fig-
ure). When the direct/early/cluster/late filters are flat, the hybrid
reverberation unit represents the original IR. When the user ma-
nipulates the perceptual factors, the parameters of the filters are
updated accordingly. This allows to smoothly modulate the acous-
tical quality of the IR by navigating along the different percep-
tual axes. For instance the so-called “source presence” factor con-
trols “DirE” and creates a convincing effect of proximity or re-
moteness of the sound source by simultaneously adjusting the di-
rect/early/cluster/late levels (ER0, ER1, ER2, ER3) according to
the structured model.
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Figure 5: EDR (in dB) of the original (left) and hybrid (right) IR. The dashed line represents the transition time, t = tmix.

Figure 6: Process chart of the hybrid reverberator with percep-
tual control. Blocks in blue correspond to convolution segments.
Blocks in red correspond to parametric reverberation. Delay lines
(brown blocks) ensure time-alignment of the convolution segments.
Blocks in magenta correspond to three-band filters controlled by
the perceptual model.

5. CONCLUSIONS AND PERSPECTIVES

This paper considered both the theory and implementation of a
hybrid reverberator that combines convolution processing for early
reflections with feedback delay networks for late reverberation ren-

dering. The proposed method first estimates the reverberation time
and exponentially decaying envelope in different frequency bands
from the original impulse response. These parameters are then
used to control the FDN processing. Particular attention is paid to
the smooth transition from convolution rendering to FDN process-
ing; the power spectrum is matched at the transition point (given
by the mixing time) in each frequency band.

An analysis of different room impulse responses (see also Sec-
tions 2 and 3) indicated that three-band shelving filters in each
FDN channel may not always succeed to model the late rever-
beration with sufficient accuracy. The model accuracy strongly
depends on the EDR profile of the original IR. Future work will
focus on the analysis of the RT(f) curve in order to automati-
cally determine the minimum number of required frequency bands
(and corresponding crossover frequencies) to keep the modeling
error below a given threshold. Increasing the number of FDN fil-
ter bands significantly increases the computational cost. However,
with the rapid increase in available processing power real-time im-
plementations may become feasible.

The modal density of a FDN should satisfy Schroeder’s sug-
gestions for natural sounding and high quality artificial reverber-
ators (cf. Section 2). A useful extension of the hybrid processor
would be estimating the modal density of the original IR to auto-
matically adjust the FDN to these parameters.

The proposed method is based on the stochastic model of late
reverberation and thus excludes, e.g., non-exponential decays, flut-
ter echoes, and spring reverbs. Nonetheless it would be possible to
extend the technique to IRs exhibiting a double-slope exponential
decay; such decay profiles have gained interest in recent years and
have been observed in concert halls such as, e.g., the Boston Sym-
phony Hall. Both the EDR analysis and the FDN rendering can
be extended to that purpose. Adapting the EDR analysis of [35] to
multiple-slope exponential decays do not raise conceptual difficul-
ties. The design of FDNs with multiple decay slopes is currently
under investigation.

In this paper we focused on single channel impulse responses
for a mono input signal and mono (or multichannel) output sig-
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nal(s). A multichannel extension to directional room impulse re-
sponses (DRIRs) is currently under development. DRIRs are typi-
cally measured with spherical microphone arrays. Preliminary re-
sults of multichannel EDR analysis and DRIR denoising have been
published in [43, 44]. The proposed methods perform a joint anal-
ysis of the EDR of all the microphone cells in order to preserve the
spatial coherence between them. Hybrid convolution reverberators
operating in the modal domain are used for higher-order Ambison-
ics rendering.
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ABSTRACT 

An enhancing effect that can be applied to analogue oscillators in 
subtractive synthesizers is termed Animation, which is an effi-
cient way to create a sound of many closely detuned oscillators 
playing in unison. This is often referred to as a supersaw oscilla-
tor. This paper first explains the operating principle of this effect 
using a combination of additive and frequency modulation syn-
thesis. The Fourier series will be derived and results will be pre-
sented to demonstrate its accuracy. This will then provide new 
insights into how other more general waveform animation proc-
essors can be designed.  

1. INTRODUCTION 

The modelling of analogue musical equipment using digital tech-
niques has been an area of research that has received consider-
able attention over the past decade, and is still a very current 
topic [1]. This field covers the reproduction of Tube amplifiers 
([2] and [3]), guitar effects devices ([4] and [5]), spring reverb 
units [6], analog synthesizer oscillators, both generally in [7] and 
[8], and in a model specific manner in [9] and [10], and resonant 
voltage controlled filters ([11], [12], and [13]).  

With regard to analog synthesizer oscillators in particular, 
most of the previous work has focused on the alias-free synthesis 
of ideal classical waveforms, such as the sawtooth, the triangle, 
and the rectangular waveforms, see [7], or [14], for example. The 
reason for this focus on oscillators was simply that digital models 
of waveforms associated with particular analog synthesizers are 
more difficult to create because it requires access to such synthe-
sizers in order to make waveform measurements. These can be 
expensive and difficult to obtain in their vintage versions. The 
ideal forms of the classic waveform signals have a spectrum that 
decays about 6 or 12 dB per octave, following the 1/f or the 1/f2 
law (where f denotes frequency), respectively [19].  

An early approach was the filtering of the digital impulse 
train obtained from the summation formula for the cosine series 
[20]. More recent works have proposed to implement an ap-
proximately bandlimited impulse train using a windowed sinc 
table ([21] and [22]), a feedback delay loop including an allpass 
filter [24], or a sequence of impulse responses of fractional delay 
filters [25]. Alternative approaches include the differentiated 
polynomial waveforms ([26],[27] and [28]), hyperbolic wave-
shaping [8], Modified FM synthesis[29], polynomial interpola-
tion [30], polynomial transition regions [15] and [18], bandlim-
ited impulse train generation using analog filters [16], and 
nonlinear phase basis functions [17]. 

Alongside these oscillator algorithms, other work has fo-
cused on enhancing effects that can be applied to them such as 

Hard Synchronisation ([31] and [32]) and Frequency Modulation 
([33] and [34]).  

One very interesting effect is described in the literature as 
Waveform Animation [35]. Animation is a single oscillator ef-
fect. It is an enhancement to the traditional non-modular ana-
logue subtractive synthesizers feature of two or three oscillators 
per voice ([36] and [37]), which has generally held up for digital 
emulations [38]. The result of the Animation is the production of 
a deep, thick, pulsing sound. Originally proposed as a technique 
for modular analog systems it did not appear on synthesizers 
produced by the major manufacturers who opted for simply add-
ing a unison oscillator option instead ([39] and [40]). More re-
cently this unison oscillator arrangement has become termed as a 
Supersaw [38] or a Hypersaw [41]. It became strongly associated 
with electronic dance music.  

Nam et al. [25] proposed an implementation of this effect in 
which several detuned bandlimited impulse trains (BLITs) with 
appropriate DC offsets are added together and fed through a sin-
gle leaky integrator. However, this incurs the computational costs 
of generating multiple waveforms at a small frequency difference 
from each other. A digital implementation of Waveform anima-
tion, however, offers a more efficient alternative for creating this 
multiple oscillator sound effect than just adding numerous de-
tuned waveforms because it does not result in a corresponding 
loss in polyphony as groups of oscillators are assigned to each 
voice.  

When it comes to the digital emulation of a particular analog 
effect there are two choices: either (1) attempt to reproduce a par-
ticular analog circuit design directly or (2) to emulate the opera-
tion from an algorithmic perspective with tailored digital ele-
ments. While the first approach can work very well, it produces 
an algorithm that is computationally intensive and requires a sig-
nificant oversampling factor to operate correctly, see [5], [11], 
[12], and [13]. The second approach is less complex, computa-
tionally cheaper, and more flexible, conferring the final imple-
mentation with benefits such as having greater polyphony avail-
able to the virtual synthesizer. An example of this approach has 
been presented in [10]. 

Therefore, in this paper, we will work out the underlying the-
ory of the Waveform Animator oscillator effect from a signals 
point of view. This will be augmented by a model by which it 
can be implemented efficiently in modern digital synthesis sys-
tems using delay lines. The next section will mention the origins 
of the effect combined with the theory underlying it.  

2. MULTIPLE DETUNED OSCILLATORS 

The idea for this sound can be attributed to Risset [42] who de-
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veloped it in the late 1960s for some of his compositions. In 
computer music circles it is sometimes termed the ‘Risset Arpeg-
gio’ [43]. The intense effect of the detuned sound is due to a 
complicated beating pattern created among the harmonics of each 
oscillator. An analytical expression is available that describes this 
pattern [44]. Assuming a signal with a number of harmonics that 
has M detuned copies at a spacing of f0 between each of them, 
the beating pattern amplitude of the kth complex harmonic cluster 
is given by 

 

   
 tfk

tfkM
AtB kk

0

0

sin

sin




  (1) 

 
where Ak is the amplitude of the kth harmonic.  

3. WAVEFORM ANIMATOR 

Hutchins proposed the multiphase waveform animator capable of 
emulating a bank of detuned sawtooth oscillators with a single 
Voltage Control Oscillator (VCO), by mixing a number of alge-
braically phase shifted sawtooth waveforms together [35]. The 
original paper did not show mathematically how this is achieved; 
rather it was demonstrated in terms of the waveforms it required 
as it was intended for implementation using a modular analog 
synthesis system. However, to gain a deeper insight that will as-
sist our digital implementations it is worthwhile to understand the 
principle of this system fully. 

The input to the Animator is a sawtooth with a rising edge of 
amplitude A. The animator itself consists of a number of chan-
nels each controlled by a different triangle wave Low Frequency 
Oscillator (LFO), whose rate should be less than 2Hz and whose 
amplitude is smaller than that of the input [35]. A block diagram 
of one channel that illustrates the principle of the animator is 
given in Fig. 1. Note that more channels leads to a more intense 
effect. 

In Fig. 1, the input sawtooth and LFO are on the left hand 
side, there are two subtracting elements, a comparator, and the 
output appears on the right hand side. This output is a time-
varying phase-shifted sawtooth that is then added with the input 
sawtooth to create the animated effect. 

To explain in more detail: subtracting the input from the LFO 
generates an intermediate waveform. The LFO is very slow in 
relation to the input so that it is effectively like adding a DC off-
set to each period of the input wave. Fig. 2 shows this graphically 
using the relevant waveforms. In Fig. 2 the amplitude of the input 
sawtooth A = 5.0 and the amplitude of the LFO is 2.0. The result 
of the operation is that the DC level of the input is altered by a 
value of 7.0 in this example.  
 
 

 

 

Figure 2. Input sawtooth (solid line), LFO waveform 
(dashed line) and difference of the two (dotted line). 

 
This waveform is fed to a comparator device that is set to emit 

a pulse when its input is greater than the sawtooth amplitude A, 
otherwise the output is zero. This results in a PWM waveform 
whose pulse is on the leading edge and whose pulse width is var-
ying at the rate of the LFO. Further, the amplitude of the pulse is 
2A. This PWM wave is then subtracted from the DC-altered saw-
tooth to produce a time-varying phase-shifted version of the input 
sawtooth. This is illustrated in Fig. 3. The upper panel shows the 
generated PWM wave against the comparator input and the lower 
panel shows the original input sawtooth and its phase shifted ver-
sion. 

 
 
To illustrate mathematically what the animator is doing, first 

assume that we are looking only over a few periods where the 
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LFO waveform can be regarded as a constant DC level, we can 
then write the animator output as 
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where the first term on the rhs of (2) denotes a rising sawtooth, 
Cdc represents the added DC level, and the third term represents 
the PWM waveform comparator output whose maximum ampli-
tude is 2A and minimum value is zero.  

The expression for a falling edge, zero-centered, PWM wave 
of time-varying duty cycle d(t) is [45] 
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Each component of the second term on the rhs of (3) is phase 
shifted where the phase shift depends both on the duty cycle and 
increases with increasing frequency because of the factor k. To 
rewrite (3) so that it represents the comparator output correctly it 
needs to have a leading edge pulse and be scaled in amplitude 

 
      AtPAtPzs 22     (4) 

 
Substituting (3) into (4), and then the result into (2) we can 

write the animator output as a combination of AC and DC com-
ponents. 
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Remembering from (2) that the comparator combines the PWM 
wave along with the input sawtooth if we concentrate on the AC 
components of (5) first we have 
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which can be written as 
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This gives the equation for a rising sawtooth with a time-varying 
phase shift. Then, looking at the DC term of (5) 
 

   tdAAtSDC 22DC    (8) 

 
The term d(t) will be constant within each time period. Thus, for 
a single time period we can write 
 

dAAS ˆ22DCDC    (9) 

 

To show that (9) is zero, we must determine d̂  by locating 
the point of intersection of the LFO waveform with the sawtooth 
waveform in each period. If we write these as line equations we 

can use simple geometry to determine the intersection point be-
tween the two. For argument’s sake, we assume that we are ex-
amining the crossing point within the first period of the sawtooth 
wave. Doing this, the time of their intersection tp can be ex-
pressed as  
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where fLFO is the LFO frequency, ALFO(t) is the time-varying am-
plitude of the LFO wave and ALFO is the maximum amplitude it 
will reach within that one period. The value of the duty cycle for 
that period will be 
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To further simplify the analysis we assume that within this first 
period of the sawtooth the amplitude of the triangle wave is con-
stant, i.e. 
 

LFOLFO AA     (12) 

 
Then, examining Fig. 2, we can write 

 

LFOAA DC    (13) 

 
Substituting (12) into (11) and then combine with (13) in (9) to 
give 
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Next, noting that 
 

 LFOLFO fAAf  22 0   (15) 

 
The third term on the rhs of (14) can then be approximated, and 
following simple manipulation leads to the expected result  
 

02DC  LFOLFO AAAAAS   (16) 

 
The expression (16) will hold for every period of the input saw-
tooth. Therefore, the final animator output can be written 
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Examining (17) it can be interpreted as a summation of har-

monically related frequency modulated sinusoids where the 
modulation is the time-varying duty cycle d(t) and the modula-
tion index increases with respect to the harmonic number. This 
result is very interesting as it means that the bandwidth around 
each harmonic increases with respect to increasing frequency. 
This would suggest why the waveform is perceived as being ‘an-
imated’ as this increasing bandwidth with respect to frequency is 
similar in effect to adding detuned harmonic waveforms together. 
Furthermore, the faster the LFO the wider the bandwidth will 
become. There also should be a relationship between the swing in 
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the duty cycle with the sideband harmonic magnitudes and ulti-
mately the strength of the effect. 

4. ANIMATOR SPECTRAL PROPERTIES 

It is worthwhile to investigate the spectral properties of the ani-
mated waveform a little further. The time-varying duty cycle sig-
nal only changes its value for every new period of the input saw-
tooth. This means that this modulating duty wave resembles a 
flat-top multi-level Pulse Amplitude Modulation signal, where 
the pulse rate is the same as the input sawtooth. However, be-
cause it is changing so slowly to simplify the analysis first we 
can assume that the duty cycle modulation is a shifted and scaled 
triangle LFO of the form 
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where dmax and dmin are the maximum and minimum values of the 
duty cycle respectively. They are determined by the user choice 
for ALFO. 

We can also write the Fourier series for the triangle wave 
modulation in (18) as 
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where q is the harmonic index. 

This particular triangle wave will start from its minimum 
value which is in keeping with the original work [35]. Combining 
(19) with (18) and then substituting into (17) we can see that we 
will have a Complex FM waveform [46]. The relative contribu-
tion of each harmonic of the LFO to the spectrum of (17) could 
be computed using this theory. However, it can quickly become 
complicated if we use many components from the Fourier series 
in (19). By writing expressions for the modulation indices it is 
possible to find a way of simplifying the task. Denoting the mag-
nitudes of the modulation indices for each as Iq we can consider 
the first two significant components (The second harmonic mag-
nitude I2.=0 because it is a triangle wave) we have 
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Noting that I1 > 1 while I3 << 1 (and will be true for all higher 
modulation indices), this suggests that it would be reasonable to 
assume that the primary contribution to the modulation of each 
harmonic in (17) is only the first component with modulation 
index given by (20) which allows us to rewrite  
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where we denote the phase shift  minmax ddk  . 

 
 
To validate the approximation Fig. 4 shows a plot of the 

spectra of a frequency modulated single sinewave of frequency 
441Hz using the modulation function of (18) with frequency 
0.5Hz and dmax=0.9 and dmin=0.1 (solid line) along with the spec-
trum of the same sinewave but with a sinewave modulation func-
tion with modulation index given by (20). From the figure it can 
be seen that there is an exact match for the magnitude of the first 
and third order sidebands at 441.5Hz, 440.5Hz, 442.5Hz and 
439.5Hz respectively. There is a close match with the second or-
der sidebands at 442Hz and 440Hz. This indicates that the ap-
proximation is acceptable.  

Once adopting this approximation it is straightforward to 
have an expression for the magnitude spectrum of (22) around 
each harmonic 
 

    10 kIJnfkfH oLFO    (23) 

 
where Jo denotes a Bessel function of order o [47].  

With this done it is possible to plot a relationship between the 
width of the duty cycle (that is, the difference between the max-
imum and minimum values) versus the magnitude of the first 
sideband of the modulation. This is helpful when creating an an-
imated waveform as it can be used to decide how to set the am-
plitude of the triangle wave LFO and to determine the amplitudes 
of other sawtooths that could be added to the animated wave to 
get a desired balance between the animated waves and the origi-
nal. This is similar to the mix function associated with commer-
cial products [38], [41]. An experiment can be run by creating 
different values for the first modulation index in (20) using dif-
ferent values of duty cycle width. These can then be substituted 
into (23) to compute the first sideband magnitude (where o = 1). 
The result of this is given in Fig. 5. It shows that the largest side-
band magnitude occurs when the width of the duty cycle is 0.7. 
This corresponds to a duty cycle maximum of 0.85 and a duty 
cycle minimum of 0.15. Thus, at this setting most significant lev-
el of waveform animation is achieved. 

 

Figure 4.  Comparison of the spectra of a sinewave that 
has been frequency modulated using the triangle wave 
LFO of (19) (solid line) versus a one component approx-
imation to it as given by (22) (dashed line). 
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Figure 5.  Relationship between the duty cycle width and 
first sideband magnitude computed using (20). 

5. ANIMATOR USING A DELAY LINE FILTER 

The multiple detuned oscillator effect can also be created by em-
ploying a group of delay-line based pitch shifters and a single 
waveform input [48]. The principle can be seen as an extension 
of the use of inverse comb filters with time-varying delays. By 
combining the output of such delay lines with the original signal, 
we will be able to model the multiple detuned oscillator effect for 
arbitrary inputs. 

The pitch shifter operation is based on a periodic linear 
change in delay time. The amount of pitch transposition is pro-
portional to the rate of delay change [49]. By modulating a delay 
line with a signal whose derivative is constant and non-zero, the 
pitch of the input signal can be shifted. We can define this pro-
cess for a single up and down transposition pair by the following 
expressions, where  is the delay line length, s is the frequency 
scaling factor (transposition ratio) and x(t) is the input signal: 
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where the delay modulation signal  t   is defined as 
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The windowing and delay functions in (24), w(x) and D(x) are 
expressed by 
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The windowing is necessary to hide the discontinuities of 
signal as the delay jumps from 0 to . The use of two delay lines 
is designed to allow crossfading between them, which creates a 
continuous pitch-shifted signal.  

To create a mix of seven signals with slight tuning differ-
ences, we can use four pitch shifters arranged as in the block dia-
gram in Fig. 6. The transposition factor s should then be set to 1 
+ f0/f0, providing a constant-interval spacing between each 
pitch-shifted copy of the original signal. 

An example of the waveform output and the magnitude spec-
trum is given in Fig. 7. The upper panel shows the waveform 
over a 9 second period. The envelope of the waveform shows 
periodic peaks and troughs due to the beating that is occurring 
between the detuned harmonics. The two plots in the lower panel 
show the cluster of components around the region of the first 
harmonic and the second harmonic of the input. As expected the 
bandwidth around the second harmonic is proportionally wider 
than that of the first.  
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Figure 7.  The pitch-shifter based detuned oscillator ef-
fect, where s is the transposition factor1 + f0/f0. The up-
per panel shows the waveform output and the lower pan-
els shows the magnitude spectrum in the region around 
the first and second harmonics of the input waveform re-
spectively. 
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Figure 6.  The pitch-shifter based detuned oscillator effect 
where s is the transposition factor 1 + f0/f0. 
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6. CONCLUSION 

This paper has investigated the digital implementation of a 
Waveform Animator oscillator effect. It has first presented a 
mathematical analysis that has resulted in expressions for the fre-
quency spectra of this effect, looking in detail at the significance 
of the modulation components. Secondly, it examined by simula-
tion the relationship between the duty cycle and the degree of 
animation. Lastly, a delay line based algorithm was then dis-
cussed as means to obtain a general model of this effect. Fur-
thermore, if the input to the delay-line model is bandlimited then 
the output will also be so. Such a model could be incorporated 
within any synthesis toolkit. It is intended that this work will of-
fer sound designers more insight into alternative approaches for 
synthesizing ‘Supersaw’ timbres and also raise their awareness as 
to the role that frequency modulation plays within these sounds.  
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ABSTRACT

In this paper, we present a model for the modulation of multi-
performer microtiming variation in musical groups. This is done
using a multivariate Markov model, in which the relationship be-
tween players is modelled using an interdependence matrix (α)
and a multidimensional state transition matrix (S). This method al-
lows us to generate more natural sounding musical sequences due
to the reduction of out-of-phase errors that occur in Gaussian pseu-
dorandom and player-independent probabilistic models. We ver-
ify this using subjective listening tests, where we demonstrate that
our multivariate model is able to outperform commonly used uni-
variate models at producing human-like microtiming variability.
Whilst the participants in our study judged the real time sequences
performed by humans to be more natural than the proposed model,
we were still able to achieve a mean score of 63.39% naturalness,
suggesting microtiming interdependence between players captured
in our model significantly enhances the humanisation of group mu-
sical sequences.

1. INTRODUCTION

In electronically produced music, humanisation algorithms are of-
ten applied to percussive sequences in order to create a more nat-
ural sounding expressive performance. This is particularly useful
when access to performers or equipment is limited, as events can
be programmed onto a quantised grid and then modulated by a
music producer, without the requirement for human performance.
This process is often applied during the point of music creation
from within the digital audio workstation and allows for the in-
corporation of sampled or synthesised instruments into a piece of
music.

One of the main issues with current humanisation systems is
that they do not necessarily represent the expressivity exhibited by
a human agent, thus the process requires further editing in order
to achieve a natural approximation of a human musician. Further-
more, the systems are unable to model the characteristics of group
performance when used in a multi-channel environment. These

problems are namely due to the fact that the majority of existing
humanisation systems modulate the onset locations and respec-
tive velocities of an event instantaneously, using a pseudorandom
variate, selected from a Gaussian window. Therefore in simulated
multi-player performance, phase error is often introduced between
the channels. This can actually reduce the naturalness of the per-
formance, rather than enhance it due to perceptually unrealistic
cues, generated by multiple instances of the algorithm running in
parallel.

1.1. Modelling Microtiming

In this study, we focus specifically on extracting and modulating
microtiming offsets in musical performance, this can be defined as
the subtraction of an event at time n from a corresponding point
on a reference track, as illustrated in Figure 1. Here, the refer-
ence grid represents a metronome running in parallel with the per-
formed musical sequence. The challenge of the humanisation al-
gorithm is to then estimate the distribution at n + 1, written as
P (θn+1). This is usually done independently of all other events in
the sequence, based on a distribution centred around the nth grid
point, characterised by the parameters µ and σ.

θn = tn - tnθn-1 = tn-1 - tn-1

t

t

P(θn+1) =

Figure 1: Representation of a player, following a metronome. The
offset measurements from the metronome are shown as θn, where
t̂n is the nth metronomic event and tn is the nth event performed
by player 1.
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Attempts have been made in previous studies to increase the
naturalness of single-player humanisation systems by incorporat-
ing some form of intelligent processing into the variate generation
procedure. In [1] for example, fuzzy logic has been used to model
strike velocity deviation in a humanisation system, based on sub-
jective rules, derived from domain knowledge. Similarly, micro-
timing deviation has been modelled using a number of different
supervised machine learning techniques by [2]. These techniques
are then used to apply the derived microtiming models to quantised
sequences, in which they conclude the systems used to model per-
cussive sequences significantly outperform the quantised version,
when evaluated for natural expressivity. Microtiming for Brazil-
lian Samba music is also estimated in [3] and [4], using a model
based on the extraction of quarter-note patterns using K-Means
clustering. Here, it is shown that the degree of expressive timing
can be attributed to specific metrical positions, with examples in
Samba music. This kind of information is omitted when pseudo-
random models are applied, due to the variables being indepen-
dently distributed for each event.

In previous work by Stables ([5], [6]), it has been shown that
the process of stochastic humanisation can be improved using prob-
abilistic temporal models to modulate a quantised sequence, based
on microtiming measurements taken from professional musicians.
Here, independently distributed variates (P (θn+1)) were replaced
by variates that were conditionally dependent in time (P (θn+1|θn)).
In these studies it was shown that the measured sequences ex-
hibited temporal patterns which could be synthesised using finite
state machines. In both cases, the empirically developed models
were shown to subjectively outperform quantised and Gaussian se-
quences for both perceived naturalness and musicality.

2. GENERATIVE MULTIVARIATE MODEL

Whilst the models described in section 1.1 work particularly well
with single-player sequences, phase error is still introduced in muti-
channel performance models due to the lack of inter-performer
dependence. This means that when a probabilistic humanisation
algorithm is applied to more than one track in a given session,
extensive manual correction is often required in order to create a
sense of cohesion between the separate channels. It is therefore
necessary to consider ways in which a group of musicians can be
modelled in parallel, thus preserving the inter-performer timing
characteristics of a musical group.

If we make the assumption that the performed musical signals
are stylised stochastic processes (as in studies such as [7] and [8]),
we can use a Markov chain to estimate a transition through a dis-
crete state-space Z = {z1, z2, . . . , zK}, where zn represents the
nth state of the system, providing the sequence being modelled,
satisfies the Markov property given in Eq. 1.

P (θn+1 = in+1|θ0 = i0, θ1 = i1, . . . , θn = in)
= P (θn+1 = in+1|θn = in)

(1)

Here, θn represents the nth event and in represents the cor-
responding state. Each state in the model can be described us-
ing canonical form representation, consisting of a binary vector of
length K, where

∑K
k=1 θk = 1 and θk ∈ {0, 1}. For example,

in a 5-state model, if the nth event is equal to z3, we can use the
representation θn = {0, 0, 1, 0, 0}T . This allows us to define a
single-player model using Eq. 2.

P (θn+1) = Sθn (2)

Here, S is a state transition matrix (STM), representing the
probability of a transition from θn = in to θn+1 = in+1 for
n = {1, 2, . . . , N}, where N is the number of events in the se-
quence. We then consider P (θn) to be the Probability Density
Function (PDF) representation of θn. The canonical form of θn+1

is then calculated using a rejection sampling technique, given here
in Eq. 4.

(θn)i =

{
1, i = β
0, i 6= β

(3)

β =

{
γ1,k, [γ1,k, γ2,k] ∈ P (θn)
repeat, [γ1,k, γ2,k] /∈ P (θn)

(4)

Where γ1,k and γ2,k are pair-wise stochastic variables, evaluated
against the nth state distribution and β is the state vector index.
For situations such as grouped musical performance, in which there
are two or more conditionally dependent sequences, we can use
a Multivariate Markov Chain (MVMC) model. This consists of
the univariate model, estimated across M sequences being per-
formed concurrently, weighted by some measure of inter-player
dependence, given in Eq. 5.

P (θ
(i)
n+1) =

M∑

k=1

αi,kS
(i,k)θ(k)n (5)

In the multivariate model, θ(i)n represents the state distribution
of stream i in canonical form and the matrix S(i,k) gives the proba-
bility of a transition from the nth state in stream i, to the (n+1)th

state in stream k, as demonstrated in Eq. 6. When k = i, S
represents a standard univariate STM. The weights (αi,k) in the
model represent the interdependence factor between streams i and
k, which can be derived empirically.

2.1. Pulse Approximation

As demonstrated in Figure 1, the estimation of microtiming param-
eters in the current model relies on an isochronous grid (t̂) in order
to calculate differentials (θ(i)) at any point in time (n). In single-
player streams this model works particularly well if a player has
performed the sequence to a click-track as we can use a metro-
nomic grid to approximate t̂. However due to the nature of group
performance, it is relatively unlikely that the individual performers
will follow the same click track, unless the musicians are indepen-
dently contributing material to the musical piece. This trait is very
common in multitrack recording, but less common in group per-
formance. Using a metronomic model, we can represent the grid
using Eq. 8.

θ
(i)
n = t

(i)
n − t̂n

where, t̂n = (n− 1)
(
60
τ

) (8)

Where τ represents a measurement of fixed tempo and t(i) is the
event generated by the ith performer. In order to adapt this method
for group performance, we need to estimate a global representation
of tempo within the musical group. We can provide a simplistic
model for this by taking the mean of the beat-spacings within each
bar, across all players using Eq. 9.
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S(i,k) =





p(θ(i) = z1|θ(k) = z1) p(θ(i) = z2|θ(k) = z1) . . . p(θ(i) = zK |θ(k) = z1)

p(θ(i) = z1|θ(k) = z2) p(θ(i) = z2|θ(k) = z2) . . . p(θ(i) = zK |θ(k) = z2)
...

...
...

...
p(θ(i) = z1|θ(k) = zK) p(θ(i) = z2|θ(k) = zK) . . . p(θ(i) = zK |θ(k) = zK)





(6)

i = {1, 2, . . . ,M}, k = {1, 2, . . . ,M} (7)

τ̂m =
1

MB

M∑

i=1

B∑

n=1

(t
′
n)

(i) − (t
′
n−1)

(i) (9)

Where t
′
n represents an event that falls on a beat location and B is

the number of beats in the bar. τ̂m then represents the estimated
tempo for the mth bar. This is now an estimated dynamic mea-
surement of temporal drift and is updated each time a new bar is
performed. The micro timing offsets are then subtracted from this
grid, using the technique defined in Eq. 8, replacing τ with τ̂m and
interpolated for n.

2.2. Inter-Player Dependence

We model the interdependence (αi,j) amongst performers in the
group using lagged cross-correlation, in which player i’s stream is
lagged by a pre-defined number of events (n) and correlated with
the stream of player j. This allows us to estimate the amount of de-
pendence that one player has on another. This technique has been
demonstrated by [9] to be optimal at a single event, suggesting that
players are highly receptive to short-term variations in accompani-
ment. This measurement is demonstrated in Eq 10.

αi,j =
1

N

N−n−1∑

k=0

θ
(i)
k θ

(j)
k+n (10)

Where n is a non-negative integer representing the number of events
to lag, set to 1 for this application.

3. EXPERIMENT: STRING QUARTET MODELLING

In order to evaluate the performance of the model, we analyse a
professional quartet performing an excerpt from the 4th movement
of Hayden’s String Quartet Op. 74 No. 1 in C-Major, the score for
which is given in Figure 2. The quartet consisted of two violins, a
viola and a cello, and the excerpt was chosen due to the number of
notes being performed concurrently. The quartet have around 12
years experience performing together, and were shown by [9] to
follow the lead violin player relatively closely. The excerpt, con-
sisting of 12 bars was performed and recorded 15 times using the
same equipment and the musicians were asked to perform using
their natural expression. In total, each take contained 48 musical
events, all of which were being performed by all members of the
quartet at the same metrical positions in the bar.

Each player was recorded using an individual instrument mi-
crophone (DPA 4061), positioned on the body of each instrument
with a rubber mount in order to reduce bleed in the recordings.
The onsets from each player were then extracted using a spectral-
flux based technique, and adjusted manually to improve accuracy.
To find the microtiming offsets, the pulse was estimated at the be-
ginning of each bar using the method defined in Eq. 9 and the

events were subtracted using the technique defined in Eq. 8. The
mean tempo for the recordings was found to be 105.0 BPM, with
a standard deviation of 6.49. Figure 3 illustrates offset measure-
ments from all 15 takes, with the mean of the results represented
in black. Here, deviations are shown across all four performers
playing concurrently.

1 5 9 13 17 21 25 29 33 37 41 45 48
−150

−100

−50

0

50

100

150

V
io

lin
 1

1 5 9 13 17 21 25 29 33 37 41 45 48
−100

0

100

−100

0

100

−100
V

io
lin

 2

1 5 9 13 17 21 25 29 33 37 41 45 48
−150

−100

−50

0

50

100

150

V
io

la

1 5 9 13 17 21 25 29 33 37 41 45 48
−150

−100

−50

0

50

100

150

C
e

llo

O
ff
s
e

t 
(m

s
)

O
ff
s
e

t 
(m

s
)

O
ff
s
e

t 
(m

s
)

O
ff
s
e

t 
(m

s
)

Event Num 

Figure 3: A graphical representation of the microtiming deviation
(θ) for all four performers. the measurements are taken across 15
takes of the same piece with the mean offset indicated in black, the
vertical lines represent bar divisions.

3.1. Subjective Evaluation

To evaluate the perceived naturalness of the model, subjective lis-
tening tests were conducted using a MUSHRA-based methodol-
ogy [10]. The subjects were asked to rank each of the samples
with a multi-stimulus interface and provide a rating between 0-
100 for how naturally expressive each sample was perceived to
be. Participants were informed that the experiments were based on
professional musicians and were played an excerpt from a string
quartet (not included in the stimuli) before the test began. In to-
tal 20 people participated in the experiment, all of whom were all
aged between 18-35 and had normal hearing. All participants had
some experience in performing or producing music.

The stimuli consisted of 25 versions of the same synthesised
polyphonic sequence, the score for which was taken from Haydn’s
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Figure 2: The score of the excerpt taken from Hayden’s Quartet Op. 74 No. 1 in C Major, in which 4 separate instrument parts are shown.

Quartet Op. 74 and synthesised using a string ensemble pre-set
from the Logic Studio 9 plug-in: EXS24 (Apple, CA, USA). The
sequences were compiled by generating MIDI note-on messages
and importing them into a sequencer. The MIDI was generated
using 5 different techniques, these can be categorised as follows1.
• Quantised: The note-on messages were quantised to a fixed

grid, thus exhibiting no temporal variation.
• Gaussian: Each of the note-on messages were modulated

using an independent Gaussian window.
• MC: The note-on messages for each channel were modu-

lated using a conditionally independent Markov chain.
• MVMC: The note-on messages are modulated using the MVMC

model presented in Eq. 5.
• Human: The onsets are taken from a dataset of human per-

formers.
In order to isolate microtiming deviation, other parameters

such as note-off and velocity were fixed to constant variables. The
length of each event was fixed to 1/4-note length and the global
tempo was varied across samples, bounded by measurements from
the dataset. To control the mean and variance of the micro tim-
ing deviations across conditions, the µ and σ parameters used to
characterise the distributions in the Gaussian method were derived
from the dataset of human performers. This meant that all tech-
niques were able to produce a similar range of θ values.

4. RESULTS

4.1. Performance Analysis

From our observations of a string quartet performing 15 iterations
of a 12-bar of a piece in 4/4, we can identify characteristics of the
musical group by performing analysis on the data. Firstly, the max-
imum microtiming deviation was measured to be 198.02ms and
the minimum was -202.48ms. Overall the mean was 6.51ms, with
a SD of 2.65ms. As the mean tempo was observed to be 105BPM,
in 4/4 time signature, the maximum deviation was around 35.4%
and the mean deviation was around 1.2% of the inter-onset interval
(IOI).

The dependencies between each performer in the group are
summarised in Eq. 11 and also shown using boxplots in Figure 4.
Both of these diagrams represent the variable α in the model.

α =





0.410 0.009 0.026 0.001

0.177 0.257 0.113 0.147

0.217 0.203 0.320 0.175

0.007 0.151 0.072 0.181





(11)

1Stimuli can be found at http://www.ryanstables.co.uk/data/dafx14
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Figure 4: Boxplot representation of inter-player dependence mea-
sured over 15 takes. This is measured using a lagged cross-
correlation function.

Here it is evident that the most highly correlated measurements
taken from the data are based on lagged autocorrelation. This pro-
motes the use of Markov chains in musical performance modelling
as it suggests there is a strong relationship between an event (xn)
and it’s predecessor (xn−1) within the same stream. Generally, the
1st violin has very low correlation scores with the other musicians
in the group with a mean of 0.012 and a very high auto-correlation
measurement. This suggests that they have adopted the role of lead
performer. The other musicians in the group are generally more
positively correlated with each other. Here, both the 2nd Violin
and the viola player are following the lead violin, whilst the Cello
is following the 2nd violin. We can calculate a leadership metric
(lα) for each player by taking the column-wise means, excluding
the autocorrelation measurements at cell αij where i = j. This is
illustrated in Eq. 12.

lα =
{

0.1337 0.1210 0.0703 0.1077
}

(12)
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Figure 5: A boxplot showing subjective listening test results taken
from 20 subjects. The stimuli consisted of 5 samples taken from 5
categories (25 in total).

Here, it is evident that the 1st Violin has the highest degree of lead-
ership, reinforcing the suggestion that the performer has a leading
role within the group.

4.2. Model Evaluation

In order to evaluate the naturalness of the model, we performed
subjective tests to identify the similarity between the generated se-
quences and the performed sequences. The results from the subjec-
tive tests are illustrated in Figure 5. Here, it is evident that the mi-
crotiming sequences sampled from real musicians performed bet-
ter than any of the synthetic samples with a mean score of 77.59%.
The lowest scoring categories were Gaussian and Quantised mod-
els, which scored 22.33% and 21.42% respectively. The samples
that were generated using the proposed multivariate model scored
relatively highly with 63.39%, this was 21.94% higher than the
closest category, which was the univariate model suggested in [5].
This result shows that the multivariate model performs slightly
less favourably than using onsets taken directly from human per-
formers, however it outperforms all existing methods for univariate
modulation.

5. DISCUSSION

5.1. Model Performance

From the analysis of the string quartet, it is evident that the per-
formers all seem to have stronger lagged autocorrelation scores
(αij , where i = j), than cross-correlation scores (i 6= j). This
would suggest that the internal representation of time held by each
player takes priority over the external timings of group perfor-
mance. Whilst these autocorrelation scores are significantly higher
than the cross-correlation measurements, the performers still pro-
duce a sufficient amount of microtiming offset to cause potentially
audible phase errors in the piece. This suggests the model’s de-
pendence matrix (α) is a significant factor as both the univariate
model and the normally distributed model (with equivalent µ and

σ parameters) underperform at producing timing sequences with
natural expressivity. Subjectively, the multivariate model tends to
produce much more confluent sequences than any of the univariate
models running in parallel across multiple channels.

Whilst the subjective listening tests show an increased mean
score for the multivariate model, suggesting the model is able to
produce realistic musical sequences, there is a much higher vari-
ance than in other categories. This means there is uncertainty
within the results, with some participants rating the system as low
as 7/100. This is acceptable to an extent due to the relative uncer-
tainty in the human samples, however it suggests there is room for
improvement due to the inconsistency in results.

5.2. Implementation

Whilst we have demonstrated that the univariate models running
in parallel do not perform particularly well for this application,
the model allows for the conversion between univariate and mul-
tivariate methods by converting α to an identity matrix, imposing
conditional independence on all streams. Similarly, we can alter
the dependencies in α to change the characteristics of the musi-
cal group. If for example, the performance requires the group to
closely follow Violin 1, the values in column 1 can be incremented,
thus increasing the performers’ leadership score (lα). From an im-
plementation standpoint, this is relatively simple to parameterise
as users of the system can input values into the dependence matrix
directly or via some mapping function.

Another key aspect to producing natural sounding rhythmic
performance is tempo variation. In our listening tests, this was
based on existing templates taken from our dataset. In most hu-
manisation systems, this is ignored as control is generally main-
tained by the host application. For systems that wish to include
this attribute, another variable can be added directly to the sum
in Eq. 5, derived using the technique defined in Eq. 8. In the
performances measured for this study, the tempo variation has a
particularly high standard deviation due to the expressive nature of
the music. In other genres such as pop-music, this may not be as
important due to the prominence of quantisation and click-tracks.

6. CONCLUSION

In this paper, we have presented a model for the synchronous mod-
ulation of multiple streams of onsets using a multivariate Markov
model. The model derives parameters from a user-defined cor-
pus of multi-performer musical data and probabilistically applies
modulation to a group of concurrent sequences. We can estimate
the inter-player dependencies using lagged cross-correlation met-
ric and approximate the pulse of the group using the bar-wise mean
of all performers. The model is designed to alleviate the phase is-
sues that arise when humanisation algorithms are applied to mul-
tiple sequences simultaneously.

We have demonstrated that the model outperforms univariate
techniques including an instantaneous pseudorandom model and a
Markov chain model applied independently to multiple channels,
using data from a string quartet performing Haydn’s Quartet Op.
74 No. 1 in C-Major. Through subjective listening tests, we ob-
served an improvement of 21.94% accuracy on the closest syn-
thesized category when measured for naturalness of expression.
Whilst this was a significant improvement, sequences derived di-
rectly from human agents were still perceived to be more expres-
sive than the model, indicating the importance and complexity of
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the interdependence in multi-player musical performance that re-
quires further attention.

7. REFERENCES

[1] L. O’Sullivan and F. Boland, “Towards a Fuzzy Logic Ap-
proach To Drum Pattern Humanisation,” in Proc. of the 13th
Itl. Conference on Digital Audio Effects (DAFx-10), Graz,
Austria, Sept. 19-21, 2010.

[2] M. Wright and E. Berdahl, “Towards machine learning of
expressive microtiming in Brazilian drumming,” in Interna-
tional Computer Music Conference, 2006.

[3] Fabien Gouyon, “Microtiming in samba de roda - prelim-
inary experiments with polyphonic audio,” in Simpósio da
Sociedade Brasileira de Computação Musical, 2007.

[4] Luiz Alberto Naveda, Fabien Gouyon, Carlos Guedes, and
Marc Leman, “Multidimensional microtiming in samba mu-
sic,” in 12th Brazilian Symposium on Computer Music.
SBCM, 2009, pp. 1–12.

[5] Ryan Stables, Jamie Bullock, and Ian Williams, “Perceptu-
ally relevant models for articulation in synthesised drum pat-
terns,” in Audio Engineering Society Convention 131. Audio
Engineering Society, 2011.

[6] Ryan Stables, Cham Athwal, and Rob Cade, “Drum pattern
humanization using a recursive bayesian framework,” in Au-
dio Engineering Society Convention 133, Oct 2012.

[7] Kevin Jones, “Compositional applications of stochastic pro-
cesses,” Computer Music Journal, vol. 5, no. 2, pp. 45–61,
1981.

[8] M. Kaliakatsos-Papakostas, M.G. Epitropakis, and M.N.
Vrahatis, “Weighted markov chain model for musical com-
poser identification,” in Applications of Evolutionary Com-
putation. 2011, vol. 6625 of Lecture Notes in Computer Sci-
ence, p. 334–343, Springer.

[9] Alan M Wing, Satoshi Endo, Adrian Bradbury, and Dirk Vor-
berg, “Optimal feedback correction in string quartet synchro-
nization,” Journal of The Royal Society Interface, vol. 11, no.
93, pp. 20131125, 2014.

[10] ITURBS Recommendation, “1534-1: Method for the subjec-
tive assessment of intermediate quality level of coding sys-
tems,” International Telecommunication Union, 2003.

DAFX-6

DAFx-114



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

STREAMING SPECTRAL PROCESSING WITH CONSUMER-LEVEL GRAPHICS
PROCESSING UNITS

Victor Lazzarini, John ffitch, Joe Timoney

Depts. of Music and Comp. Sci.,
National University of Ireland

Maynooth, Ireland
vlazzarini@nuim.ie,
jpff@codemist.co.uk,
jtimoney@cs.nuim.ie

Russell Bradford

Dept. of Comp. Sci.,
University of Bath

England
rjb@cs.bath.ac.uk

ABSTRACT

This paper describes the implementation of a streaming spec-
tral processing system for realtime audio in a consumer-level on-
board GPU (Graphics Processing Unit) attached to an off-the-shelf
laptop computer. It explores the implementation of four processes:
standard phase vocoder analysis and synthesis, additive synthesis
and the sliding phase vocoder. These were developed under the
CUDA development environment as plugins for the Csound 6 au-
dio programming language. Following a detailed exposition of
the GPU code, results of performance tests are discussed for each
algorithm. They demonstrate that such a system is capable of real-
time audio, even under the restrictions imposed by a limited GPU
capability.

1. INTRODUCTION

Graphics Processing Units (GPUs) have been used for audio pro-
cessing in a variety of environments. Typically, they have been em-
ployed as co-processors in systems where their massively parallel
architectures can be harnessed for signal processing programs[1].
There is now a significant number of reports in the literature demon-
strating their use in the implementation of various algorithms, such
as Ray Tracing [2], Wave-based Modelling [3], SMS[4], Finite
Difference Physical Models[5], to cite but a few.

In this paper we investigate the use of off-the-shelf consumer-
level GPUs for the implementation of frequency-domain audio
processing. In such a scenario, we do not have a separate dedi-
cated co-processor, but rely solely on the on-board GPU that is also
driving the video graphics subsystem. Our goal was to study and
implement efficient algorithms that could overcome the limitations
of the given hardware and possibly deliver realtime performance.
In particular, we are interested in developing applications that can
be employed by users without the need for specialised hardware
setups. Finally, we also envisage that such implementations can,
in a second stage, be applied to dedicated co-processor systems in
high-performance computing applications.

The processes implemented in this paper involve separate Phase
Vocoder (PV) analysis and synthesis, Additive synthesis from PV
data, and a Sliding PV (SPV) algorithm-based frequency domain
effect[6].

1.1. Environment and toolset

The chosen environment involved a NVIDIA GT650M GPU, with
1024MB VRAM (see Table 1), running on OSX10.9. The chosen
parallel development toolset was CUDA 5.5[7], running in con-
juction with the LLVM/Clang C/C++ compiler, with Csound 6.02
as the host for the processing plugins. The choice of environment
was dictated by two concerns: a good match for the target hard-
ware, which CUDA is, and on the hosting side, a well-developed
environment for testing of audio programs, which is provided by
Csound[8] version 6[9].

Table 1: Some specifications for the target GPU

cores 384
clock speed 900 MHz

VRAM 1024MB
compute capability 3.0
max threads/block 1024

bandwidth 80 GB/s
multiprocessors 2

cores per multiprocessor 192

2. PROGRAMMING MODEL

The programming model supported by CUDA abstracts the GPU
processors into a hierarchy of threads, blocks, and grids. At the
lowest level, we have separate threads that can be grouped into
blocks. A grid is a collection of blocks.

Each thread in a block can be given a one, two or three di-
mensional index, to facilitate computation across vectors, matrices
or volumes. All threads in a block live on the same multiproces-
sor, execute in parallel and can share fast memory. Blocks can be
scheduled in parallel in separate multiprocessors. There is an up-
per limit in the number of threads in a block, which depends on
the compute capability of the hardware used, and in the case of the
GT650M is 1024, as shown in Table 1.

Each thread has a local memory space, and can access shared
memory within its block. All threads have also access to global
device memory. The fast shared memory is very limited in size,
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but has a higher bandwidth and lower latency than global memory.
Any memory transfers between host (CPU) and device (GPU) are
costly and should be minimised.

Thread execution is grouped in warps, which contains 32 threads.
For full efficiency, it is advised that all threads in a warp have a sin-
gle execution path. Divergence via conditional branches will force
each branch to be executed serially until these converge back into
the same path. For this reason, it is important to minimise diver-
gent conditionals in the GPU code.

The code executed by a thread is provided in a unit called a
kernel. For all practical purposes, this is a C/C++ function (de-
fined by the CUDA attribute __global__ ) that is designed to
run in multiple copies, concurrently. The CUDA programming ex-
tensions provide a simple syntax to launch a grid of threads based
on a given kernel, with a certain number of blocks and threads per
block.

CUDA programming assumes a heterogenous programming
model, where a host is responsible for allocating and managing
device memory, including data transfers, as well as scheduling the
parallel execution on the device. Under this model, serial sections
of code, running on the host, are interspersed with parallel ones
running in the GPU. This is illustrated by Figure 1.

host (single thread)

device 

(N threads in M blocks)

Figure 1: Heterogenous programming model

3. STREAMING SPECTRAL PROCESSING

Spectral processing is said to be streaming when time domain data
is being windowed and transformed in a continuous fashion from
an input signal (such as a realtime stream from an analogue-to-
digital converter), producing a frequency domain signal of ordered
frames at a given rate [10]. This is opposed to the case where
all the input data is available for processing at once, and is more
restrictive in terms of designing parallel implementations.

Typically, windows will be placed at a constant hopsize, and
new output data is produced at a decimated rate, but there are
also algorithms for sample-by-sample output, such as the sliding
DFT[11], which is used in one of the cases studied. Thus, in the

most common cases, we would only need to process spectral data
at a reduced rate. This allows us to design a program that will use
the GPU as a co-processor to compute the spectral data. The gran-
ularity of such process is then set to hopsize samples. This is the
basic layout of the code discussed in the following sections.

3.1. Integration with Csound

The code discussed in this paper is hosted in Csound 6 as plu-
gin opcodes (unit generators). Processing is done in vectors of
ksmps samples, which can be set to any value above 1, with the
upper value determined by the analysis hopsize in the case of the
standard PV algorithms (no such limit applies to SPV). The PV
analysis, synthesis and additive synthesis opcodes work with fre-
quency domain signals (defined by the fsigCsound type), as well
as the usual time-domain audio (and control signals). Thus, GPU
processing is invoked every hopsize samples, in the case of these
algorithms. The SPV implementation works solely with audio sig-
nals (as it packages analysis, transformation and synthesis in one
single unit generator). It operates in fixed-size batches of 512 sam-
ples, which provide the best compromise in terms of performance
and latency.

3.2. Phase Vocoder Analysis

The steps involved in PV Analysis are detailed in Figure 2 [12].
At the interval of hopsize samples, we window and rotate an input
frame of time-domain data and apply a DFT to it. To obtain the
PV data in a flexible amplitude + frequency (Hz) format, we then
apply a conversion operation that takes the data from rectangular
to polar representations and calculates the one-frame phase differ-
ence at each bin, then converts it from radians per hopsize samples
to cycles per second.

apply window & 

rotate samples 

DFT

rectangular

to polar
Df rad/hs to Hz

Figure 2: PV analysis

These three operations are good candidates for GPU co-processing,
as they can be parallelised. The window and rotation operations
affect each sample separately, so they can be implemented in very
simple kernels.

__global__ void
rotatewin(float* out, float* in, float *win,

int N, int offset){
int k = threadIdx.x +

blockIdx.x*blockDim.x;
out[(k+offset)%N] = win[k]*in[k];

}
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In the code above k is the thread index, which is used to ac-
cess a given sample in the input and output frames, N is the DFT
size and offset is the rotation offset, that depends on the current
frame index and the hopsize. The kernel is made transparent to de-
ployment on any number of blocks, so that decision of how many
threads per block can be made separately (or even dynamically).

Similarly, the conversion to PV parameters is eminently paral-
lel, dealing with each bin separately. Since 0Hz does not need to be
processed, we offset the thread index to start from bin 1. Compu-
tation is done in double precision, but PV data is stored as single-
precision values following the convention for fsigs in Csound.

__device__ double modTwoPi(double x)
{

x = fmod(x,TWOPI);
return x <= -PI ? x + TWOPI :
(x > PI ? x - TWOPI : x);

}

__global__ void
topvs(float* frame, double* oldph,

double scal, double fac){
int k = threadIdx.x +

blockIdx.x*blockDim.x + 1;
int i = k << 1;
float re = frame[i], im = frame[i+1];
float mag = sqrtf(re*re + im*im);
double phi = atan2(im,re);
double delta = phi - oldph[k-1];
oldph[k-1] = phi;
frame[i] = mag;
frame[i+1] = (float)

((modTwoPi(delta) + k*scal)*fac);
}

Finally, the DFT is implemented using the CUDAFFT library
cufftExecR2C() function, which is optimised to run on the
GPU hardware. Processing from real to complex data is in place,
in the format expected by the windowing and rotation, and PV
conversion kernels. This simplifies the memory handling, as there
is only the need to copy the input data to the GPU and copy the
PV output back to the host once. This is the minimum necessary
data transfer to and from the device. The location of the frame,
waveform, and phase history data is not defined in the kernel code,
but in the current implementation, global device memory is used.
Shared memory cannot be used for two reasons: in the case of
waveform and frame data, it would require access to shared mem-
ory pointers by the host which is not available; and in the case of
phase history, it would break the unit generator reentrancy condi-
tion.

In summary, we have the following sequential steps performed
at each hopsize interval:

1. A frame of waveform samples is copied to the device
2. A kernel of N threads running rotatewin() is launched
3. DFT is performed with cufftExecR2C()
4. A kernel of N/2-1 threads running topvs() is launched.
5. A frame of amp + frequency data is copied from the device

Around this GPU-specific code, the host takes care of collect-
ing the input samples into the waveform frames that will be sent to
the device, as well as making the output frequency-domain signal
available to the rest of Csound.

3.3. Phase Vocoder Synthesis

PV synthesis basically re-trace the steps of analysis in reverse (Fig-
ure 3). As before, we have three highly parallel steps. The con-
version from PVS parameters into rectangular spectral data is pro-
vided by the following kernel:

__global__ void
frompvs(float* inframe, double* lastph,

double scal, double fac) {
int k = threadIdx.x +
blockIdx.x*blockDim.x + 1;

int i = k << 1;
float mag = inframe[i];
double delta = (inframe[i+1]

- k*scal)*fac;
double phi = fmod(lastph[k-1]

+ delta, TWOPI);
lastph[k-1] = phi;
inframe[i] = (float) (mag*cos(phi));
inframe[i+1] = (float) (mag*sin(phi));

}

rotate samples 

& apply window 

IDFT

polar to

rectangular
SfHz to rad/hs

Figure 3: PV synthesis

Rotation and windowing is, as in the analysis case, very straight-
forward:

__global__ void
winrotate(float* out, float* in, float *win,

int blocks, int N, int offset){
int k = threadIdx.x +

blockIdx.x*blockDim.x;
out[k] = win[k]*in[(k+offset)%N];

}

The steps involved in PV synthesis are:

1. A frame of PV data is copied to the device
2. A kernel of N/2-1 threads runningfrompvs() is launched.
3. Inverse DFT is performed with cufftExecC2R()
4. A kernel of N threads running winrotate() is launched
5. A frame of waveform samples is copied from the device

3.4. Additive Synthesis

At face value, additive synthesis appears to be a very suitable tech-
nique for GPU implementation, given the fact that it is based on
generating independently-computed sinusoidal streams and mix-
ing them together. However, in practice there are some issues that
need to be solved, namely
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• a suitable sinusoidal oscillator design

• memory use/access

For full-spectrum synthesis using all the analysis data, we use
two steps, both involving independent computations, which can be
parallelised: an oscillator bank, and the parameter update.

In designing the oscillator that will be used we have to con-
sider in particular the fact that conditionals are very costly in GPU
code (as discussed above). A standard table lookup oscillator with
floating-point indexing is not very efficient because of the condi-
tional checks and moduli operations for index bounds. An alter-
native is to use integer indexing and with fast wrap-around using
bitmasks. In addition, we have observed that table memory access
has an inherent cost (even if the table is loaded to shared mem-
ory, which has the fastest access), and direct use of trigonometric
functions is about 23% faster.

The most problematic issue with additive synthesis on the GPU
is memory access, which can take up a significant amount of the
total process time. Additive synthesis, in comparison to PV syn-
thesis, can be relatively memory-hungry. For example, it requires
a minimum of N× H floating-point numbers, where N is the num-
ber of bins and H the hopsize. For the full reconstruction of a
2048-point analysis (1024 bins), hopping by 256 samples, we have
a 1MB memory requirement for single-precision samples. This
memory would need to be accessed twice by the device: for writ-
ing by each oscillator, and for reading at a mixdown stage. In this
particular case, memory access costs can amount to almost 70% of
the total computation time. Reducing the hopsize does not mitigate
the problem, because it will increase the number of times a given
kernel executes. A solution is to use atomic additions, if these are
available and sufficiently fast. In this case, the mix down of each
sample can be at the time of the sample generation, and no further
memory access is required. In the cases where atomic operations
are costly, then we will need to write every partial to memory first,
and, in a second sequential step, mix all of them down (in parallel).
CUDA offers a very efficient atomic addition for float samples, so
we can take advantage of it.

update 

amps & phases 

waveform 

out

PV frame 

in parallel oscillator bank

Figure 4: Additive synthesis

Of course, is always possible to synthesise a smaller number of
bins, which would reduce both memory access and raw computa-
tion. In any case, each sample of each partial can be independently
calculated (see [13]). For this we can spawn N × H kernels, each
contributing a single sample to their respective partial, in effect
parallelising across bins and samples. The additive synthesiser as
implemented here is shown on Figure 4. The kernel used compute
each sample is shown below:

#define MAXNDX ((MYFLT) 0x40000000)
#define PHMASK 0x3FFFFFFF

__global__ void sample(float *out,

float *frame, float pitch,
int64_t *ph, float *amps,
int bins, int vsize, MYFLT sr) {
int t = (threadIdx.x +

blockIdx.x*blockDim.x);
int n = t%vsize;
int h = t/vsize;
int k = h<<1;
int64_t lph;
float a = amps[h], ascl = ((float)n)/vsize;
MYFLT fscal = pitch*MAXNDX/sr;
lph = (ph[h] + (int64_t)
(n*round(frame[k+1]*fscal))) & PHMASK;

a += ascl*(frame[k] - a);
atomicAdd(&out[n],

a*sinf((2*PI*lph)/FMAXLEN));
}

It takes in single-precision amplitudes and frequencies in a PV-
format frame, which has been copied from the host into the de-
vice, and writes its output sine wave to out, For sake of efficiency,
we interpolate amplitudes linearly, but frequencies only change at
hopsize intervals. Output memory is accessed via an atomic ad-
dition. The layout of kernels with respect to bins and samples is
shown in 5.

...

...

0 H-1

(N-1)H NH-1

N
 b

in
s

H samples

Figure 5: Layout of kernels for additive synthesis

The synthesis expression for each kernel is given by

shn(n) =
{
ah(t− 1) + [ah(t)− ah(t− 1)]

n

H

}
×

sin(φh(t) + ωh(t)n)
(1)

where h and n are the bin and sample indexes, respectively,
H is the hopsize, and t is the time in hopsize samples. The bin
amplitudes are found in ah(t) and ωh(t) = 2π fh(t)

fs
are the bin

frequencies (with fs as the sampling rate and fh the bin frequency
in Hz).

A separate second step is needed to update the synthesis pa-
rameters for each bin (amplitudes and oscillator phases). The phases
φh(t) are updated according to:

φh(t+ 1) = φh(t) + ωh(t)H (2)

and the amplitudes are updated directly from the input PV
frames. This operation is parallel across bins:

__global__ void update(float *frame,
float *amps, int64_t *ph,
int vsize, MYFLT sr){
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int h = threadIdx.x
+ blockIdx.x*blockDim.x;

int k = h << 1, i;
ph[h] = (ph[h] + (int64_t)

(vsize*round(pitch*frame[k+1]*MAXNDX/sr)))
& PHMASK;

amps[h] = frame[k];
}

The memory transfer from device to host that follows the ex-
ecution of these kernels is limited to a hopsize vector of floating-
point samples.

3.5. Sliding Phase Vocoder

If the hopsize is set to its smallest value, 1, the process can be
seen in another way. The advantages and drawbacks are described
elsewhere[6], but the algorithm is highly parallel. This can be seen
as the extreme case for phase vocoding, but it offers possibilities
for use of the GPU architecture.

3.5.1. The Underlying Mathematics

The Discrete Fourier Transform (DST) is defined by the formula

Ft(n) =

N−1∑

j=0

fj+te
−2πijn/N (3)

where the PCM-coded input signal is ft, and Ft(n) are the n fre-
quency (complex) amplitudes for time t, and N is the (assumed)
cyclic period of the signal.

If we know the values Ft(n) we can determine Ft+1(n):

Ft+1(n) =

N−1∑

k=0

fk+t+1e
−2πik n

N (4)

=
N∑

k=1

fk+te
−2πi(k−1) n

N (5)

=

(
N−1∑

k=0

fk+te
−2πik n

N − ft + ft+N

)
e2πi

n
N (6)

= (Ft(n)− ft + ft+N ) e2πi
n
N (7)

If the values of Ft(n) are kept on the GPU the need for data
transfer is much reduced, but we can make use of the transfer of
blocks of data for ft and ft+N at the expense of some latency.

There is however an immediate problem; the window cannot
be applied in the time domain. The solution in this case is to apply
the window as a frequency-domain convolution. That is to say, it
can be applied after the calculation of the DFT as multiplication
of the spectral transform of the window. Indeed for cosine-based
windows this operation is simple[14].

In the paper by Moorer ([15]) a complicated inverse formula
is developed. However it requires N2 data to be maintained and is
clearly impractical, especially on a memory-limited GPU. Instead
we use a direct calculation of the definition of the inverse DFT:

ft =
1

N

N−1∑

n=0

Ft(n)e
2πitn/N (8)

but as we only need consider one value of t for each frame this is
more efficient than the formula would suggest. For a single point
t = 0 this simplifies to

1

N

N−1∑

j=0

F0(j) (9)

3.5.2. Implementation

A GPU-based Csound opcode was developed from the code in
[16], where we take an audio input, apply a Transformational FM
process[6] and resynthesise it. In this application, the sliding PV
allows the unique effect of audio-rate frequency modulation of
spectral data. The initialisation function is required to organise
CUDA memory for the bin data and the pre-calculate a number
of constants (e.g. e2πi

n
N ). The main processing is done in small

vectors of samples and it involves the following steps

1. A vector of samples is copied to the device

2. The sliding DFT is performed (on sample-by-sample basis),
in parallel across bins by N/2+1 slide() threads (where
N is the DFT size).

3. DFT to PV conversion, followed by frequency modifica-
tion, and finally, PV to DFT conversion is performed by
N/2+1 fmsyn() threads

4. Reconstruction is performed in parallel across the time-domain
samples by vectorsize reconstruct() kernels.

5. A vector of samples is copied from the device to the host

4. RESULTS AND DISCUSSION

In this section, we would like to demonstrate that it is possible
to execute all of the code discussed in realtime, with low-latency
wherever possible, which was the original requirement that we
have set out to prove. In testing these conditions, we employ a
soundfile as input to the process, and make the requirement for re-
altime that computation time is less than the duration of input data.
For a low-latency condition, we need to have the ratio between
computation time and input duration fairly small so that any sig-
nificant jitter in the computation load is not translated as dropped
samples (also known as xruns). Tests included running the code
to the digital-to-analog converter in realtime using buffer sizes of
128 frames (3ms at fs = 44100) without xruns, which can also
characterise a low-latency condition. Timings were taken from the
total computation time recorded by Csound, which lumps the se-
rial and parallel code, but since the interest here is the feasibility of
the system as whole, this is exactly what we want to measure. The
reported times are the average of five runs, but we have observed
very little deviation in the individual results. Below, we discuss
the individual results for each process.

4.1. PV analysis

The following Csound 6 code was used to test the PV analysis
process. It consists of a soundfile input, the GPU-run analysis
(cudanal) and a standard CPU-based PV synthesis (pvsynth,
also used to provide a means to check the correctness of the out-
put).
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/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* GPU PV analysis */
fsig = cudanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* PV synthesis */
asig = pvsynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)
out(asig)

Table 2: GPU PV analysis program times for a 60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 2.95
(1024, 256) 1.68
(2048, 256) 2.20
(2048, 512) 1.28

For this algorithm, we have observed that the best performance
is obtained by maximising the number of threads in a block. Thus
we distribute the threads so that they fill the blocks completely,
up to the limit of 1024 threads. Since the number of threads is
determined by the DFT size, we will be using single blocks for
transforms of less than 1024 samples and multiple blocks above
this.

The times for a 60-sec run of the program with various com-
binations of DFT size and hopsize are shown in table 2. This indi-
cates that the best match in terms of performance is that of a 2048
transform every 512 samples. We can assess this as a generally
efficient performance, with timings more than 20× faster than the
realtime limit.

4.2. PV synthesis

Similarly to above, in order to isolate the performance of the syn-
thesis process, we employ a program that uses an analysis element
running in the CPU (pvsanal), followed by the GPU synthesis
code (cudasynth):

/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* PV analysis */
fsig = pvsanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* GPU PV synthesis */
asig = cudasynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)

out(asig)

Results are shown in table 3. They also indicate a reasonable
performance, confirming the best combination of parameters ob-
tained in the analysis tests.

4.3. PV analysis & synthesis

Also interesting is the combination of GPU analysis and synthesis,
and following the results above, we can predict that they will be

Table 3: GPU PV synthesis program times for a 60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 3.30
(1024, 256) 1.84
(2048, 256) 2.65
(2048, 512) 1.44

well within realtime capabilities. This is the program used (and
the results are shown on Table 4):

/* soundfile input */
asig = diskin:a("flutec3.wav",1,0,1)
/* GPU PV analysis */
fsig = cudanal(asig,

ifftsize,
ihopsize,
ifftsize, 1)

/* GPU PV synthesis */
asig = cudasynth(fsig)
asig = linenr(asig,0.005,0.01,0.01)
out(asig)

Table 4: GPU PV analysis & synthesis program times for a 60-sec
run.

(DFT size, hopsize) time (secs)
(1024, 128) 4.72
(1024, 256) 2.57
(2048, 256) 3.03
(2048, 512) 1.73
(4096, 512) 1.98
(4096, 1024) 1.20
(8192, 1024) 1.64
(8192, 2048) 1.01

(16384, 2048) 1.38
(16384, 4096) 0.86

These results demonstrate that a full PV analysis/synthesis
program can be run quite efficiently on the GPU. However, if we
compare it to PV code run sequentially in a high-performance CPU
(in this case based on a 2.8GHZ Intel I7 processor), we see that it
does not compare too well (Table 5) unless the DFT size is sig-
nificantly large. Even though the scope of this research is not to
draw comparisons between CPU and GPU capabilities for audio
processing, it is important to note these results. The major short-
comings of the GPU for the particular processes discussed here are
to do with the costs involved in launching kernels in a reasonably
fine grain (determined by the hopsize), and memory access. If we
examine the sequential steps involving the GPU in the analysis or
synthesis code, we will see that these are the most costly portions
of the code (with their average computation load):

• memory transfers: 40 - 45%

• FFT: 30 - 35%

• PV parameter conversion: 15 - 20%
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None of these issues are particularly avoidable as they are not
represented in sections of code that are good candidates for opti-
misation.

Table 5: CPU-based PV analysis & synthesis program times for a
60-sec run.

(DFT size, hopsize) time (secs)
(1024, 128) 1.24
(1024, 256) 0.69
(2048, 256) 1.28
(2048, 512) 0.70
(4096, 512) 1.34
(4096, 1024) 0.74
(8192, 1024) 1.36
(8192, 2048) 0.75

(16384, 2048) 1.40
(16384, 4096) 0.77

Nevertheless, the results point to the fact that the GPU may
be used as a means of freeing up some computation load from the
CPU in a multicore/multiprocessor operation scenario. We also an-
ticipate a considerable speedup on more capable hardware, where
we are likely to see the GPU outperforming these CPU results.

4.4. Additive synthesis

In general, Additive synthesis does not perform as well as PV syn-
thesis, and in the parallel case there is still a significant difference
in performance between the two techniques, even if at times it is
the gap is considerably less than in the serial case. The program
used for tests is the following (cudasynth implements the addi-
tive algorithm):

asig = diskin:a("flutec3.wav",1,0,1)
fsig = pvsanal(asig, ifftsize, ihopsize,

ifftsize, 1)
asig = cudasynth(fsig,1,1,ibins)
asig = linenr(asig,0.001,0.01,0.01)
out(asig)

The results are shown in Table 6, with regards to bins and hop-
sizes (DFT sizes are shown for completion, but they do not influ-
ence computation load), with GPU and CPU times side-by-side. A
highly optimised serial additive synthesis algorithm was used for
this comparison, replacing the cudasynth opcode in the listing
above.

Overall, the performance is still well within the range for low-
latency realtime performance (< 12% of total input duration at the
worst case), Comparatively, additive synthesis proves to be a good
match for the GPU, especially in the case of full-spectrum recon-
struction, and with larger hopsizes. The parallel code performs
worse only in the case where the hopsize is small comparatively to
the number of bins. This is mostly due to the fact that, in this case,
the balance between the parallel load and the process granularity
is not ideal. We can observe that this makes an important contribu-
tion to the computation cost. The granularity penalty is shown by
comparing the cost of calling one grid of 65536 threads (256 bins,
256 hopsize) and two grids containing 32768 threads each (256,
128), where we observe almost 100% slowdown. This shows that

GPUs are more suited to larger batches of data, which is not ideal
in the streaming processing case.

Table 6: GPU additive synthesis program times for a 60-sec run.

(DFT size, bins, hopsize) GPU time (secs) CPU time (secs)
(1024, 128, 128) 4.93 3.28
(1024, 128, 256) 3.70 3.01
(1024, 256, 128) 7.20 5.77
(1024, 256, 256) 3.37 5.46
(1024, 512, 256) 4.20 10.76
(2048, 256, 512) 3.04 5.65
(2048, 512, 512) 3.94 10.55

(2048, 1024, 512) 6.87 20.89

These results are very encouraging, and follow other reports
of additive synthesis, such as [13], but are not as extremely per-
formant as one might anticipate (the best speed up is of the order
of 3) . However the conditions in our case are much more restric-
tive than in other tests. We have implemented here a fully-flexible
general-purpose application of additive synthesis, where we can-
not run the processing in large batches, or apply other cost-saving
measures that would maximise the GPU processing load. In partic-
ular, in order to keep latency and realtime control to a satisfactory
minimum, as well as have good reconstruction quality, process-
ing granularity is never bigger than 1/4 DFT size. We also should
note that the results obtained in [17] are more in line with the ones
reported in this paper.

4.5. Sliding PV

The sliding phase vocoder CUDA opcode (cudasliding) com-
bines analysis, frequency scaling and resynthesis. It was tested
with the Csound program

asig = diskin:a("flutec3.wav",1,0,1)
amod = 1
asig2 = cudasliding(asig,amod,idftsize)
asig = linenr(asig2,0.005,0.01,0.01)
out(asig)

and the performance compared with a similar program running
solely on the host computer CPU.

Table 7: GPU and CPU sliding PV program times for a 60-sec
run.

DFT size GPU time (secs) CPU time (secs)
512 33.05 68.794
1024 37.98 138.29
2048 54.99 272.33

The results are shown in Table 7. As can be seen that the
times using the GPU are within real time, but considerably slower
than the standard phase vocoder with GPU support (Table 4). The
figures also are slower than reported by [16] on different hardware
with more computing capacity. It also suggests that much more
work will be needed if the Sliding Constant-Q algorithm[18] that
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needs three streams of SDFT to be calculated is to be available for
realtime on consumer-level GPUs.

5. CONCLUSIONS

In this paper, we set out to investigate the implementation of stream-
ing spectral processing operations in a consumer-level GPU at-
tached to an off-the-shelf desktop computer under a commonly-
used music programming environment, Csound. The full CUDA
source code for these unit generators, and a CMake build script,
can be found in the Csound git repository:

https://github.com/csound/csound.git

These opcodes are fully integrated into the standard system
and are included in the present release (6.03, April 2014).

We have demonstrated that each one of the processes detailed
here can be executed in realtime with low latency. The standard
algorithms can all generally be executed with good performance,
and, among these, additive synthesis is comparatively less effi-
cient, although the parallel version generally outperforms the se-
rial one. With the novel SPV process, we see significant gains,
with up to 5× speedup, where the improvements allow the code to
be used in realtime. We have identified that the major costs are re-
lated to memory transfers from host to device and vice-versa, and
device memory access. We believe that this work demonstrates
that consumer-level GPU processing can be harnessed for audio
applications. In particular a number of novel digital audio effects
can be designed to take advantage of the GPU implementation for
realtime performance.
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ABSTRACT

In this paper a novel algorithm for sound texture synthesis is pre-
sented. The goal of this algorithm is to produce new examples of
a given sampled texture, the synthesized textures being of any de-
sired duration. The algorithm is based on a montage approach to
synthesis in that the synthesized texture is made up of pieces of
the original sample concatenated together in a new sequence. This
montage approach preserves both the high level evolution and low
level detail of the original texture. Included in the algorithm is a
measure of uniqueness, which can be used for the identification
of regions in the original texture containing events that are atypi-
cal of the texture, and hence avoid their unnatural repetition at the
synthesis stage.

1. INTRODUCTION

Sound textures are a class of sounds typically associated with the
background of a scene that are somehow repetitive; for example
rain, fire, or machinery. It is difficult to define precisely the prop-
erties of sound textures. Saint-Arnaud and Popat [1] offered some
suggestions towards a working definition. They suggest that sound
textures should, in some sense ‘exhibit similar characteristics over
time’; that is that one short snippet of a texture should exhibit sim-
ilarities to another. They also suggest a two level description of
textures. At the low level atoms of the texture are time localized
sound elements, and the higher level describes the distribution of
these atoms. They note that while such an atomic model is some-
times relevant to the physics of the texture, e.g. rain, they do not
intend it as a general physical description. They give some points
summarizing their working definition of sound textures.

1. Sound textures are formed of basic sound elements, or atoms.

2. Atoms occur according to a higher-level pattern, which can
be periodic, random, or both.

3. The high-level characteristics must remain the same over
long time periods (which implies that there can be no com-
plex message).

4. The high-level pattern must be completely exposed within
a few seconds attention span.

5. High-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make a
good example of the random properties.

McDermott et al [2, 3] suggest that given the temporal homo-
geneity of sound textures they can be characterized by time aver-
aged statistics. This approach was inspired by previous work on
image textures [4]. This hypothesis was tested by synthesizing

various textures by imposing the statistics of a particular texture
on a white noise sample. The statistics used described the ampli-
tude envelopes of the textures after being passed through an au-
ditory filterbank. These statistics included the first four moments
of the envelopes, cross correlation between envelopes, and some
measures relating to the autocorrelation of each envelope. The
resulting synthesized sounds were not intended to be perceptually
accurate reproductions, rather they were meant to test their hypoth-
esis. They found that the synthesized sound textures could indeed
be identified.

These studies give important insights into the requirements
of a synthesis algorithm. There are many approaches to sound
texture synthesis (for a thorough review of the literature see [5]).
Broadly speaking, we can group these methods into model based
approaches where the signal is synthesized from model parame-
ters, and sampling or granular approaches where content from the
original signal is used in the synthesized signal.

For many applications, such as cinema and computer games,
realism of the synthesized sound is paramount. Sampling based
methods can bring realism as they contain elements of the target
sound. Some previous sampling based algorithms [6, 7] look for
points of change to segment texture signals, these segments are
then concatenated in a probabilistically determined sequence to
produce the synthesized texture. The algorithm of Dubnov et al.
[8] uses similarity in history and scale to select sampled wavelet
coefficients. Drawbacks of sampling based methods include repe-
titions of parts of the original signal, difficulty modeling the higher
level structure of the texture, and smooth concatenation of the sam-
pled elements.

The proposed algorithm falls into the sampling based category.
It looks to exploit regions of similarity in the original texture to in-
form the sequencing of sampled elements. There are two levels
to the synthesis model. Longer term sections, called segments,
are used to model the higher level structure of textures. These
segments are synthesized from the concatenation of shorter term
sections, called atoms. Atoms preserve the local structure of the
texture. The sequences of both the segments and atoms are mod-
eled probabilistically, this avoids repetition in the synthesized tex-
ture. A new overlap add method is introduced for concatenation.
This enables concatenation with short overlap without introducing
perceptible modulations.

The paper is organized as follows: Section 2 discusses the re-
lationship of the algorithm to the properties of sound textures out-
lined in section 1. Section 3 presents the basic algorithm in detail
while section 4 extends the algorithm to deal with unique events.
Section 5 presents some sound examples. Section 6 presents some
conclusions and possible future work.

DAFX-1

DAFx-123



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

2. THE RELATIONSHIP OF THE MONTAGE
APPROACH TO SOUND TEXTURE PROPERTIES

As stated in the introduction, the montage approach to texture syn-
thesis has two levels; segments and atoms. Segments are used to
model the high level structure of the texture. By high level struc-
ture we mean features that determine the long term structure of a
texture such as quasi-periodicity (e.g. pneumatic drill) or random-
ness (e.g fire). At the lower level atoms preserve the local structure
of the segments.

Segments are modeled after longer sections of the texture. There
is not a set length for a segment, rather they have user defined min-
imum and maximum lengths. The length of each segment is de-
pendent on the selection of its successor. The sequencing of seg-
ments is informed by both local similarity for concatenation, and
longer term similarity for preserving higher level structure. This
sequencing has a probabilistic element to avoid repetition in the
higher level structure of the synthesized texture.

These segments are used as templates for the synthesized tex-
ture. The segments are synthesized by a process of atom substitu-
tion. The original texture is split into atoms. These atoms all have
the same user defined duration. For each atom a number of candi-
dates are selected as possible replacements. These candidates are
selected from throughout the texture based on the local similarity
of the envelopes from an auditory filterbank analysis. This ‘enve-
lope matching’ preserves the phase of envelope modulations in the
synthesized texture. The synthesis of segments consists of substi-
tuting each of the original atoms with one of its qualifying candi-
dates (including itself as one of the candidates). The selection of
substitutes is probabilistic. This process preserves local structure
and introduces new variation over the duration of the segment not
present in the original texture. This is to avoid repetition on the
atom scale in the synthesized texture.

The algorithm can be considered in terms of the properties of
sound textures suggested by Saint-Arnaud and Popat [1] quoted in
section 1.

• The presented model synthesizes textures from atoms.

• The high-level pattern of the atoms is preserved by sequenc-
ing them according to segments of the original texture. If
there is periodicity in the texture it can be reproduced be-
cause the atoms will be aligned according to the original
texture, this effectively matches the phase of the envelopes.
Likewise randomness is maintained by randomizing both
the selection of segments from the candidate successors and
the choice of atom from the candidates for substitution.

• New high level structure will be introduced due to the se-
quencing of segments. As the long-term similarity of seg-
ments are matched this new structure should be coherent
with the original texture.

The algorithm can also be considered in terms of the statistical
description of the envelopes suggested by McDermott in [3].

• If the segments are distributed approximately evenly over
the duration of the synthesis the moments of the envelopes
will be approximately equal to those of the original.

• As the atoms are sampled from the original texture the lo-
cal synchronicity of the envelope modulations is preserved.
This is related to cross correlation of the envelopes in Mc-
Dermott’s texture model.

• The matching of atoms over localized time and frequency,
the sequencing of atoms from segments of the original, and
the transitions based on history all relate to the autocorrela-
tion of the envelopes; the atom sequencing preserving local
modulations and the segment sequencing preserving/synthesizing
longer term modulations.

3. THE ALGORITHM

In this section the algorithm for analysis and synthesis of textures
using the proposed approach is described. After the analysis phase
the choices for synthesis are tabulated; all possible segments have
candidates for their successors and each atom of the texture has
candidates for substitution.

3.1. Analysis

The analysis stage of the montage approach involves finding re-
gions in the texture that are in some way similar - this is necessary
both for the selection of candidates for segment succession and the
selection of candidates for atom substitution. The first step in the
analysis is to represent the signal in a suitable form. As ultimately
we are concerned with the perceptual closeness of the synthesized
signal to the original a perceptually informed representation of the
signal is utilized.

As much of the salient information in textures is contained in
the envelopes of the auditory bands [3], a suitable comparison for
similarity is taken to be a comparison of the time evolving energy
from an auditory filter bank. The short time Fourier transform is
a common and suitable processing platform, and so the algorithm
will be presented in the context of the STFT.

The STFT is given by:

X (l, k) =

N−1∑

n=0

x (n) ω (n − lh) e
−i2πnk

N . (1)

Where l is the frame number, k is the frequency bin, N is the
analysis window length and h is the hopsize.

Taking the envelopes to be the energies in subbands distributed
according to the ERB scale:

engEnvb (l) =

kb2∑

k=kb1

|X (l, k)|2 Hb (k) . (2)

Where kb1 is the first bin and kb2 is the last bin of the bth band
and H is a bank of (frequency domain) band pass filters.

The envelopes then undergo further perceptual processing. The
perceived change in loudness with intensity approximately obeys
a power law. Hence the envelopes are compressed nonlinearly to
simulate this. Each band is also scaled according to the equal loud-
ness curve.

envb = (engEnvb/L (fb))
0.3 . (3)

Where L is the loudness curve, fb is the centre frequency of the
bth band and 0.3 is an experimentally determined exponent [9].

This gives a perceptually informed time/frequency representa-
tion of the signal sampled at the rate of the STFT analysis. Here we
will refer to each time slice of both the STFT and the perceptually
processed STFT as a frame.

The next stage in the analysis divides this representation of the
signal into atoms. Each atom comprises several analysis frames
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Figure 1: Selection of candidates for an atom

and have a 50% overlap with neighboring atoms. The atoms should
be long enough to enable the comparison of envelopes and short
enough to ensure enough variation in the synthesized texture. In
our example set [10] we use 0.1s as the atom duration. This gives
us a time/frequency representation of each atom. Each of these
atoms undergoes further analysis; looking for similar regions over
the duration of the texture.

3.1.1. Candidates for Atom Substitution

For each atom a difference function is created. This difference
function gives us a measure of the difference between the atom
under consideration and the associated region of the texture. The
difference function for the ath atom at the lth frame is given by:

da (l) =
√∑F−1

f=0

∑B
b=1 {envb (l + f) − envb (aF/2 + f)}2

√∑F−1
f=0

∑B
b=1 {envb (l + f)}2

. (4)

Where F is the number of frames in an atom and the atoms have a
50% overlap, i.e. an atom hopsize of F/2. This difference function
is calculated at intervals of a single frame. This difference measure
corresponds to the normalized euclidean distance between the au-
ditory envelopes of the atom and the auditory envelopes of the tex-
ture from the lth to l + F − 1th frame.

A set of substitution candidates for each atom is selected from
local minima in the difference function. There is a minimum time
distance between selected candidates, dependent on the number
of candidates to be selected. This is to ensure that candidates are
selected from across the duration of the analyzed texture. This
can be important for the selection of segments successors, as the
candidates for substitution will also be considered as candidates
for segment successors, and for this purpose it is desirable to have
candidates spread over the duration of the texture.

An example of a difference function and candidates for a sin-
gle atom of a texture are shown in Figure 1 for a helicopter sample
(available to listen to at [10]). This is a quasi periodic texture, and
this example illustrates how periodicity of events can be preserved
with this model. Note that the envelope of the candidates is in
phase with the envelope of the original atom. It is not necessary to

Figure 2: Transition from reading one segment to starting another

retain the difference function after the analysis of an atom. Once
the candidates for substitution are tabulated the difference func-
tion can be discarded. The result of the atom analysis is a list of
pointers to the addresses in the original STFT of candidates for
substitution and a normalized difference value for each of the can-
didates.

3.1.2. Candidates for Segment Successors

During synthesis segment succession occurs by substituting the
last atom of the current segment with the beginning of its suc-
cessor. And so each atom will be considered as a potential end
of a segment and its candidates for substitution as a potential be-
ginning for a succeeding segment. For segments, as well as the
local similarity from the atom analysis, a longer term compari-
son is used. This is termed the history for the segment. Hence, a
history comparison is also made between each atom and its candi-
dates for substitution. This will be used to judge the possibility of
a segment succession at the location of the atom during synthesis.
No difference function is created as the history is only calculated
for already found atom candidates.

As each segment has a minimum and maximum duration, the
succeeding segment will begin between these points (see section
3.2.1). And so in the analysis phase each atom in this range is con-
sidered as a possible transition point from the current segment to
its successor. This can be considered as a moving window anal-
ysis, the window length being the maximum minus the minimum
duration of a segment. An example of a subset of possible segment
succession points found for a texture is illustrated in Figure 2. For
each step in this analysis there are typically many candidates. For
example, for a single instance of this analysis if the difference be-
tween the minimum and maximum length between transitions is
1.5 seconds, and there are 20 atoms per second and 10 candidates
per atom then there are 300 candidate points to consider as possi-
ble transition points. Only the succession points with the lowest
measured difference are considered, again the selected succession
points spanning the duration of the texture. The outcome of the
succession analysis is a table of pointers for candidate segment
end points for the current segment, associated difference values,
and associated starting points for the next segment.

3.2. Synthesis

During synthesis the segment sequence is selected. From this the
sequence of atoms is derived. These atoms are concatenated in
the STFT domain before inverse Fourier transform and final over-
lap/add in the time domain are performed.

DAFX-3

DAFx-125



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 3: Sequence of transition in synthesized texture vs origin in
original texture.

Figure 4: Sequence of atoms in synthesized texture vs origin in
original texture.

3.2.1. Sequence Model

Starting from a random point in the original texture the algorithm
selects successive segments from the candidates selected during
analysis. This high level navigation of the texture acts as a tem-
plate for the synthesized texture. There are some constraints on
the choice of succeeding segments:

1. A segment must be at least a minimum, user defined, length.

2. A segment has a maximum, user defined, length.

3. If the succeeding segment occurs some time before the cur-
rent segment in the original texture that time must be greater
than a user defined minimum (at least equal to the length of
the transition ’history’).

The first constraint serves two functions: it prevents the syn-
thesized texture from jumping too much and it allows the candi-
dates for succeeding segments to be selected in the analysis phase.
The second constraint prevents keeping the same high level struc-
ture as the original for long periods. The third prevents repeating
parts of the high level structure in rapid succession.

Once a segment successor is selected the duration of the cur-
rent segment is determined. The atoms for this segment can then
be substituted probabilistically with the candidates selected during
analysis, each of the qualifying candidates given equal probability
of selection. A difference threshold can be used in the selection
of atom substitutes. This defines the maximum difference allowed
between atoms and possible switches. It was found that taking the
median value of the normalized difference of all the candidates for
all the atoms was an effective value for thresholding. An example
of the sequencing of transitions and substitutions is illustrated in
Figure 3 and 4.

The process of segment succession and atom substitution can
continue for any desired period of time, producing varied textures
which are perceptually similar to the original.

3.2.2. Overlap Add Operation

If we see the atoms as pieces of a jigsaw, the overlap-add operation
can be seen to be a way of squeezing in pieces similar to the origi-
nal into their place. Straightforward overlap-adding of broad band
noise leads to modulations due to phase interference. Here a new
solution to this problem is proposed. The cross fade of the atoms
is done in the STFT domain. The number of frames involved in
the cross fade is dependent on the bin number of the DFT (i.e. it is
frequency dependent). The cross fade region is taken to be 4 times
the inverse of the bin center frequency (i.e. 4 times the period),
with a maximum of half the number of frames in an atom and a
minimum of a single STFT frame. For bins with an overlap region
less than half an atom length the point of maximum cross fade (i.e.
50%) is positioned at the point of least interference. This point is
taken to be the point at which the absolute value of the complex
difference in the overlap region is minimum.

4. DEALING WITH UNIQUE EVENTS IN THE TEXTURE

Often sampled textures contain local events that are uncharacter-
istic of the long term texture. Such events can be due to a record-
ing artifact, an unwanted event in the recording, or a unique local
event that is part of the process creating the texture. At the syn-
thesis stage it may be desirable to avoid using atoms that contain
such unique events as their repetition may be noticeable and artifi-
cial sounding in the synthesized texture; highlighting the sampling
process and losing the naturalness of the synthesized texture.

Strobl [11] in a study of the concatenative algorithms of [6]
and [7] refers to such events as ’disturbing elements’, and proposes
to identify them manually. Here we propose a method for identi-
fying such elements that is a straightforward and natural extension
to the montage approach.

There are two basic steps to this algorithm; 1) identify the
unique region and 2) replace it with a qualifying piece of the tex-
ture. The replacement step allows the synthesis algorithm de-
scribed above to remain unchanged.

To identify events the difference measure obtained from 4 is
utilized as a measure of the uniqueness of atoms. After the initial
analysis stage each atom has a number of its closest matches from
throughout the texture. The difference between an atom and its
best match is taken to be a measure of its uniqueness.

A user defined parameter defines which atoms are to be re-
placed. This user parameter is a threshold and is stated as percent-
age of the maximum uniqueness found for the analyzed texture.

In order to find a region to replace the region selected as unique
we again use the difference value defined by 4. Here we use a sum
of the difference functions for the atoms adjacent to the selected
region. The difference function of the latter atom in the sum is
delayed by the appropriate time:

du (l) = da1 (l) + da2 (l + (wu + 1) F/2) . (5)

Where du (l) is the difference function used for finding the best
match for the uth unique region, da1 is the difference function
for the a1th atom (the adjacent atom previous to the uth region)
and da2 is the difference function for the a2th atom (the adjacent
atom following the uth region). The minimum of this function
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(a) Original with click highlighted.

(b) Click identified and replaced.

Figure 5: Example of identifying and replacing unique elements
in a sampled texture.

gives the closest matching region, according to our measure, to
replace the region identified as being unique. Once this region is
identified the analysis described in section 3.1.1 is performed for
the replacement atoms. Also, reference to the replaced atoms as
substitutes for other atoms should be removed. Synthesis can then
be performed as described in section 3.2.

An example of this is shown in figure 5. This is a recording of
a steam train which contains a single ‘click’ sound. This ‘click’ is
identified as the most unique region in the texture. For synthesis
it is replaced as described above. This method can also be used
to repair damaged recordings as is illustrated in figure 6. This il-
lustration shows the spectrograms of helicopter sample, the same
sample with a piece deleted, and the sample with the deleted piece
replaced using the above method. Note how the approximate pe-
riod of the events is preserved. The samples used to illustrate this
are available at [10].

5. RESULTS

The presented algorithm was used to synthesize both textures con-
taining quasi periodic elements and textures of a more random na-
ture. The synthesized samples are twice the duration of the origi-
nals. The original samples were taken from [3]. The details of the
synthesis for these sounds are as follows: the atom length was set
to 0.1 seconds, the history set to 0.5 secs, and the maximum dura-
tion before a new transition set to 2 seconds. 20 candidates were
selected for each atom, and 5 candidates selected for each transi-
tion. The transition candidates were selected by a simple sum of
the normalized distance of the atom (local) difference and differ-
ence in histories. These examples can be found at [10].

6. CONCLUSIONS

In this paper an efficient and versatile algorithm for sound texture
synthesis was presented. For efficient synthesis the atom and tran-
sition candidates can be tabulated from the analysis phase. Syn-
thesis is then a fairly straightforward overlap add procedure in
the STFT domain. The algorithm fulfills many requirements of a

(a) Original.

(b) With missing piece.

(c) Missing piece replaced.

Figure 6: Example of replacing a missing or damaged piece of a
sampled texture (quasi-periodic helicopter).

sound texture synthesis algorithm. At the low level the textures are
synthesized from atoms and these atoms are sequenced to model
the higher level organization of the original sound texture. Repeti-
tions are avoided by introducing randomness in the sequencing of
both the atoms and the segments, and smooth transitions are con-
structed by taking account of local similarity, longer history and a
new overlap/add method.

While there are a number of user defined parameters in this
algorithm, these parameters are not abstract, they have a natural
relationship with the synthesis.

For the atom analysis the STFT hopsize determines the tem-
poral resolution of the atom analysis, while the atom duration and
difference threshold for substitution affect the variation of the tim-
bre of the texture. For the segment sequencing the history length
defines the region in which to compare the context of the high level
structure, while the minimum and maximum length determine the
high level variation.

The synthesis examples ([10]) show that for a large class of
textures the synthesis is not extremely sensitive to these parame-
ters. However, if there are extended events or a lot of variation in
the original texture it may be beneficial to constrain the variation
in the synthesized texture, i.e. lower the difference threshold for
atom substitution and extend the history and minimum segment
length.

As well as texture synthesis the algorithm has applications to
editing textures, such as removing unique events or damaged por-
tions of a sampled texture. The results seem very promising for a
wide range of textures; from quasi periodic to random processes.
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ABSTRACT

The continuous wavelet transform (CWT) can be seen as a filter-
bank having logarithmic frequency subbands spacing similar to the
human auditory system. Thus, to make computers imitate the sig-
nificant functions of the human auditory system, one promising
approach would be to model, analyze and process magnitude spec-
trograms given by the CWT. To realize this approach, we must be
able to convert a processed or modified magnitude CWT spectro-
gram, which contains no information about the phase, into a time
domain signal specifically for those applications in which the aim
is to generate audio signals. To this end, this paper proposes a fast
algorithm for estimating the phase from a given magnitude CWT
spectrogram to reconstruct an audio signal. The experimental re-
sults revealed that the proposed algorithm was around 100 times
faster than a conventional algorithm, while the reconstructed sig-
nals obtained with the proposed algorithm had almost the same
audio quality as those obtained with the previous study.

1. INTRODUCTION

The continuous wavelet transform (CWT), also known as the
constant-Q transform, is used as a method for time-frequency anal-
ysis, which provides a time-frequency representation of a signal
with an equal resolution on a log-frequency scale (Fig. 1). The
human auditory filterbank is known to have an equal resolution on
a log-frequency scale as with the CWT particularly in a high fre-
quency band [1, 2]. Thus, to let computers imitate the significant
functions of the human auditory system, one promising approach
would be to model, analyze and process spectrograms obtained by
the CWT (CWT spectrogram). In fact, recent studies (see [3–6])
have shown that multiple fundamental frequency estimation per-
forms very well in the magnitude CWT spectrogram domain. Mo-
tivated by this fact, we believe that source separation and sound
manipulation can also work well in the magnitude CWT spectro-
gram domain. However, in order to achieve source separation or
sound manipulation, in which the goal is to produce sound, there
is a need to reconstruct an appropriate time-domain signal after
processing and modifying a magnitude CWT spectrogram. To this
end, this paper proposes a method for estimating the phase from a
given magnitude CWT spectrogram to reconstruct an audio signal.

The phase estimation algorithm from a magnitude CWT spec-
trogram has already been proposed by Irino et al. [7]. Irino’s algo-
rithm consists in iteratively performing the inverse CWT and the
CWT followed by replacing the modified magnitude CWT spec-
trogram with a given magnitude CWT spectrogram. Since the

(a) CWT spectrogram. (b) STFT spectrogram.

Figure 1: Examples of the continuous wavelet transform (CWT)
and short-time Fourier transform (STFT) spectrograms. While
STFT spectrograms have an equal resolution on a linear frequency
scale, CWT spectrograms have an equal resolution on a log-
frequency scale.

computational speed of the CWT is much slower than the short-
time Fourier transform (STFT), this algorithm needs a very long
time for computation. In practical situations, the reduction of the
computational complexity can be extremely important.

The authors and colleagues have thus far proposed a fast method
for estimating the phase from a magnitude STFT spectrogram [8].
When the hop-size is shorter than the frame length, the waveforms
in the overlapping segment of consecutive frames must be con-
sistent. This implies the fact that an STFT spectrogram is a re-
dundant representation. Thus, an STFT spectrogram must satisfy
a certain condition to ensure that it is associated with a time do-
main signal. We have referred to this condition as the consistency
condition. In [8], we have shown that the problem of estimating
the phase from a magnitude STFT spectrogram can be formulated
as the problem of optimizing the consistency criterion describing
how far an arbitrary complex array deviates from this condition.

It became clear that the deviced algorithm is equivalent to the
well-known algorithm proposed by Griffin et al., [9]. The formu-
lation derived from the concept of the spectrogram consistency has
provided a new insight into the Griffin’s algorithm, allowing us to
introduce a fast approximate algorithm and give a very intuitive
proof of the convergence of the algorithm. Since a CWT spectro-
gram is also a redundant representation of a signal [10], we may be
able to make the best use of the spectrogram consistency concept
to develop a fast approximate method for phase estimation from a
magnitude CWT spectrogram.

Following the idea proposed in [8], this paper derives an algo-
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Set of CWT spectrogramsSet of discrete-
time signals

Inconsistent

Inverse CWT

CWT

Consistent

CWT

Inverse CWT

Figure 2: Illustration of the spectrogram consistency concept for
the continuous wavelet transform (CWT).

rithm for estimating the phase from a magnitude CWT spectro-
gram. Sec. 2 formulates the phase estimation problem as an opti-
mization problem based on a consistency condition. Sec. 3 derives
an iterative algorithm for phase estimation based on an auxiliary
function approach, which turns out to be equivalent to the algo-
rithm proposed by Irino [7]. Our formulation gives a very clear
proof of the convergence of the algorithm, though it should be
noted that the proof of the convergence has already been given
in [10]. Sec. 4 describes a fast approximate method for computing
each iterative step of the proposed algorithm.

2. CWT SPECTROGRAM CONSISTENCY

2.1. Consistency condition

The scale parameter of the CWT corresponds to the period (the
reciprocal of the center frequency) of the wavelet basis function.
Here we consider discretizing the scale parameter such that the
center frequencies of the wavelet basis functions are uniformly
spaced on a log-frequency scale. Let the indices of the scale pa-
rameter and time shift parameter be denoted by l ∈ [0, L−1] and
t ∈ [0, T−1], respectively, and let the component of a CWT spec-
trogram associated with the l-th scale parameter al > 0 (hereafter,
the l-th component) be denoted by sl = [sl,0, sl,1, . . . , sl,T−1]T ∈CT .
Given a discrete-time signal f = [ f0, f1, . . . , fT−1]T ∈F where F :=
{ f ′ ∈CT ;

∑
t f ′t = 0}, its CWT spectrogram s = [sT

0 , s
T
1 , . . . , s

T
L−1]T ∈

CLT is defined as
s = W f , (1)

where W ∈ CLT×T denotes the CWT matrix, defined as

W :=


W0

W1
...

WL−1

 , Wl :=


ψl,0 ψl,1 · · · ψl,T−1

ψl,T−1 ψl,0 · · · ψl,T−2
...

. . .
...

ψl,1 ψl,2 · · · ψl,0

 . (2)

Here, ψl,t := ψ(t∆/al)/al is a scaled mother wavelet with the
scale of al and the time shift of t∆, where ∆ denotes the sam-
pling period of the time shift parameter and ψ(·) ∈ C denotes the
mother wavelet satisfying the admissibility condition. Each row of
Wl ∈ CT×T contains the wavelet basis function of scale al with a
different time shift parameter. The inverse CWT can be defined by
the pseudo-inverse of W:

f = W+s, W+ := (WHW)−1WH, (3)

where H is used to denote the Hermitian transpose. This implic-
itly means that the inverse CWT is defined as the solution to the
following minimization problem:

W+s = argmin
f̃∈F

∥s −W f̃∥22, (4)

where ∥ · ∥2 denotes the ℓ2 norm of a vector.
While the CWT spectrogram of an audio signal (i.e., a complex

vector that belongs to the subspace spanned by the column vec-
tors of W) will be mapped to itself by applying the inverse CWT
followed by the CWT, a complex vector that does not belong to
the subspace will not come back to the same point but will be pro-
jected onto the nearest point in the subspace. Thus, we can define
a condition for a complex vector to be “consistent” (in the sense
that it corresponds to a CWT spectrogram of a signal) as follows:

0LT = s −WW+s, (5)

where 0LT denotes an LT -dimensional zero vector. It is impor-
tant to note that when W is replaced with a matrix in which each
row is a basis function of the STFT, (5) becomes equivalent to the
consistency condition for an STFT spectrogram proposed in [8].

2.2. Phase estimation using spectrogram consistency

When given a magnitude CWT spectrogram a ∈ [0,∞)LT , we can
construct a signal by assigning phase ϕ ∈ [−π, π)LT to it to ob-
tain a complex spectrogram s, and applying the inverse CWT, i.e.,
W+s. Here, if we assign “inconsistent” phase to the given mag-
nitude spectrogram, the complex spectrogram s will not belong
to the signal subspace and so the spectrogram of the constructed
signal, WW+s, will be different from s. As we want to keep the
magnitude spectrogram of the constructed signal consistent with
the given magnitude spectrogram, we must find “consistent” phase
such that s satisfies the consistency condition.

2.3. Filter bank interpretation

To give a deeper insight into the consistency condition, we focus
on the filter bank interpretation of the CWT. The CWT of a signal
can be thought of as the output of a filter bank consisting of sub-
band filters whose impulse responses are given by the the scaled
mother wavelets. Now, by applying the T -point discrete Fourier
transform (DFT) to each block of (5), (5) can be written equiva-
lently as

0 = ŝ − ŴŴ+ŝ, (6)

where

Ŵ =


Ŵ0

Ŵ1
...

ŴL−1

 , Ŵl = FT WlFH
T , Ŵ+ = (ŴHŴ)−1ŴH, (7)

FT ∈ CT×T is the DFT matrix and ·̂ denotes the DFT of a variable.
Since Wl is a circulant matrix, Wl is diagonalized by FT and FH

T .
The diagonal elements of Ŵl represent the frequency response of
the l-th subband filter associated with the scale parameter al. The
k-th diagonal element of (6) is explicitly written as

0 = ŝl,k −
1

Ck

∑
l′
ψ̂l,kψ̂

∗
l′ ,k ŝl′ ,k, (8)
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where k ∈ [0, T −1] denotes the angular frequency index, Ck is a
normalization constant, and ∗ is used to denote the complex conju-
gate.

If the subbands of the filter bank overlap each other (more
precisely, if there exists a pair of channels such that the product
of their frequency responses is non-zero at every frequency), i.e.
∀k,∃l , l′, ψ̂l,kψ̂l′ ,k , 0, (5) becomes a nontrivial condition for a
complex vector s ∈ CLT to correspond to a consistent CWT spec-
trogram. Otherwise, all the elements of CLT trivially satisfy (5),
implying that the consistency condition cannot be used as a crite-
rion for phase estimation. Therefore, care must be taken in choos-
ing the quantization intervals of the scale parameter and the type
of the mother wavelet function. The Morlet [11], the log-normal
wavelet [4] and the wavelets used in the auditory wavelet trans-
form [7] satisfy the above requirement when the quantization inter-
vals of the scale parameter are appropriately chosen. We hereafter
assume to use a filter bank that satisfies ∀k,∃l , l′, ψ̂l,kψ̂l′ ,k , 0.

The requirement for the subbands of the CWT to overlap each
other is analogous to the requirement for the short time frames of
the STFT to overlap. The consistency condition of STFT spectro-
grams can be understood as implying that the waveforms within
the overlapping segment of consecutive frames must be consis-
tent [8]. The consistency condition of CWT spectrograms, on the
other hand, can be interpreted as implying that the outputs of adja-
cent channels within the overlapping subbands must be consistent.

3. PHASE ESTIMATION BASED ON CWT
SPECTROGRAM CONSISTENCY

3.1. Formulation of phase estimation problem

Assume that we are given a magnitude CWT spectrogram, ar-
ranged as a non-negative vector a ∈ [0,∞)LT . We would like
to estimate the phase of the given magnitude spectrogram such
that it meets the consistency condition. To allow for any vector
a ∈ [0,∞)LT as the input, we consider finding a phase estimate
ϕ ∈ [−π, π)LT that minimizes the consistency criterion

I(ϕ) := ∥s(a,ϕ) −WW+s(a,ϕ)∥22, (9)

where s(a,ϕ) denotes the estimated CWT spectrogram defined by

s(a,ϕ) := a ⊙


ejϕ0

ejϕ1

...
ejϕLT−1

 . (10)

⊙ denotes the element-wise product. I(ϕ) describes how far
s(a,ϕ) deviates from the consistency condition. Namely, the more
consistent s(a,ϕ) becomes, the smaller I(ϕ) becomes.

3.2. Iterative algorithm with auxiliary function approach

Unfortunately, the optimization problem of minimizing I(ϕ) with
respect to ϕ is difficult to solve analytically. However, we can
invoke the auxiliary function approach to derive an iterative algo-
rithm that searches for the estimate of ϕ, as with [8]. To apply the
auxiliary function approach to the current optimization problem,
the first step is to construct an auxiliary function I+(ϕ, s̃) satisfy-
ing I(ϕ) = mins̃ I+(ϕ, s̃). We refer to s̃ as an auxiliary variable.
It can then be shown that I(ϕ) is non-increasing under the updates
ϕ← argminϕ I+(ϕ, s̃) and s̃← argmins̃ I+(ϕ, s̃). The proof of this

Update phases

Set of CWT spectrograms
Set of discrete-
time signals

Inverse CWT

CWT

Set of complex vectors with

the given magnitude CWT spectrogram

Figure 3: Illustration of the iterative phase estimation algorithm.
The red and blue arrows correspond to (14) and (15).

shall be omitted owing to space limitations. Thus, I+(ϕ, s̃) should
be designed as a function that can be minimized analytically with
respect to ϕ and s̃. Such a function can be constructed as follows.

Recall that the operator WW+ is an orthogonal projection onto
the subspace spanned by the column vectors of W and so WW+s
indicates the closest point in the subspace from s. Thus, we can
show that

I(ϕ) =min
f̃∈F
∥s(a,ϕ) −W f̃∥22 (11)

=min
s̃∈W
∥s(a,ϕ) − s̃∥22, (12)

where W denotes the set of consistent CWT spectrograms (the
subspace spanned by the column vectors of W). Therefore, we can
confirm that

I+(ϕ, s̃) := ∥s(a,ϕ) − s̃∥22, s̃ ∈ W, (13)

satisfies I(ϕ) = mins̃∈W I+(ϕ, s̃). (13) can thus be used as
an auxiliary function for I(ϕ). We can thus monotonically de-
crease I(ϕ) by iteratively performing s̃ ← argmins̃ I+(ϕ, s̃) and
ϕ ← argminϕ I+(ϕ, s̃). Here, s̃ ← argmins̃ I+(ϕ, s̃) and ϕ ←
argminϕ I+(ϕ, s̃) can be written explicitly as

s̃←WW+s(a,ϕ), (14)
ϕ←∠s̃, (15)

respectively, where ∠ denotes an operator that gives the arguments
of the components of a complex vector as a real vector in [−π, π)LT .

(14) means applying the inverse CWT followed by the CWT
to s(a,ϕ). Here, when s(a,ϕ) is already a complex vector corre-
sponding to a consistent spectrogram, this update simply becomes
s̃ ← s(a,ϕ). (15) means replacing the phase estimate ϕ with the
phase of s̃. A schematic illustration of these updates is shown in
Fig. 3. I(ϕ) = 0 indicates that s(a,ϕ) lies in the intersection of
the set of consistent CWT spectrograms and the set of complex
vectors that are equal to a up to a phase factor.

3.3. Relation to previous work

The present algorithm is equivalent to an algorithm proposed by
Irino [7]. In addition, when W is replaced with a matrix in which
each row is a basis function of the STFT, the present algorithm
becomes equivalent to the phase estimation algorithm for a mag-
nitude STFT spectrogram proposed in [8].
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Figure 4: Example of the frequency responses of different subband
filters (i.e., the scaled mother wavelets). The mother wavelet is the
log-normal wavelet [4].

Angular 

frequency

Angular 

frequency

(i) Bandlimiting

(ii) Circular shifting

Frequency

index

Frequency

index

Figure 5: A circularly shifted version of Gl,B, . . . ,Gl,B+D−1 [12].

4. FAST PHASE ESTIMATION ALGORITHM

4.1. Fast approximate continuous wavelet transform

The CWT and the inverse CWT are computationally expensive
compared to the STFT and the inverse STFT. Here we briefly de-
scribe the fast approximate method for computing CWT proposed
in [12]. The proposed fast approximate CWT uses the fact that the
dominant part of the frequency response of each subband filter is
concentrated around its center frequency (as shown in Fig. 4), as
is common in many types of mother wavelets including the Morlet
and log-normal wavelets [4].

According to the filter bank interpretation of the CWT, the
CWT of an input signal, sl = [sl,0, . . . , sl,T−1]T = Wl f , can
be computed by multiplying the DFT of the entire signal, i.e,
f̂ = [ f̂0, . . . , f̂T−1]T = FT f , by the frequency response of the l-
th subband, i.e., Ŵl = diag(ψ̂l,0, . . . , ψ̂l,T−1), and then computing
the inverse DFT of Ŵl f̂ . This can be confirmed from

sl = Wl f = FH
T FT WlFH

T FT f = FH
T Ŵl f̂ . (16)

Note that the second equality follows from the fact that the DFT
matrix FT is a unitary matrix, i.e., FH

T FT = IT . Here, if we can
assume that the elements of {ψ̂l,k}k are dominant within and near 0

outside the range k ∈ [B, B + D − 1] (0 ≤ B, 0 < D ≤ T ), we can
approximate sl reasonably well by using the elements of {ψ̂l,k f̂k}k
only within that range and neglecting the remaining elements. This
implies the possibility of computing an approximation of sl with a
lower computational cost.

For simplicity of notation, let us put Gl,k = ψ̂l,k f̂k. We are con-
cerned with computing an approximation of the full-band inverse
DFT of Gl,k:

sl,t =

T−1∑
k=0

Gl,ke j 2πkt
T . (17)

As mentioned above, Gl,0, . . . ,Gl,T−1 can be approximately viewed
as a band-limited spectrum. In general, the inverse DFT of a band-
limited spectrum can be computed by taking the inverse DFT over
the finite support. In the time domain, this process corresponds
to downsampling the signal given by the “full-band” inverse DFT.
The proposed method uses this idea to approximate the inverse
DFT of the full-band spectrum Gl,0, . . . ,Gl,T−1. Now, if we choose
D such that T/D becomes an integer, we can approximate the
downsampled version of sl,t by

s̃l,d =

B+D−1∑
k=B

Gl,ke j 2πkd
D =

B+D−1∑
k=B

Gl,ke j 2πk(T/D)d
T . (18)

By comparing (17) and (18), we can confirm that

sl,(T/D)d ≃ s̃l,d (d ∈ [0,D − 1]), (19)

if we assume Gl,k ≃ 0 outside the range k ∈ [B, B + D − 1]. Since
s̃l,d can be rewritten as

s̃l,d =

D−1∑
k=0

Gl,k+Be j( 2πk
D +2π B

D )d = e j2π B
D d

D−1∑
k=0

Gl,k+Be j 2πkd
D , (20)

we notice that s̃l,d can be computed by multiplying the inverse DFT
of Gl,B, . . . ,Gl,B+D−1 by e j2π B

D d. Note that this is equivalent to com-
puting the inverse DFT of a circularly shifted version of Gl,k (see
Fig. 5):

G̃l,k =

Gl,k+nD (k = 0, . . . , B − (n − 1)D − 1)
Gl,k+(n−1)D (k = B − (n − 1)D, . . . ,D − 1)

, (21)

where n is an integer such that

n − 1 <
B
D
≤ n. (22)

We consider invoking the fast Fourier transform (FFT) algorithm
for computing the inverse DFT and so we assume the size D to
be a power of 2. Since D < T , the computational cost for com-
puting s̃l,0, . . . , s̃l,D−1 is obviously lower than that for computing
sl,0, . . . , sl,T−1.

4.2. Fast phase estimation algorithm

The processes of bandlimiting and circular shifting can be repre-
sented by a matrix K:

K :=
[
0B0×(D−B0) IB0

ID−B0 0(D−B0)×B0

]
︸                         ︷︷                         ︸

(ii) Circular shifting

[
0D×B ID 0D×(T−D−B)

]︸                          ︷︷                          ︸
(i) Bandlimiting

(23)
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where ID and 0D×B are the D × D identity matrix and the D × B
zero matrix. The downsampled version of sl obtained with the
abovementioned fast approximate CWT can be described as

šl = FH
DKŴlFT f . (24)

Similarly to the inverse CWT, the fast approximate version of
the inverse CWT can be defined by the pseudo-inverse matrix of
FH

DKŴlFT . It is important to note that convergence of the phase
estimation algorithm in which the CWT and inverse CWT steps
are replaced with the fast approximate versions is still guaranteed.

4.3. Time and space complexity

The computational costs for the CWT and the fast approximate
CWT mainly depend on the number of the points for the inverse
DFT. Since the computational complexity of the full band inverse
DFT is O(T log2 T ), the total computational complexity of the
CWT is O(T log2 T + LT log2 T ). By contrast, the computational
complexity of the band-limited DFT is O(D log2 D) and so the total
computational complexity is O(T log2 T +

∑L−1
l=0 Dl log2 Dl).

The space complexity of the proposed algorithm is small com-
pared to Irino’s algorithm [7]. When the signal length T is long
enough, the space complexity depends primarily on the size of
the CWT spectrogram. While the size of the CWT spectrogram
of Irino’s algorithm is LT , that of the proposed algorithm is only∑

l Dl.

5. EXPERIMENTAL EVALUATIONS

5.1. First experiment: Computation time and audio quality

5.1.1. Experimental conditions

To evaluate the computation time and the audio quality of the re-
constructed signals by the phase estimation algorithms, we con-
ducted an objective experiment, and compared the proposed algo-
rithm with the Irino’s algorithm [7].

We used the magnitude CWT spectrograms of 16kHz-sampled
acoustic signals of the 113 male and 115 female speeches in the
ATR Japanese speech database A-set [13]. The FFT performs
faster for acoustic signals with a power of 2 length than those with
the other length, and the used signals were filled by 0 till each
length reached a power of 2. Phases were initialized randomly,
and both the algorithms were finished at 1000 iterations. As the
mother wavelet, we used the log-normal wavelet [4], which is de-
fined in the Fourier-transformed domain:

ψ̂(ω) :=

exp
(
− (logω)2

4σ2

)
(ω > 0)

0 (ω ≥ 0)
(25)

where ω is an angular frequency and σ is a standard deviation. σ
was set at 0.02 and the analysis frequencies ranged 27.5 to 7040 Hz
with 20 cents interval (i.e. uniform interval in the log-frequency
domain). In the proposed algorithm, we computed the elements
within ±3σ around the central frequencies in the log-frequency
domain. The used computer had the Intel Xeon CPU E31245 (3.3
GHz) and a 32 GB RAM.

We employed the perceptual evaluation of speech quality
(PESQ) [14] as the evaluation measure for audio quality, which is
the world-standard objective evaluation measure for speech qual-
ity. It ranges −0.5 to 4.5 and speech quality is higher as the PESQ
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Figure 6: The averaged computation time per iteration with stan-
dard errors with respect to various signal lengths.

becomes larger. As an evaluation measure of the computation
speed, the computation time per iteration was used.

5.1.2. Results

The averaged PESQ with standard errors were 4.20 ± 0.08 for the
Irino’s algorithm and 4.1 ± 0.1 for the proposed algorithm. The
result indicates that the speech qualities of the reconstructed sig-
nals were high enough for practical use. The difference between
the Irino’s and proposed algorithms was negligible practically1.

Fig. 6 shows the results for the computation speed with respect
to the signal length, since the computational complexity of the al-
gorithms primarily depends on the signal length. The proposed
algorithm was around 100 times faster than the Irino’s algorithm
in the computation time. For example, the averaged computation
time per iteration by the Irino’s algorithm was around 10 s/iteration
for the 15 s signal. In contrast, that by the proposed algorithm was
around 0.1 s/iteration.

5.2. Second experiment: Relation between approximation ac-
curacy and audio quality

5.2.1. Experimental conditions

The proposed algorithm includes the approximation, and we next
evaluated the relation between the approximation accuracy and the
audio quality of the reconstructed signals. We used the 5 s from
30 s of 102 music audio files with 16 kHz sampling frequency in
the RWC music genre database [15]. As the mother wavelet, the
log-normal wavelet with σ = 0.02 was chosen. The approxima-
tion accuracy of the proposed algorithm corresponds to the calcu-
lated range by the downsampling step, and we used the elements
within ±Pσ (P = 1, 2, 3, 5) around the central frequencies in the
log-frequency domain. The number of iterations was set at 500 for
the proposed algorithm and at 100 for the Irino’s algorithm. The
used computer had the Intel Core i3-2120 CPU (3.30 GHz) and a
8 GB RAM. The other experimental conditions were the same as
in Sec. 5.1.1.

An evaluation measure for audio quality was the objective dif-
ferential grade (ODG) by the perceptual evaluation of audio qual-

1Audio samples are available at http://hil.t.u-tokyo.ac.
jp/~nakamura/demo/fastCWT.html.
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Figure 7: Evolution of the averaged objective difference grades
with standard errors by perceptual evaluation of audio quality with
respect to the number of iterations for the proposed algorithms
with various approximations ([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the
Irino’s algorithm [7].
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Figure 8: Evolution of the objective difference grades by per-
ceptual evaluation of audio quality with respect to the computa-
tion time for the proposed algorithms with various approximations
([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the Irino’s algorithm [7].

ity (PEAQ) [16]. It ranges −4 to 0, and the acoustic quality is
higher as the ODG becomes larger.

5.2.2. Results

Fig. 7 illustrates the averaged ODGs with standard errors. The
ODGs by the proposed algorithms with P = 3, 5 were larger than
−2.0 after 100 iterations, and the results for P = 3, 5 shows high
audio quality2. The results does not significantly differ from that
by the Irino’s algorithm in audio quality. We can thus say that the
proposed algorithm with around P ≥ 3 reconstructs the acoustic
signals with almost the same audio quality as the Irino’s algorithm.

In a viewpoint of the computation speed, the computation time
becomes shorter as P is smaller. Fig. 8 shows the result for one of
the acoustic signals (RWC-MDB-G-2001 No. 1), and the ODGs
by the proposed algorithms quickly become higher than those by

2c.f.) When the used audio signals were converted into MPEG-3 files
with 160 kbps, the averaged ODGs with standard errors were −3.68±0.03.
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Figure 9: Evolution of the perceptual evaluation of speech quality
and the computation time with respect to the proposed algorithms
with various approximations ([−Pσ, Pσ] (P = 1, 2, 3, 5)) and the
Irino’s algorithm [7].

the Irino’s algorithm. The similar result for the speech signal
(fafsc110 in the ATR Japanese speech database A-set [13], the 7
s signal) was shown in Fig. 9. Therefore, we conclude that the
proposed algorithm with around P = 3 provides the reconstructed
signals with high audio quality in a reasonable computation time.

5.3. Demonstration of phase estimation

We demonstrate pitch transposition of acoustic signals to confirm
effectiveness of the proposed algorithm for sound manipulation.
When the analysis frequencies are located uniformly in the log-
frequency domain and D0 = D1 = · · · = DL−1 in the proposed
algorithm, we simply shift the components of the CWT spectro-
grams to the lower or higher analysis frequency components, and
the blank components by the move are filled by zero. However, the
shifts cause the mismatches of phases, and the use of the original
and zero phases leads to failure of the pitch transposition, hence
we need to use the phase estimation for synthesizing the pitch-
transposed acoustic signals. By the proposed algorithm, we ob-
tained the synthesized signals 3 as we expected.

6. CONCLUSION

We have proposed a fast and convergence-guaranteed algorithm of
the phase estimation by using the fast approximate CWT [12]. The
phase estimation problem has been formulated based on the con-
sistency condition, and the iterative algorithm has been derived by
applying the auxiliary function method, which is the same as the
Irino’s algorithm [7]. Furthermore, we show the requirement on
scale factors and mother wavelets for the phase estimation by using
the consistency condition. The experimental results have shown
that the proposed algorithm was about 100 times faster than the
algorithm provided in [7]. The audio quality of the reconstructed
signals for music and speech data was high enough for practical
use, and the difference between the results by the proposed algo-
rithm and the algorithm provided in [7] was negligible.

3The synthesized signals are available at http://hil.t.
u-tokyo.ac.jp/~nakamura/demo/fastCWT.html.
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We plan to combine the phase estimation with source separa-
tions for magnitude CWT spectrograms for music acoustic signal
manipulation such as conversions of chords, keys and scales. To
increase convenience, developing the online version of the pro-
posed algorithm is important.

7. REFERENCES

[1] H. Fletcher, “Auditory patterns,” Rev. Mod. Phys., vol. 12,
pp. 47–61, 1940.

[2] R. D. Patterson, “Auditory filter shape,” J. Acoust. Soc. Am.,
vol. 55, no. 4, pp. 802–809, 2005.

[3] M. N. Schmidt and M. Mørup, “Nonnegative matrix factor
2-D deconvolution for blind single channel source separa-
tion,” in Independent Component Analysis and Blind Signal
Separation, pp. 700–707. Springer, 2006.

[4] H. Kameoka, Statistical Approach to Multipitch Analysis,
Ph.D. thesis, The University of Tokyo, Mar. 2007.

[5] M. Muller, D. P. W. Ellis, A. Klapuri, and G. Richard, “Sig-
nal processing for music analysis,” IEEE J. Sel. Topics. Sig-
nal Process., vol. 5, no. 6, pp. 1088–1110, 2011.

[6] J. P. de León, F. Beltrán, and J. R. Beltrán, “A complex
wavelet based fundamental frequency estimator in single-
channel polyphonic signals,” in Proc. Digital Audio Effects,
2013.

[7] T. Irino and H. Kawahara, “Signal reconstruction from mod-
ified auditory wavelet transform,” IEEE Trans. Signal Pro-
cess., vol. 41, no. 12, pp. 3549–3554, 1993.

[8] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, “Fast
signal reconstruction from magnitude STFT spectrogram
based on spectrogram consistency,” in Proc. Int. Conf. Digi-
tal Audio Effects, Sep. 2010, pp. 397–403.

[9] D. Griffin and J. Lim, “Signal estimation from modified
short-time fourier transform,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 32, no. 2, pp. 236–243, 1984.

[10] D. M. Lopes and P. R. White, “Signal reconstruction from
the magnitude or phase of a generalised wavelet transform,”
in Proc. Eur. Signal Process. Conf., 2000, pp. 2029–2032.

[11] C. Torrence and G. P. Compo, “A practical guide to wavelet
analysis,” B. Am. Meteorol. Soc., vol. 79, no. 1, pp. 61–78,
1998.

[12] H. Kameoka, T. Tabaru, T. Nishimoto, and S. Sagayama,
“(Patent) Signal processing method and unit,” Nov. 2008, in
Japanese.

[13] A. Kurematsu, K. Takeda, Y. Sagisaka, S. Katagiri,
H. Kuwabara, and K. Shikano, “ATR Japanese speech
database as a tool of speech recognition and synthesis,”
Speech Commun., vol. 9, no. 4, pp. 357–363, 1990.

[14] “ITU-T recommendation P.862, Perceptual evaluation of
speech quality (PESQ): an objective method for end-to-end
speech quality assessment of narrow-band telephone net-
works and speech codecs,” Feb. 2001.

[15] M. Goto, “Development of the RWC Music Database,” in
Proc. Int. Congress Acoust., 2004, pp. l–553–556.

[16] “ITU-T recommendation BS.1387-1, Perceptual evaluation
of audio quality (PEAQ): Method for objective measure-
ments of perceived audio quality,” Sep. 2001.

DAFX-7

DAFx-135



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

DAFx-136



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
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ABSTRACT

Collisions play a major role in various models of musical instru-
ments; one particularly interesting case is that of the guitar fret-
board, the subject of this paper. Here, the string is modelled in-
cluding effects of tension modulation, and the distributedcollision
both with the fretboard and individual frets, and includingboth ef-
fects of free string vibration, and under finger-stopped conditions,
requiring an additional collision model. In order to handlemultiple
distributed nonlinearities simultaneously, a finite difference time
domain method is developed, with a penalty potential allowing for
a convenient model of collision within a Hamiltonian framework,
allowing for the construction of stable energy-conservingmeth-
ods. Implementation details are discussed, and simulationresults
are presented illustrating a variety of features of such a model.

1. INTRODUCTION

Physical modeling synthesis to date has relied, mainly, on lin-
ear models of distributed components, accompanied by pointwise
nonlinearities often related to excitation mechanisms (such as, for
example, models of the bow, hammer, or lip-reed interaction). See,
e.g., [1] for an overview. In the pursuit of more realistic sound syn-
thesis, recent research has focused on inherent nonlinearities in the
distributed components themselves, beginning with the introduc-
tion of tension modulation effects in strings [2, 3, 4], shock wave
effects in acoustic tubes [5], geometric nonlinearities instrings [6],
and in 2D systems such as membranes and plates [7]. A distinct
form of distributed nonlinearity, and one which is of great signif-
icance to models of strings is the contact between a distributed
vibrating object with a rigid barrier.

The problem of the string in contact with a rigid barrier has
seen research in the realm of musical acoustics for almost a cen-
tury, going back to early investigations of Indian stringedinstru-
ments such as the sitar or tambura [8], and continuing to the present
day, particularly using a geometric analysis for barriers of simpli-
fied forms [9, 10]. In practical sound synthesis applications, where
the barrier may well be of a complex shape, and in musical acous-
tics investigations, more flexible methods have been employed, in-
cluding digital waveguides [11, 12, 13, 14, 15], modal techniques
[16], and time-stepping methods such as finite difference methods
[11, 17, 14, 18].

The particular case of the interaction of a string with a fret,
modelled as a lumped barrier element, in order to emulate realis-
tic playing in fretted instruments such as the guitar has been re-
searched by Evangelista [12, 19], which is the case of interest in

∗ This work was supported by the European Research Council, under
grant number StG-2011-279068-NESS.

this paper. Here, a distributed view of the barrier is taken,includ-
ing frets and the backing fretboard. Finite difference timedomain
methods are employed, with special attention paid to the problem
of numerical stability, which is especially pronounced here, due
to the inherently non-smooth form of the collision interaction. To
this end, a formalism based upon the use of an added potential, al-
lowing the use of a Hamiltonian framework, but permitting some
spurious penetration of the string into the barrier is employed.
The action of a stopping finger, in order to simulate finger mo-
tion against the fretboard, is also included here. The modelhere
is complementary to that of Evangelista mentioned above, inthat
here, string motion is taken to be perpendicular to the fretboard—
in a full model, both polarizations need to be taken into account.
Finger plucking interactions have been described previously—see,
e.g., [20]

Section 2 presents a complete model of string vibration in
a single polarization, including tension modulation effects, dis-
tributed collision against a barrier of arbitrary shape, a plucking
excitation, as well as a further collision due to stopping ofa finger
against the fretboard. An energy analysis completes this section.
Section 3 is a concise presentation of finite difference timedomain
construction, with a discussion of numerical stability, arrived at
through an analogous energy analysis, and implementation issues,
and in particular a vector nonlinear equation to be solved ateach
time step. Simulation results, illustrating various features of such
a model, are presented in Section 4. Sound synthesis examples are
available online athttp://www.ness-music.eu

2. STRING MODEL

A model of constrained string vibration may be written in a com-
pact form as

ρ∂ttu = L[u] + K[u] + Fe + Fc − Ff (1)

Here,u(x, t) is the transverse displacement of a string in a single
polarization (assumed here to be perpendicular to a constraining
surface, to be described shortly), as a function of timet ≥ 0 and
x ∈ D = [0, L], whereL is string length when at rest. The string
is of linear mass densityρ kg/m, and∂tt represents double partial
differentiation with respect to timet. See Figure 1. Because this
model of a string is in a single polarization only, it is thus capable
of modelling only string plucks perpendicular to the fretboard—
which is a great simplification from the true situation, but one al-
lowing for an analysis of many of the important features of such
an instrument.

The linear operatorL is defined, in terms of its action on the
functionu, as

L[u] = (T∂xx − EI∂xxxx − 2σ0ρ∂t + 2σ1ρ∂txx)u (2)
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Figure 1: Diagram of string, of displacementu(x, t), in contact
with a barrier b(x), as indicated in blue. An excitation force den-
sityFe is applied over a distributionge, and a force densityFf is
applied by a finger (indicated in green) over a distributiongf . A
collision force densityFc results at points of contact between the
string and barrier.

and describes the linear dynamics of the string, where partial dif-
ferentiation with respect tox is indicated by∂x. The four terms
model, respectively, string tension, stiffness, frequency-independent
loss, and frequency-dependent loss. Here,T is string tension, in
N, E is Young’s modulus, in Pa,I is the string moment of inertia
(and equal toπr4/4, for a string of circular cross-section and ra-
dius r m), andσ0 andσ1 are loss parameters, which may be set
according to comparison with measured data. Such a linear model
is relatively standard in the musical acoustics literature(with some
variation in the way in which the frequency-dependent loss terms
are modelled [21, 22]).

The nonlinear operatorK is defined as

K[u] =
EA

2L

(∫

D
(∂xu)2 dx

)
∂xxu (3)

whereA is the string cross-sectional area in m2, and describes ef-
fects of tension modulation in the string, giving rise to variations
in pitch with excitation amplitude, or pitch glides; such a model
is due to Kirchhoff [23] and Carrier [24], and has seen extensive
use in sound synthesis applications [2, 3, 4, 25]. This is a partic-
ularly simple form of string nonlinearity—more realistic effects,
including the generation of phantom partials [26, 6], may beob-
tained using a complete form which models the coupling between
transverse and longitudinal motion in the string.

The final three terms in (1) represent force densities due, re-
spectively, to a plucking action, collision of the string with the
fretboard, and the stopping motion of a finger, and will be defined
in the following sections.

2.1. Excitation

A relatively simple model of excitation will be employed here,
namely that of a force density

Fe = gefe

where here,fe(t) is an applied force in N, and wherege(x) is
a distribution selecting the region of application of the excitation
(chosen normalized, with

∫
D ge dx = 1, and perhaps as a Dirac

delta functionge(x) = δ(x − xe), for a plucking pointx = xe).
In some models of plucking excitation [27], a relatively smooth
form of excitation function is employed:

fe(t) =

(
fp

2
(1 − cos(π(t − t0)/tp)) t0 ≤ t ≤ tp

0 else
(4)

This function is characterized by a small set of parameters,namely:
start timet0, durationtp, and maximum forcefp.

One could go further here and specify a full model of the
plucking finger, but as this is not the focus of this paper, andalso
because in general, the duration of a pluck is extremely short (on
the order of 1-10 ms) the simple form above will be employed, as
in previous work on guitar synthesis [28]. More involved models
are available—see, e.g., [29, 30].

2.2. The Fretboard

The string is assumed to vibrate above a rigid barrier of height
b(x)—in the case of a fretboard, the function will include the pro-
file of the board itself, as well as pointwise protuberances (the frets
themselves). To this end, suppose that the function is of theform
b(x) = bback(x), almost everywhere, wherebback(x) is a smooth
function representing the fretboard itself, in the absenceof the
frets. At locationsxm, m = 1, . . . , Nfret at which theNfret

frets are located, the function takes on the valuesb(xm) = b
(m)
fret.

See Figure 1.
The force densityFc acts upwards on the string, and may be

defined in terms of a potential densityΦc ≥ 0 as

Fc =
∂tΦc

∂tηc
where ηc = b − u (5)

The potentialΦc (ηc) here is to be viewed as a penalty density, ac-
tive whenever and whereverηc, the difference between the barrier
height and string height is positive, implying interpenetration, and
thus repelling the string. A useful form of the penalty potential Φc

is of the form of a power lawΦc = ΦK,α(ηc), where, for a value
or distributionp

ΦK,α (p) =
K

α + 1
[p]α+1

+ [p]+ =
1

2
(p + |p|)

whereK ≥ 0, andα ≥ 1. In simulation, the degree of inter-
penetration can be controlled through a proper choice ofK and
α—see Section 4.2. Note that, under this choice of the potential,
Fc = K[ηc]

α
+, and so this collision model is of a form similar

to that seen in lumped models of impact, such as that of Hertz
[31], and commonly used in models of striking action in musical
instruments [22, 32]; here, however, it is to be viewed as an ap-
proximation to an ideal elastic collision. The form in (5), written
in terms of a potential, however, is more useful when it comesto
simulation design—see Section 3.

2.3. Finger-stopping

Another separate collision which must be taken into accountin a
full articulated model of such a stringed instrument is the action
of a stopping finger pressing the string against the frets or fret-
board. This collision is slightly different from the case ofthe bar-
rier/string collision described in the previous section, as the finger
must be permitted its own dynamics, including damping effects,
and is subject to external control. In this case, where the string
is assumed to move transverse to the fretboard, rubbing friction
effects against the fret are not included—see [12].

For a lumped model of such a finger, the force densityFf ,
now acting downward on the string from above, may be written as

Ff = gfff
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Here,gf = gf (x, t) is an externally specified function represent-
ing the region of contact of the finger with the string at timet,
again chosen normalized, with

∫
D gf dx = 1, andff is the force

applied to the string, in N. The position of the finger,uf , may be
described by

Mf
d2uf

dt2
= ff − f0

where here,Mf is the finger mass, in kg, and wheref0 = f0(t) is
an external force signal supplied by the player.

As in the case of the string/barrier collision, the interaction
force ff depends on a measureηf of the relative displacement
between the string and finger at the stopping location:

ff =
dΦf/dt

dηf/dt
+

dηf

dt
Ξf ηf =

∫

D
gfu dx − uf (6)

Here again,Φf (ηf ) ≥ 0 is a collision potential—now, however,
it is intended to model elastic deformation of the finger under the
pressing action; the model here is identical to that of a striking
piano hammer, with losses taken into account, and under a contin-
uous excitation force. As in the case of the hammer, a choice of
collision potentialΦf = ΦKf ,αf (ηf ) is reasonable, where again
Kf ≥ 0 andαf ≥ 1. Also modelled here are losses, through a
function Ξf (ηf ) ≥ 0. The model of Hunt and Crossley [33] is
appropriate here, withΞf = ΞKf ,αf ,βf

, where

ΞKf ,αf ,βf
(ηf ) = βfKf

dηf

dt
[ηf ]α+

for some constantβf ≥ 0.

2.4. Energy Balance

System (1) includes three separate nonlinearities, due to tension
modulation, collision, and finger stopping, as well as non-autonomous
time variation due to the finger-stopping distributiongf , and thus
frequency-domain analysis will thus be of virtually no use in de-
signing a numerical method. To this end, it is useful to present an
energy balance for the system.

It may be easily verified, through the multiplication of (1) by
∂tu, integrating over the domainD, and employing integration by
parts, that the complete model described above satisfies an energy
balance of the form

dH

dt
= −Q + P + B (7)

where here, at timet, H(t) represents the total stored energy of the
system,Q(t) is total dissipated power,P(t) is input power, andB
represents energy supplied to the string at the boundaries at x = 0
andx = L.

In particular,

H = HL + HK + Hc + Hf

Q = QL + Qf

P = Pe + Pf

where, for the stored energy terms corresponding to linear string
vibration, nonlinear string vibration, the collision interaction, and

the finger interaction, respectively, one has

HL =

∫

D

ρ

2
(∂tu)2 +

T

2
(∂xu)2 +

EI

2
(∂xxu)2 dx

HK =
EA

8L

(∫

D
∂xu dx

)2

Hc =

∫

D
Φc dx

Hf =
Mf

2

(
duf

dt

)2

+ Φf

For the individual power loss termsQL andQf in the string and
finger, respectively, one has

QL =

∫

D
2ρσ0 (∂tu)2 + 2ρσ1 (∂txu)2 dx

Qf =

(
dηf

dt

)2

Ξf (ηf )

For the supplied power termsPe andPf from the excitation and
stopping finger, respectively, one has

Pe = fe

∫

D
ge∂tu dx

Pf = ff

∫

D
u∂tgf dx − duf

dt
f0

The boundary power termB is given by

B =

(
T +

EA

2L

(∫

D
∂xu dx

)2
)

∂tu∂xu

−EI (∂tu∂xxxu − ∂txu∂xxu) − 2ρσ1∂tu∂xtu|x=L
x=0

In this study, boundary conditions are chosen as simply supported
(i.e., u = ∂xxu = 0 at x = 0 andx = L), and thusB vanishes
identically.

Under unforced conditions (i.e., with no excitation forcefe,
no applied finger stopping forcef0, and no time variation of the
stopping finger distributiongf ), note thatH ≥ 0, andQ ≥ 0, and
thus, for allt ≥ 0

dH

dt
≤ 0 −→ 0 ≤ H(t) ≤ H(0)

and the system as a whole is dissipative. If, furthermore, loss is
not present (i.e., ifσ0 = σ1 = Ξf = 0), then the system is exactly
lossless. Such an energy balance serves as a useful design principle
in arriving at numerically stable simulation methods. See Section
3.

3. TIME STEPPING METHODS

In this section, the basic techniques underlying the construction
of time-domain finite difference schemes are presented, in acon-
densed vectorized form. For a more expanded treatment of such
methods, see, e.g., [34], or, in the context of physical modeling
synthesis, [35].
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3.1. Grid Functions and Difference Operators

The grid functionun
l , for integern ≥ 0 and l = 0, . . . , N , rep-

resents an approximation to the functionu(x, t) at timet = nk
andx = lh. Here,k is the time step (andfs = 1/k is the sample
rate, chosen a priori), andh is the grid spacing, chosen such that it
divides the lengthL evenly asN = L/h.

In this case, where the system under study is 1D, and because
the boundary conditions are of simple form (that is, simply sup-
ported), it is useful to move directly to a vector representation
of the state, namely the column vectorun = [un

1 , . . . , un
N−1]

T .
Here, the valuesun

0 and uN
N have been omitted from the vec-

tor form, and thus need not be calculated, as they are identically
zero—this choice has implications for the matrix representations
of various spatial difference operators, as will be described shortly.

For any vectorwn, unit time shiftset+ andet− are defined as

et+w
n = wn+1 et−wn = wn−1

The forward, backward and centered difference approximations to
a first time derivative may thus be defined as

δt+ =
et+ − 1

k
δt− =

1 − et−
k

δt· =
et+ − et−

2k
(8)

and time averaging operators as

µt+ =
et+ + 1

2
µt− =

1 + et−
2

µt· =
et+ + et−

2
(9)

An approximation to a second time derivative follows as

δtt = δt+δt− =
et+ − 2 + et−

k2
(10)

Forward and backward approximations to spatial differentia-
tion ∂x, when applied to the grid functionun, and taking into ac-
count the simply supported boundary condition, may be written in
matrix form asDx+ andDx−, whereDx+ is anN × (N − 1)
matrix, andDx− is (N − 1) × N :

Dx+ =
1

h




1
−1 1

. . .
. . .
−1 1

−1




Dx− = −DT
x+

whereT indicates the transpose operation.
Approximations to the second and fourth spatial derivative,

Dxx andDxxxx respectively, both(N − 1) × (N − 1) matrices,
may be written, under simply supported conditions, as

Dxx = Dx−Dx+ Dxxxx = DxxDxx

3.2. Finite Difference Scheme

A finite difference time domain scheme for (1) may then be writ-
ten, in vector-matrix form, in terms of the grid functionun, as

ρδttu
n = l[un] + k[un] + fne + fnc − fnf (11)

Here, in analogy with definition (2) for the linear operatorL,
the linear discrete operatorl is defined as

l[un] = (TDxx − EIDxxxx − 2σ0ρδt· + 2σ1ρδt−Dxx)un

(12)

and the nonlinear operatork as

k[un] =
EAh

2L
(Dx+u

n)T (µt·Dx+u
n)Dxxu

n (13)

Note the use of the time averaging operatorµt· in (13) above, nec-
essary in arriving at a stable scheme [36].

3.3. Discrete Force Densities

The discrete force density termsfne , fnc andfnf given in (11) are all
(N − 1) element column vectors.

The discrete force excitation densityfne may be written asfne =
gef

n
e wherege corresponds toge(x), with h1Tge = 1, where1

is anN − 1 element column vector consisting of ones, and where
fn

e is sampled fromfe(t), as defined in (4).
The discrete collision force due to the interaction with thebar-

rier fnc requires a more detailed treatment. Because one would
like to model collision between the string and the fretboardat
the N − 1 grid points at which the string is defined, and also
at theNfret locations at which the frets themselves are defined
(which, in general, do not lie at grid locations), it is useful to write
fnc = Gcf

n
c , wherefc is anNc = N − 1 + Nfret element force

vector, andGc is an(N − 1) × Nc matrix interpolant. In particu-
lar,Gc = 1

h
[IN−1|Gfret], whereIN−1 is the(N −1)× (N −1)

identity matrix, and whereGfret is an(N − 1) × Nfret matrix,
themth column of which is an interpolant to themth fret location
xm. Any form of interpolant (i.e., bilinear, Lagrangian, etc.) may
be employed in this construction.

For the collision itself, one may then write, in analogy with
(5),

fn
c =

δt·Φ
n
c

δt·ηn
c

ηn
c = b − hGT

c u
n (14)

in terms of theNc element vectorsΦn
c , ηn

c andbn. This lat-
ter vector, representing the barrier profile, may be decomposed as
b = [bT

back|bT
fret]

T , wherebback is theN − 1 element column
vector consisting of samples of the fretboard profileb(x) at the
grid locations, andbfret is anNfret element column vector con-
sisting of the fret heightsb(m)

fret, m = 1, . . . , Nfret. As in the con-
tinuous case, a power law potential may be employed, such that
Φn

c = ΦK,α (ηn
c ). (Here and henceforth, expressions such as the

first in (14) represent a vector resulting from element-by-element
division of two vectors.)

The finger force densityfnf may be written asfnf = µt·
(
gn

f

)
fn

f ,
where as in the case of the excitation,gn

f is anN − 1 element nor-
malized column vector—note in particular that it is time-varying,
allowing for gestural control of the finger-stopping action. The
finger force may be discretized, in analogy with (6), as

fn
f =

δt·Φ
n
f

δt·ηn
f

+ δt·η
n
f Ξn

f ηn
f = h

(
gn

f

)T
un − un

f (15)

whereΦn
f = ΦKf ,αf (ηn

f ), and whereΞn
f = ΞKf ,αf ,βf

(ηn
f ). Fi-

nally, the equation of motion of the finger, in terms of displacement
un

f may be written as

Mfδttu
n
f = fn

f − fn
0

3.4. Discrete Energy Balance and Stability Conditions

In analogy with the energy balance (7) for the continuous system,
a discrete energy balance follows for the scheme presented in Sec-
tion 3.2:

δt−hn+1/2 = −qn + pn + bn (16)
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where here,hn+1/2 represents the total stored energy of the system
(written here as interleaved with respect to values calculated in the
scheme itself),qn is total dissipated power,pn is input power, and
bn represents energy supplied to the string at the boundaries at
l = 0 andl = N—in this case,bn = 0 by construction, so may be
safely ignored in the remainder of this analysis. Here, the various
terms may be decomposed as

hn+1/2 = h
n+1/2
L + h

n+1/2
K + hn+1/2

c + h
n+1/2
f

qn = qn
L + qn

f

pn = pn
e + pn

f

where, for the stored energy terms corresponding to linear string
vibration, nonlinear string vibration, the collision interaction, and
the finger interaction, respectively, one has

h
n+1/2
L =

ρh

2
|δt+u

n|2 +
Th

2
(Dx+u

n)T Dx+u
n+1

+
EIh

2
(Dxxu

n)T Dxxu
n+1 − ρσ1hk

2
|δt+Dx+u

n|2

h
n+1/2
K =

EAh2

8L

(
(Dx+u

n)T Dx+u
n+1
)2

hn+1/2
c = 1T µt+Φn

c

h
n+1/2
f =

Mf

2

(
δt+un

f

)2
+ Φn

f

and for the power loss terms,

qn
L = 2ρσ0h|δt·u

n|2 + 2ρσ1h|δt·Dx+u
n|2

qf =
(
δt·η

n
f

)2
Ξn

f

For the supplied power termspn
e andpn

f from the excitation and
stopping finger, respectively, one has

pn
e = fn

e h (δt·u
n)T ge

pn
f = fn

f h (µt·u
n)T δt·g

n
f − δt·u

n
f fn

0

Considering the discrete power balance (16), under unforced
conditions (i.e.,pn

e = pn
f = 0), note that the loss termsqn

L and
qn

f are non-negative; the only stored energy term which is not
non-negative is that corresponding to the string energyhL. It is
straightforward to show [35] that under the conditionh ≥ hmin,
where

h2
min =

k

2


Tk

ρ
+ 4σ1 +

√(
Tk

ρ
+ 4σ1

)2

+
16EI

ρ


 (17)

the termhL is non-negative; this condition serves as a stability con-
dition for the entire scheme. Again, under lossless conditions (i.e.,
with σ0 = σ1 = Ξn = 0), the scheme is numerically lossless.
See Section 4.4. Notice that condition (17) is equivalent tothat
arrived at using von Neumann analysis [34] for the linear string in
isolation, though now for the complete system involving multiple
nonlinearities.

3.5. Vector-matrix Update Form

In the interest of illustrating how such a scheme may be used in
practice, it is useful to rewrite it in a vector-matrix update form as

Anun+1 = Bun + Cnun−1 + jef
n
e + Jnfn (18)

where here,An,B andCn are(N−1)×(N−1) matrices defined
as

An = (1 + σ0k) IN−1 + (an) (an)T

B = 2IN−1 +

(
k2T

ρ
+ 2σ1k

)
Dxx − EIk2

ρ
Dxxxx

Cn = (σ0k − 1) IN−1 − (an) (an)T − 2σ1kDxx

Due to the tension modulation nonlinearity,An andCn are de-
pendent on previously computed state values through the column
vectoran, defined as

an =
k

2

√
EAh

ρL
Dxxu

n

The vectorje is defined asje = k2ge/ρ, andfn = [(fn
c )T |fn

f ]T

is the consolidation of the contact forces due to the barrierand fin-
ger, with the combined matrixJn given byJn = k2Gn/ρ, where
Gn = [Gc| − gn

f ]. Notice thatJn andGn include effects of time
variation due to the motion of the stopping finger.

The update form (18) requires the determination of the colli-
sion force vectorfn; to this end, it may be rewritten as

un+1 = qn + J̃nfn (19)

where

qn = (An)−1 (Bun + Cnun−1 + jef
n
e

)
J̃n = (An)−1 J

Though the calculation ofqn andJ̃n might appear to require the
full inversion of a matrixAn (or at least a linear system solution),
note thatAn is a rank one perturbation of a scaled identity matrix,
and thus the inverse may be written directly, using the Sherman-
Morrison-Woodbury formula [37] as

(An)−1 =
1

1 + σ0k

(
IN−1 − (an) (an)T

1 + σ0k + (an)T (an)

)

which leads to a matrix multiplication withO(N) operations.

3.6. A Nonlinear Equation

Define the set of collision distancesηn asηn = [(ηn
c )T |ηn

f ]T .
From the definitions (14) and (15), one then has

ηn =

[
b

−un
f

]
− hGnun

From this, one may further define the vectorrn = [(rn
c )T |rn

f ]T

asrn = ηn+1 − ηn−1, andrn may be written as

rn = γn −Zfn −h
((

Gn+1
)T

un+1 −
(
Gn−1

)T
un−1

)
(20)

where

γn =

[
0Nc,1

−2
(
un

f − un−1
f

)
+ k2

Mf
fn
0

]

where0Nc,1 is anNc element column vector, andZ is an(Nc +
1) × (Nc +1) matrix, all zero, except for a value ofk2/Mf as the
entry at the lower right corner.

For the forces, from the definitions (14) and (15), one has

fn = Λn + Pnrn (21)
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whereΛn is a diagonal(Nc +1)× (Nc +1) matrix with diagonal
entries given bydiag (Λn) = [(λn

c )T |λn
f ]T , with

λn
c =

φc

(
rn

c + ηn−1
c

)
− φc

(
ηn−1

c

)

rn
c

and

λn
f =

φf

(
rn

f + ηn−1
f

)
− φf

(
ηn−1

f

)

rn
f

and wherePn is an(Nc + 1) × (Nc + 1) matrix, all zero except
for a value ofΞn

f /(2k) in the lower right hand entry.
Finally, (19), (20) and (21) may be consolidated into a single

vector nonlinear equation as

Qnrn + MnΛn + ln = 0

where

Mn = Zn + h
(
Gn+1)T J̃n

Qn = INc+1 + MnPn

ln = −γn + h
(
Gn+1)T

qn − h
(
Gn−1)T un−1

Numerically, such an equation may be solved using an iterative
method such as, e.g., Newton-Raphson.

4. SIMULATION RESULTS

In this section, various features of simulations for the system de-
scribed above are explored.

4.1. Visualization: Free Vibration

As a first example, consider a string positioned above a fretboard
and a series of 12 frets, under a plucking action—see Figure 2,
showing the time evolution of the string profile under different
plucking forces. In one case, the string vibration is free from colli-
sion, but in the other, it is sufficient to allow for rebounding against
the frets, greatly distorting the profile of the string subsequently. It
should be noted that under normal lossy conditions, string vibra-
tion amplitude is decreased over time, and thus the collision with
the fretboard will lead to transients; similarly, stiffness effects in
the string lead to dispersion, also decreasing the maximum string
displacement after the initial pluck.

4.2. Spurious Penetration

The penalty potential formulation intended to model the rigid col-
lision between string and fretboard allows some unphysicalpene-
tration of the string into the fretboard itself. One question which
emerges is then: how large is this penetration? For the plucked
excitation simulation described in the previous section, the maxi-
mum penetration over the length of the string is plotted as a func-
tion of time step in Figure 3—in this case, it takes on values under
10−9 m, which is definitely acceptable in any acoustics simulation.
The degree of penetration may be controlled through the choice of
K—the larger it is, the less the penetration, with the side effect
that the number of iterations required in Newton’s method tends to
increase. See Section 5 for more commentary on this point.
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Figure 2: Time evolution of the profile of a string in contact
with a fretboard (in blue), under plucking excitations of different
amplitudes—in black, with a maximal excitation offp = 0.5 N,
and in red, withfp = 1 N. In this case, the string is of parameters
L = 0.65 m,ρ = 5.25×10−3 kg/m,T = 60 N,E = 2×1011 Pa,
with radiusr = 4.3 × 10−4 m, and loss parametersσ0 = 1.38
and σ1 = 1.25 × 10−4. The barrier collision parameters are
K = 1015 andα = 2.3, and the pluck occurs pointwise at loca-
tion x = 0.52 m. The sample rate is 88.2 kHz.
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Figure 3:Maximal penetration, in m, as a function of time stepn,
for the simulation described in Section 4.1.

4.3. Visualization: Finger Tap

As a further example, consider the string under the application of a
tapping gesture on the fretboard, as illustrated in Figure 4. In this
case, the tapping is modelled (crudely!) as an unforced finger with
an initial velocity rebounding from the string, accompanied by an
intermediate pinning action against the fretboard itself.See Figure
4, illustrating the interaction of the finger with a string backed by
a fretboard and a series of 12 frets, with parameters for the string
and finger as given in the caption.

4.4. Energy Partition

In this example, the system has been assumed lossless, such that
a plot of the energy partition for the system over time may be
shown, as in Figure 5 at left; the finger energy is transferredfirst
to the linear and nonlinear energy components of the string,then
to the stored energy of the collision, when the string is in con-
tact with the fretboard, and finally fully back to the finger, which
rebounds with a speed identical to its initial speed. Noticein
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Figure 4:Collision of an unforced finger (in green), with a string
(in black) in contact with a fretboard (in blue). In this case, the
string/fretboard parameters are as given in the caption to Figure
2, and the finger is of mass5 × 10−3 kg, and approaches the
string with velocity 3 m/s, at a position 0.012 from the end ofthe
string. The finger collision potential parameters areKf = 1010

andαf = 2.3 and the sample rate is 88.2 kHz.

particular contact/recontact phenomena visible in the energy of
the string/fretboard collision. Energy is conserved to roughly 14
places in this case, as is visible in a plot of the normalized energy
variation at right in Figure 5.
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Figure 5: Left: energy partition for the system of parameters as
given in the caption to Figure 4, as a function of time stepn. Lin-
ear string energyhL (red), nonlinear string energyhK , (blue),
string/barrier collision energyhc (green), finger energyhf (cyan)
and total energyh (black). Right: normalized energy variation
ǫ = (hn+1/2 − h1/2)/h1/2.

4.5. Time-varying Finger Position

As a final example, consider the same system, under the applica-
tion of a sliding finger stop position—see Figure 6, showing snap-
shots of the string profile as the finger, under a constant applied

force, slides across a single fret, effecting a pitch change. Here,
the finger is assumed to act pointwise, at the position as indicated;
notice in particular that due to the finite string stiffness,the slope
of the string exhibits a strong variation at the fret location, and the
minimum may occur at a location slightly shifted from that ofthe
finger.
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Figure 6: Time evolution of string profile, for a
string/barrier/finger system of parameters as described in
the previous sections, where the finger, modelled pointwise, slides
over a single fret during a playing gesture.

5. CONCLUDING REMARKS

This paper is intended as an exploration of various featuresof
string vibration in a more realistic setting, particularlyinvolving
the non-trivial contact of various components, including abarrier
intended to represent a fretboard. Various features have been ne-
glected here. The most important of these is the modelling of
vibration in both polarizations; here, only the polarization trans-
verse to the barrier has been modelled, allowing for an examina-
tion in particular of a colliding finger. In the case of excitation in
the other polarization, however, a different nonlinear mechanism
is required for the finger stopping, which closely resemblesthat
of the bow-string interaction—see [12]. The other important ele-
ment, not modelled here, is coupling to a body (in the case of,say,
an acoustic guitar), and perhaps to the surrounding acoustic space.
When such features are included, one is not far from a fully artic-
ulated model of a guitar, leaving, then, the enormous problem of
gestural control—which is not considered here.

From a numerical point of view, a Hamiltonian potential for-
mulation has been used here in order to arrive at a stable numerical
method. As with all such stable methods, this leads to an implicit
design in the nonlinear part of the problem (note that the linear
part of the scheme, in isolation, remains explicit), and ultimately
to a nonlinear vector algebraic equation to be solved at eachtime
step. Though it is possible to show, for very simple systems such
as a lumped mass colliding with a rigid barrier [38], and certain ex-
tensions to the distributed case [18], that a unique solution exists,
in this vector case, a means of showing existence and uniqueness
is not immediately forthcoming—meaning that, when an iterative
method such as Newton-Raphson is employed it may either (a)
not converge, or (b) converge to one solution which may be spu-
rious. Thus an open question, for this and all nontrivial collision
problems, is the determination of such uniqueness and existence
conditions.

Beyond this basic question, at the level of the iterative solver
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employed (in this case, Newton Raphson, but many others are
available), there are further issues—one is that, even if existence
and uniqueness results are available, convergence of a particular
iterative method is not ensured. Another is that, in general, the it-
erative solver can prove to be something of a bottleneck not merely
in terms of the over-all operation count (here, 50 iterations have
been employed, for results to machine accuracy, though thiscan
be significantly reduced for audio synthesis), but also in parallel
implementations, where reducing the number of iterations (which
must be performed serially) is of paramount importance.
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ABSTRACT
In this paper, a physics-based model for a snare drum will be dis-
cussed, along with its finite difference simulation. The interac-
tions between a mallet and the membrane and between the snares
and the membrane will be described as perfectly elastic collisions.
A novel numerical scheme for the implementation of collisions
will be presented, which allows a complete energy analysis for the
whole system. Viscothermal losses will be added to the equation
for the 3D wave propagation. Results from simulations and sound
examples will be presented.

1. INTRODUCTION

Physics-based simulation of musical instruments is now an active
research topic, both for acoustical studies and sound synthesis, and
various numerical techniques can now tackle a wide range of com-
plex systems. Percussion instruments, and drums in particular,
with their various interacting components, constitute attractive and
challenging target problems. From the first attempts at simulat-
ing single membranes in 2D, research has rapidly moved towards
the simulation of complete instruments (see [1] for a review.) In
recent years, a physical model for nonlinear circular membranes
with snares has been proposed [2]. Finite difference methods have
been employed to model timpani drums [3], snare drums [4] and
nonlinear double-headed drums (i.e., tom toms and bass drums)
[5].

In this paper, a physics-based simulation of a snare drum will
be presented. The model consists of two membranes (batter and
carry head), coupled with the surrounding air and connected by a
rigid shell. A set of snares (thin metal wires) is placed below the
carry head, in contact with it. In the present work, a novel energy
conserving scheme for the simulation of collisions between the
snares and the resonant membrane will be presented. This con-
stitutes a major improvement with respect to previous attempts
[4], for which numerical stability is not guaranteed (and is in-
deed a problem in implementation.) A similar approach can be

∗ This work was supported by the European Research Council, under
grant StG-2011-279068-NESS.

adopted for the mallet-membrane interaction, which is included
in this model, thus giving an energy conserving scheme for the
whole system. When used as a sound synthesis tool, the usual 3D
scheme describing the acoustic field produces artefacts that harm
the quality of the sound. This problem can be addressed by adopt-
ing a more realistic model of 3D wave propagation that includes
viscothermal losses.

A major issue broached in this paper is the numerical simu-
lation of collisions, which play an important role in many fields,
including engineering and computer graphics, and the literature
on the subject is abundant (see [6] for a review). A mainstream
approach for collision detection in many applications is the use
of penalty-based methods, based on repulsive forces generated by
slight interpenetration between the objects. In musical acoustics,
many instruments rely on collisions for the production of sound,
with an obvious example given by percussions. Several approaches
have been used in the past, and in many cases this type of interac-
tion has been modelled as a nonlinear Hertzian force depending on
the mutual penetration of the colliding objects [7]. This model has
been successfully adopted, e.g., for the simulation of the hammer-
string interaction in pianos [8, 9].

For totally elastic collisions, these methods could be consid-
ered as unphysical, as they allow interpenetration in otherwise
rigid bodies, and simulations of collision without the need for con-
tact forces have been proposed [10]. Nonetheless, penalty-based
methods have many advantages, as they offer a mathematically
tractable and phenomenologically accurate description of the be-
haviour of the system, and will therefore be adopted in this study.
Furthermore, the maximum penetration allowed can be bounded
by choosing suitable values for the coefficients. When it comes to
numerical schemes, the risk of instability is always present, and
is particularly pronounced for rigid collisions. Energy-based finite
difference approaches, which have a long history [11, 12], provide
useful analysis tools in this sense but, for nonlinear interactions,
existence and uniqueness of a solution are not always guaranteed.
For the particular choice of penalty force used in this work, how-
ever, a uniqueness result has been proved recently in the case of a
mass in contact with a rigid barrier [13].

This paper is organised as follows: a brief description of the
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underlying physical model will be given in Sec. 2, while its numer-
ical implementation using finite difference methods will be dis-
cussed in Sec. 3. Sec. 4 presents an analysis of the implementation
of the collision scheme; finally, some results and sound examples
will be shown in Sec. 5.

2. DESCRIPTION OF THE MODEL

The geometry of the snare drum model under consideration is shown
in Figure 1. Two circular membranes of equal radius R are posi-
tioned within a finite enclosure V of air, with which they are cou-
pled. They are placed parallel to one another with centres along
the z axis, and are defined over regionsMb at z = zb andMc at
z = zc, respectively, with

Mb =Mc =
{

(x, y) |x2 + y2 ≤ R2} . (1)

A rigid cylindrical cavity connects the membranes, by enclosing
the portion of air between them (zc ≤ z ≤ zb).

As mentioned before, the important feature of snare drums is
the presence of a set of snares in contact with the resonant mem-
brane. Generally, these are 12-15 in number. For the sake of
simplicity and to avoid the proliferation of notation, the follow-
ing analysis will concentrate on a single snare of length L defined
over a 1D domain Ds. In implementation, however, it is straight-
forward to include several snares in the model.

The upper membrane is struck by a mallet, modelled as a
lumped object, while the bottom membrane, together with the snare,
is set into motion by the air pressure inside the cavity generated by
the blow. Absorbing conditions are applied at the walls of the air
box V .

As a similar model has been employed already [4], some of
the details of the system will be omitted here.

Figure 1: Geometry of the model.

2.1. Membranes

Let the index i = b, c identify batter and carry head, respectively.
The transverse displacements wi = wi(x, y, t) of the membranes
at some position (x, y) ∈ Mi and time t can be described by
lossy wave equations with additional terms due to coupling con-
ditions with the air and external collision forces. Batter and carry
membrane equations read, respectively:

ρb∂ttwb = Lb[wb] + F+
b + F−b + FM , (2)

ρc∂ttwc = Lc[wc] + F+
c + F−c + Fs + F0 + FL. (3)

with

Li[wi] = Ti∆2Dwi − 2ρiσ0,i∂twi + 2ρiσ1,i∆2D∂twi, (4)

where ∆2D = ∂xx + ∂yy is the 2D Laplacian operator in Carte-
sian coordinates and ∂t denotes partial time differentiation. Li[wi]
groups together the linear terms in the wave equation, while the
other terms are the air pressure exerted above (F+

i ) and below
(F−i ) each membrane. The last term FM in (2) describes the
mallet-membrane interaction. The equation for wc is almost iden-
tical to (2), except for the form of the collision term Fs and for
the presence of two additional terms F0 and FL resolved at the
two ends of the string attached to the membrane (see Sec. 2.5).
The explicit expression for the coupling and collision terms will
be discussed below, while the various physical parameters in (2),
(3) and (4) are listed in Table 1. Additional terms, like stiffness or
tension modulation nonlinearities, could be easily included in this
model. For the sake of simplicity, their discussion is omitted in
this work.

At the rim of both membranes, fixed boundary conditions are
applied.

Table 1: List of physical parameters used in this model.

Membranes (i = b, c)
wi(x, y, t) membrane displacement (m)
Ti tension (N/m)
ρi surface density (kg/m2)
σ0,i frequency independent loss coefficient (1/s)
σ1,i frequency dependent loss coefficient (m2/s)

Air
Ψ(x, y, z, t) acoustic velocity potential (m2)
ca wave speed (m/s)
ρa density (kg/m3)
σa viscothermal loss coefficient (m)

Mallet
zM (t) mallet position (m)
M mass (kg)
κM stiffness parameter (N/mα)
α nonlinear exponent

Snare
u(χ, t) snare displacement (m)
Ts tension (N)
ρs linear density (kg/m)
σ0,s frequency independent loss coefficient (1/s)
σ1,s viscosity coefficient (m2/s)
κs stiffness parameter (N/mβ)
β nonlinear exponent

2.2. Air

In this model, the equation for air propagation adopted is:

∂ttΨ = c2a∆3DΨ + caσa∆3D∂tΨ, (5)
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where Ψ(x, y, z, t) is an acoustic velocity potential as in [14] and
∆3D = ∂xx + ∂yy + ∂zz is the 3D Laplacian operator. The co-
efficient σa for viscothermal losses generally depends on various
physical parameters, among which temperature and humidity, but
values for it generally lie in the range of 10−7 to 10−6 m [14].

The drum shell S is modelled as a rigid, reflective boundary
encircling the cylindrical region between the membranes. This can
be obtained by imposing the normal derivative of Ψ to be zero
across the shell:

n · ∇3DΨ = 0. (6)

where ∇3D is the gradient and n is the unit vector normal to the
shell surface. Absorbing conditions are applied over the bound-
aries ∂V of the computational region. In this work, first order
Engquist-Majda conditions will be adopted [15], as they are easy
to implement within an energy-based framework. Another possi-
bility is the use of PMLs [16].

2.3. Coupling conditions

Coupling conditions between the membranes and air can be ob-
tained by imposing the continuity of pressure and velocity at the
interface. In terms of Ψ, these conditions may be written as:

F+
i = −ρa lim

z→z+i
∂tΨ |Mi F−i = ρa lim

z→z−i
∂tΨ |Mi , (7)

∂twi = − lim
z→z−i

∂zΨ |Mi= − lim
z→z+i

∂zΨ |Mi . (8)

These conditions hold over the membrane regionsMb andMc.

2.4. Mallet interaction

The mallet exciting the membrane is modelled as a lumped, but not
necessarily point-like object, with mass M and position zM (t) ∈
R measured relatively to zb. Let the contact region over Mb be
defined by a distribution gb(x, y), with

∫
Mb

gb = 1. For a mallet
striking the membrane from above, the equation of motion and the
collision term appearing in (2) can be written as:

Mz̈M = fM , FM = −gb fM , (9)

where the dot symbol represents total time differentiation. It is
usual in the literature to express the collision force fM as a power
law in terms of the mutual interpenetration η of the two objects
[3, 7]:

fM = κM [η]α+, η =

∫

Mb

gb wbdx dy − zM (10)

with stiffness parameter κM > 0 and α > 1, and which is active
only when η > 0; the symbol [ · ]+ is used in this article to indicate
the positive part, [η]+ = (η + |η|)/2. Such an approach traces its
origins in the work of Hertz at the end of 19th century (see [6] for
a historical review.)

An equivalent approach, which leads to an energy conserving
numerical scheme (see below), is to express the collision force fM
as the derivative of a potential ΦM , which again will depend on
the average distance η between the mallet and the membrane:

fM =
dΦM
dη

=
Φ̇M
η̇
, ΦM =

κM
α+ 1

[η]α+1
+ . (11)

2.5. Snare

A single snare can be modelled as a 1D string with internal losses
and an additional term describing the collisions with the mem-
brane. The equation of motion can thus be written as:

ρs∂ttu = Ts∂χχu− 2σ0,s∂tu+ 2σ1,s∂χχ∂tu−Fe. (12)

Note the change of sign in the collision force density Fe, as in this
case the string is striking the membrane from below. A stiffness
term could be included as well, without complicating too much the
implementation. As before, in order to define a function Gs(x, y)
that distributes collisions over the membrane, it is necessary to in-
troduce a two-element affine mapping π(χ) : Ds → Ms, from
the 1D domain of the snare to the resonant membrane, that projects
each point of the string onto the corresponding point on the mem-
brane above it. A natural choice for Gs is

Gs(x, χ) = δ(2)(x− π(χ)), (13)

where x = (x, y) and δ(2) is a 2D Dirac delta function. The
collision density Fs can thus be written as

Fs =

∫

Ds

Gs(x, χ)Fe(χ)dχ. (14)

Analogously to the mallet-membrane case, Fe(χ) can be written
in terms of a distributed potential Φs(χ):

Fe(χ) =
∂tΦs
∂tξ

, (15)

with

Φs(χ) =
κs

β + 1
[ξ]β+1

+ , ξ(χ) = u−
∫

Mc

Gs wc dx dy.

(16)
Once again, note the change in sign in the definition of ξ(χ) com-
pared to the corresponding quantity η.

The choice of perfectly elastic collisions between the snare
and the membrane must be considered only as a starting point for
simulation. More refined models that introduce damping in contact
forces can be adopted, like that proposed by Hunt and Crossley
[17], and could be perceptually important in determining the decay
time of the sound. This model requires, however, an experimental
investigation of the loss coefficient, which is outside the scope of
this paper.

At the end points of the snare, boundary conditions must be
carefully analysed. Let g0 = δ(2)(x − π(0)) be the distribution
function from the end of the snare at χ = 0 to the corresponding
point on the membrane Mc. When the snare is attached to the
membrane, their displacements must be the same at the end point:

u|χ=0 =

∫

Mc

g0 wc dx dy. (17)

Furthermore, the force density acting onMc at the same point can
be written as:

F0 = g0 f0, f0 = Ts∂χu|χ=0 + 2ρsσ1,s∂tχu|χ=0. (18)

These expressions can be easily arrived at through energy analysis
techniques (see Sec. 2.6). Analogous conditions can be written for
the edge at χ = L.
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2.6. Energy balance

A thorough analysis of the model presented above by means of fre-
quency methods can be ruled out, given the simultaneous presence
of several interacting components with strongly non-linear cou-
plings and irregular geometry. To this end, an alternative approach
is given by energy methods.

One way of calculating the energy of the system is to multiply
Eqs. (2), (3), (5), (9) and (12) by the first time derivative of the
variable on the left side of the equation, and then to integrate over
the corresponding domain (e.g., multiply (2) by ∂twb and integrate
overMb, etc.) Using integration by parts leads to an energy bal-
ance and to the determination of suitable boundary and coupling
conditions, as outlined below.

An energy balance for the whole system can be arrived at by
summing the contributions for the various components, and can be
written as

dH

dt
= −Q + B, (19)

where H = Hb + Hc + HM + Hs + Ha is the total energy of
the system, Q represents all the loss terms and B groups together
boundary terms. The explicit expressions for the various contribu-
tions to H are given below:

Hi =

∫

Mi

ρi
2

(∂twi)
2 +

Ti
2
|∇2Dwb|2 dx dy, i = b, c, (20a)

Ha =

∫

V

ρa
2c2a

(∂tΨ)2 +
ρa
2
|∇3DΨ|2 dx dy dz, (20b)

HM =
M

2
ż2M + ΦM , (20c)

Hs =

∫

Ds

ρs
2

(∂tu)2 +
Ts
2

(∂χu)2 + Φs dχ, (20d)

where ∇2D represents the 2D gradient. In order for the scheme
to be energy conserving, all the terms in B must sum to zero, and
it is indeed the case here, while contributions to Q come from
the loss terms in the membranes’ and snare’s equations, plus from
absorbing conditions over the boundaries of V . It can be shown
that each of these individual terms is positive, thus leading to a net
dissipation of energy in the system.

3. FINITE DIFFERENCE SCHEMES

In this section, the implementation of the model described above
will be carried out using the finite difference method [18].

The discretisation in space of the various components will be
performed over different Cartesian grids in 1D, 2D or 3D depend-
ing on the dimension of the domain. Time discretisation, instead,
will be unique for the entire system, with temporal step k = 1/Fs
defined as the inverse of the sampling frequency Fs. Spatial grid
steps can be derived in terms of k according to stability conditions
analysed below. A one dimensional function, like u(χ, t) for ex-
ample, will be approximated by a discrete function unl , over a grid
with step hs (where n and l represent the time and spatial index, re-
spectively.) However, it is very convenient to represent grid func-
tions as column vectors, regardless of their dimensions. If in the
1D case it is obvious how to perform such operation, in the 2D and
3D cases several options are available. On a 2D grid, points will
be grouped columnwise along the y axis, while in the 3D the same
operation will be applied to successive horizontal slices along the
vertical axis for increasing values of z.

Let un be the vectorised form of unl . For such a variable, one
can define forward and backward time shift operators as following:

et+un = un+1, et−un = un−1. (21)

Time difference and averaging operators can be obtained from
combinations of the previous ones, and are listed in Table 2. Space
difference operators, when operating on vectors, can be expressed
as matrices [18].

Table 2: List of time difference and averaging operators.

Time difference operators
δt+ = (et+ − 1)/k forward difference
δt− = (1− et−)/k backward difference
δt· = (et+ − et−)/2k centred difference
δtt = (et+ − 2 + et−)/k2 second difference

Time averaging operators
µt+ = (et+ + 1)/2 forward average
µt− = (1 + et−)/2 backward average
µt· = (et+ + et−)/2 centred average

3.1. Membranes

Let wn
i be the discrete approximations in vector form of the mem-

branes’ displacements wi(x, y, t) over grids of spacing hi, with
i = b, c. Equations (2) and (3) can be thus discretised as

ρbδttw
n
b = lb[w

n
b ] + f+,nb + f−,nb + fnM , (22)

ρcδttw
n
c = lc[w

n
c ] + f+,nc + f−,nc + fns + fn0 + fnL. (23)

The operator li[wn
i ] is the discrete counterpart of (4):

li[w
n
i ] = TiD�,iw

n
i −2ρiσ0,iδt·w

n
i +2ρiσ1,iδt−D�,iw

n
i (24)

where D�,i is the matrix form of the 2D Laplacian ∆2D , which is
generally different between the two membrane grids.

3.2. Air

Let Ψn be a discrete approximation of Ψ(x, y, z, t) over a 3D grid
of spacing ha. A finite difference approximation for (5) can be
written as

δttΨ
n = c2aD�Ψn + caσaδt−D�Ψn, (25)

where D� is the matrix representation of the 3D Laplacian ∆3D .
The last term introduces a frequency-dependent loss that in-

creases with frequency. It is critical to include viscothermal losses
in this model in order to suppress spurious artefacts that are per-
ceptually very relevant. More will be said about this in Sec. 5.3.

The implementation of boundary conditions over the shell, ab-
sorbing conditions over the walls and coupling conditions with the
membranes will be omitted, as they have been analysed several
times in recent works. The interested reader is referred to [4, 5].
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3.3. Mallet

Let znM and fnb be the sampled versions at time t = nk of zM (t)
and fb(t), respectively. Equation (9) becomes:

Mδttz
n
M = fnb , fnb = −gbf

n
b , (26)

where gb is a column vector representing the distribution gb(x, y).
Normalisation is obtained by imposing h2

b1
Tgb = 1, where 1T is

the transpose of a column vector consisting of ones.
As discussed in Sec. 2.4, fnb can be expressed in terms of a

discrete potential ΦnM :

fnb =
δt·Φ

n
M

δt·ηn
, ηn = h2

bg
T
b wn

b − znM , (27)

where ΦnM = ΦM (ηn).

3.4. Snare

The displacement u(χ, t) of the snare can be represented by the
vector un, over a 1D grid of spacing hs. Equation (12) can be
written as:

ρsδttu
n = TsDχχun − 2ρsσ0,sδt·u

n+

+ 2ρsσ1,sδt−Dχχun − fne , (28)

where Dχχ is the matrix representation of the operator ∂χχ. The
discrete version fs of the collision force density Fs in (14) is de-
fined as:

fns = Gsf
n
e , (29)

where Gs is the matrix form of the linear operator
∫
Ds
Gs ( · ) dχ.

As in the mallet case, it is possible to express fe in terms of a
discrete potential Φn

s

fne =
δt·Φ

n
s

δt·ξn
, (30)

Φn
s =

κs
β + 1

[ξn]β+1
+ , ξn = un −GT

s wn
c . (31)

The vector by vector division in (30) is intended here and in the
remainder of the article as an element-by-element operation.

At the end point l = 0, continuous boundary conditions (17)
and (18) can be discretised as

un0 = h2
cg
T
0 wn

c , (32a)

fn0 = g0f
n
0 , fn0 = (Tsδχ− + 2ρsσ1,sδt−δχ−)un0 , (32b)

where g0 is the discrete approximation of the distribution g0. Anal-
ogous expressions can be found for the other end point. When
applied to the grid point un0 , the operator δχ− would give:

δχ−u
n
0 = (un0 − u∗,n−1 )/hs. (33)

As u∗,n−1 lies outside of the 1D grid, it is sometimes called virtual
or ghost point (hence the notation ∗). Equation (32b) must be con-
sidered as a formal way of determining suitable update conditions
for the scheme (see Sec. 4.2.)

3.5. Energy and Stability

In the numerical case, an energy balance corresponding to (19) can
be written as:

δt−h
n+1/2 = −qn + bn, (34)

where hn+1/2 is the numerical energy of the system at time
(n + 1/2)k, qn represents losses and bn the boundary terms. As
in the continuous case, hn+1/2 can be written as a sum of the fol-
lowing terms:

h
n+1/2
i = h2

i

(
ρi
2
|δt+wn

i |2 +
Ti
2

((Dx+wn
i )T · et+(Dx+wn

i ))

+
Ti
2

((Dy+wn
i )T · et+(Dy+wn

i ))

)
, i = b, c, (35)

hn+1/2
a = h3

a

(
ρa
2c2a
|δt+Ψn|2 +

ρa
2

((Dx+Ψn)T · et+(Dx+Ψn))

+
ρa
2

((Dy+Ψn)T · et+(Dy+Ψn))

+
ρa
2

((Dz+Ψn)T · et+(Dz+Ψn))
)
, (36)

h
n+1/2
M =

M

2
(δt+z

n
M )2 + µt+ΦnM , (37)

hn+1/2
s = hs

(
ρs
2
|δt+un|2 +

Ts
2

((Dχ+un)T · et+(Dχ+un))

+ 1Tµt+Φn
s

)
, (38)

where | · | denotes the Euclidean norm of a vector, and the various
difference matrices represent forward spatial difference operators
[19]. It is understood that, in the air term, the z derivative be cal-
culated everywhere but across the two membranes. The boundary
term bn is identically zero. When the system is lossless, and re-
flective conditions are applied over the walls of the box, the total
energy hn+1/2 is conserved to machine accuracy. See Sec. 5.1 for
details. Otherwise, energy is monotonically dissipated.

By requiring that all the energy terms be positive, stability con-
ditions for the schemes can be arrived at. For the membranes and
snare schemes, the presence of collisions does not alter the usual
conditions:

h2
i ≥ 2k2Ti/ρi + 8σ1,ik, i = b, c, (39)

h2
s ≥ k2Ts/ρs + 4σ1,sk. (40)

For the air scheme, stability condition depends on σa:

h2
a ≥ 3c2ak

2 + 6caσak. (41)

4. NUMERICAL IMPLEMENTATION

In this section, the numerical implementation of mallet-membrane
and snare-membrane collisions will be discussed. In both cases,
it is necessary to solve a nonlinear equation at every time step.
Existence and uniqueness of solution will be analysed.

4.1. Mallet-membrane collision

Consider the mallet and batter membrane schemes first. The up-
date for the membrane points included in the distribution gb will be
coupled to the mallet’s position by the collision force fnb . When all
the terms in (22) and (26) are expanded and air coupling is taken

DAFX-5

DAFx-149



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

into account, the update expressions for wn+1
b and zn+1

M can be
schematically written as

Abw
n+1
b = ωnb [wn

b ,w
n−1
b ,Ψn,Ψn−1]− k2

ρb
gbf

n
b , (42)

zn+1
M = ζnM [znM , z

n−1
M ] + k2fnb /M, (43)

where Ab is a symmetric, positive definite matrix due to losses
and air coupling, and ωnb and ζnM represent linear combinations of
known terms from previous time steps. These two components can
be updated by finding ηn+1 first, then by calculating fnb and finally
by inserting it in (42) and (43). To this end, start by inverting the
system (42) and by multiplying it by h2

bg
T
b , then subtract (43).

After a brief calculation, it is possible to write a nonlinear equation
in rn = ηn+1 − ηn−1 which must be solved at every time step:

rn + γ
ΦM (rn + an)− ΦM (an)

rn
+ bn = 0, (44)

where

γ =
h2
bg
T
b A−1

b gbk
2

ρb
+
k2

M
, an = ηn−1, (45a)

bn = ζn − h2
bg
T
b A−1

b ω
n
b + ηn−1. (45b)

The particular choice of a power law nonlinearity for ΦM guar-
antees a unique solution for (44), as has been shown in [13] for a
simpler case.

4.2. Snare-membrane collision

The implementation of the snare-membrane interaction is some-
what complicated by the fact that the snare is a distributed object,
and by the presence of air coupling and boundary conditions at the
end points. As before, Eqs. (23) and (28) can be schematically
written as

wn+1
c = A−1

c ω
n
c +

k2

ρc
A−1
c (g0f

n
0 + gLf

n
L + Gsf

n
e ) (46)

un+1 = υn/qs − k2fne /(ρsqs), (47)

where ωnc [wn
c ,w

n−1
c ,Ψn,Ψn−1] and υn[un,un−1] depend on

known values of the various variables, Ac is a constant matrix
analogous to Ab and qs = 1 + σ0,sk.

One way to proceed in order to solve this system is to start
by solving for the pointwise forces f0 and fL. Using (32b), it is
possible to write

un+1
0 = − k2

qsρs
fn0 +

1

qs
υn0 , (48)

where the first term on the right hand side replaces derivatives that
could not otherwise be calculated, and fns,0 = 0 because the snare
and the membrane are attached. By multiplying (46) by h2

cg
T
0 and

by imposing condition (32a), it is possible to write fn0 in terms of
the (still unknown) force density fne :

fn0 = φn0 − νT fne , (49)

with φn0 combination of known terms and ν a constant vector. A
similar process can be repeated for fL.

Now, after substituting these expressions for fn0 and fnL back
into (46), it is possible to follow the same procedure used for the

mallet-membrane case. Multiplying (46) by h2
cG

T
s and subtract-

ing this from (47) leads to a nonlinear equation in the unknown
vector rn = ξn+1 − ξn−1 formally similar to (44):

rn + Γ
Φs(r

n + an)−Φs(a
n)

rn
+ bn = 0, (50)

where Γ is a constant, symmetric and positive definite matrix, and
bn and an depend only on known values. Once this equation is
solved, it is possible to calculate fne , and therefore to update the
rest of the scheme explicitly. Uniqueness of a solution in the vector
case is guaranteed by the special form of Γ [20].

As explained in Sec. 2, the present analysis has concentrated
on a single snare for simplicity sake. However, it is straightfor-
ward to extend the derivation of the previous section to Ns > 1
snares. The grid values for the various snares can be consolidated
in a single vector, and expressions like (50) still hold. Conditions
involving the end points, instead, will be transformed into vectors
of size Ns, and their values will generally be coupled.

5. RESULTS

5.1. Energy conservation

As discussed in Sec. 3.5, the numerical energy of the system can
be calculated, and must remain constant to machine accuracy in
the lossless case and without absorbing conditions over the walls
of V . Figure 2 shows the normalised variations of h, together with
the partition into the various components. Such an energy measure
can be extremely useful for debugging purposes, as virtually any
error has an impact on the conservation of h. The drum is excited
by a mallet with M = 0.028 kg and initial velocity v = −5 m/s
at t = 0 s. Seven snares are included in the model.
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Figure 2: Left: normalised variations of the total energy h for a
snare drum in the lossless case. Right: contribution to the total
energy given by the various components (solid black: mallet, red:
upper membrane, blue: lower membrane, dashed black: air, green:
snares). The sample rate is 44 100 Hz.

5.2. Evolution of the system

Figure 3 schematically illustrates what happens when the drum
is excited with parameters given in the previous section. A posi-
tive pressure due to the compression of the membrane is generated
inside the cavity, which pushes the lower membrane downwards,
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Figure 3: Snapshots of the evolution of the snare drum system at
times as indicated. The pressure variations from atmospheric in-
side the cavity are depicted (green: zero variation, red: positive
variation, blue: negative variation.) Displacements have been al-
tered for illustration purposes.

together with the snares. The snares reach their maximum dis-
placement at t = 6 ms, when they start to move upwards. At
about t = 9 ms, the snares hit the membrane almost coherently
(notice the pressure wave generated by the impact). At later times,
the behaviour of the snares becomes rapidly chaotic.

5.3. A note on dispersion error, ABCs and viscosity

It is well-known for the lossless case (σa = 0 m) that the scheme
employed for the 3D air box exhibits significant dispersion er-
ror [21]. Dispersion error essentially means that the ideal linear
relationship between temporal and spatial frequencies is warped in
the finite difference scheme. Numerical wave speed is thus depen-
dent on direction and frequency. In this case, high frequencies tend
to lag along the axial directions. While more accurate schemes ex-
ist for minimising dispersion, such as interpolated schemes [21],
due to the complexity of the full 3D drum embedding presented
here and with the goal of presenting a complete energy analysis,
such schemes are currently distant options. This 3D scheme is of-
ten used with a large oversampling of the grid in order to reduce
dispersion error to acceptable levels, such as in [3] where a 24 kHz
sampling rate was used for a 700 Hz output. The full audible band-
width is of interest here so oversampling was not employed, since
computational costs rise drastically when reducing the time-step

(16x increase for doubling of the sampling rate).
The presence of dispersion error causes some challenges when

absorbing boundary conditions (ABCs) are used. The absorbing
boundaries employed here are of the first-order Engquist-Majda
type:

(∂t − can · ~∇3D)Ψ = 0 , (x, y) ∈ ∂V. (51)

The problem that is encountered with this condition (and any ABC
for that matter), is that it assumes the wave speed to be constant,
but in the finite difference scheme the numerical wave speed is di-
rectionally and frequency-dependent [21]. Another problem with
condition (51) is that it is less effective for incoming waves that
are not normal to the boundary. Ultimately, these two effects com-
bine such that the ABCs only partially absorb incident waves. This
can be seen in the spectrogram displayed in Fig. 4a, which refers
to the output of a simulation without viscosity in the air (σa = 0
m) and without the cavity or snares. The output was taken along a
diagonal above the top membrane and the spectrogram uses a 512
sample Hann window with 75% overlap. It can be seen there is en-
ergy which is slow to decay at approximately 8643 Hz. This is in
fact the temporal frequency (0.196Fs) that experiences the worst
dispersion error (approx. 30% error) for axial-directed waves [21].
There is another peak at 0.304Fs, which is the temporal frequency
pertaining to the worst error for side-diagonal directions (approx.
25% error) [21].

When the cavity and snares are added to the simulation there is
an increase in mid-frequency energy due to the modes of the cavity
and due to the snares activity. A spectrogram for this case is shown
in Fig. 4b. In this case, the energy that is slow to decay causes
audible ‘hiss’ and ‘ringing’ artefacts. Although not presented here,
higher-order ABCs (up to fourth order) were also not effective at
reducing this effect. Fortunately, viscosity in air has a damping
effect that targets high frequencies [14]. A spectrogram from the
same listening position, now with σa = 2 × 10−6 m, is shown in
Fig. 4c. It can be seen that the energy in this band of frequencies
decays faster than in the lossless case. It was found that this added
decay was sufficient to eliminate the audible artefacts.

5.4. Sounds and Videos

Sound examples and videos can be found at the author’s website:
www2.ph.ed.ac.uk/~s1164558

6. FINAL REMARKS

In this paper, a physics-based model of a snare drum has been
presented. A novel, energy conserving numerical scheme for the
simulation of collisions has been discussed, which can be applied
both to the mallet-membrane and to the snare-membrane interac-
tions. This constitutes a major improvement with respect to previ-
ous works, as in this case the stability of the numerical scheme can
be guaranteed.

Another problem that has been discussed in this work is the
effect of dispersion in the 3D Cartesian scheme in virtual embed-
ding simulations such as this. It has been found that, when high
frequencies are created in the model, either by the mallet or by
the snares, a slowly attenuating “hiss” is produced, which domi-
nates the spectrogram of the output sound and harms its quality.
This problem has been interpreted as dispersion of the 3D scheme
exacerbating the proper functioning of absorbing boundary con-
ditions. However, when viscothermal effects are added to the 3D
scheme these artefacts are rendered inaudible.
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Figure 4: Spectrograms for simulation output.

A point which has not been mentioned in this work is the com-
putation cost of this model. As discussed in Sec. 4, the collision
model presented relies on the solution of a nonlinear equation with
the Newton-Raphson method at every time step. If in the case of
the mallet this is just a scalar equation, it becomes a challenging
problem for the snares-membrane interaction, where a vectorial
equation is involved. When a realistic number of snares is included
in the numerical model, the dominant part of the code in terms of
computation time is the solution of the nonlinear system (50), and
not, as one would expect, the update of the 3D field. The former, in
fact, requires the iterative solution of a linear system, which in this
case is dense. It is, therefore, an intrinsic serial operation. As well
known, parallel hardware like GPGPUs can be extremely useful in
accelerating the computation of systems with a high degree of par-
allelisability, and this is becoming a mainstream approach to room
acoustics simulation [22]. However, this hardware is not suited for
cases like the present one, where operations must be performed in
a sequential order. One of the major challenges at the moment is
to find alternative methods that could tackle more effectively this
problem.
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ABSTRACT
In this study, a famous boxed effect pedal, also called stompbox,
for electrical guitars is analyzed and simulated. The nodal DK
method is used to create a non-linear state-space system with
Matlab as a physical model for the MXR Phase 90 guitar ef-
fect pedal. A crucial component of the effect are Junction Field
Effect Transistors (JFETs) which are used as variable resistors to
dynamically vary the phase-shift characteristic of an allpass-filter
cascade. So far, virtual analog modeling in the context of audio
has mainly been applied to diode-clippers and vacuum tube cir-
cuits. This work shows an efficient way of describing the non-
linear behavior of JFETs, which are wide-spread in audio devices.
To demonstrate the applicability of the proposed physical model,
a real-time VST audio plug-in was implemented.

1. INTRODUCTION

Nodal analysis has been widely used to derive non-linear state-
space systems from electrical circuits [1–6]. In this work the type
of the nodal DK method described in [1] is applied to the circuit
of the MXR Phase 90 phaser effect. The used modeling technique
has the advantage that the state-space matrices can directly be cal-
culated from so called incidence matrices, which describe the po-
sition of each circuit element in relation to the nodes of the circuit,
and diagonal matrices which contain the values of the correspond-
ing circuit elements.
The research field of virtual analog modeling in the audio context
was so far dominated by studies investigating distortion and over-
drive effects. Musical distortion circuits, like diode clippers, and
various guitar amplifier and effect circuits were analyzed in [3, 6].
In [4] the main focus is on the modeling of vacuum tubes, which
can mainly be found in guitar amplifiers. A dynamic filter broadly
used in musical environments, known as Dunlops Crybaby Wah-
wah effect pedal, is based on a circuit including two bipolar junc-
tion transistors (BJTs). The modeling of the BJTs and the simu-
lation of the effect device was reported in [1]. However, the class
of modulation effects was not subject of detailed research so far.
Therefore, this paper focuses on modeling a time-variant phasing
effect and in particular, the usage of JFETs as non-linear variable
resistors in audio circuits.
A slightly modified version of the original circuit by MXR, which
was available as a D.I.Y. effect pedal kit from [7], is used as the
reference device. The circuit of the kit was thoroughly analyzed
and every circuit element was measured prior to assembling the
pedal. The characteristics of every JFET used in the reference
circuit have been measured and are used in the implementation,
which is of relevance since they strongly influence the tonal be-
havior of the effect pedal.

In section 2 a brief review on the nodal DK method, the used dis-
cretization method, the handling of operational amplifiers and non-
linear elements as well as the used non-linear solver is given. Sec-
tion 3 describes how the phaser operates in general and discusses
the circuit of the analog reference device. In section 4 the results
of the measurements are evaluated. Section 5 specifies the real-
time VST plug-in implementation, whereas section 6 concludes
this paper.

2. NODAL DK METHOD

The nodal DK version of [1] has been used in this work to transfer
the effect’s schematic to its digital emulation. The laws of Kir-
choff, namely Kirchoff’s current law (KCL) and Kirchoff’s voltage
law (KVL), are used to design a state-space system of the circuit
under test. The state-space matrices are constructed using inci-
dence matrices Ni, which describe the connections of the ith group
of circuit elements, like resistive, capacitive, or inductive elements,
to the nodes of the circuit. A further requirement for constructing
the state-space system are diagonal matrices Gi, containing the
values of the circuit elements and the so called system matrix

S =

(
NT

RGRNR + NT
x GxNx Nvo

Nvi 0

)
(1)

resulting from the aforementioned incidence and diagonal matri-
ces. Ni arem×nmatrices withm as the total number of a certain
circuit element (e.g. resistors or capacitors) and n as the total num-
ber of nodes in the circuit. As it is common for nodal analysis, the
reference node (commonly the ground node) is not numbered. The
positive and negative poles of every element are marked by a (+ 1)
and a (− 1) in each row. If an element is connected to the refer-
ence node, only the pole of the element which is not connected to
the reference node is marked by a (± 1) in the incidence matrix.
The Gi matrices hold the information about the values of each
circuit element and the Nv matrices give the position of voltage
sources in the circuit. Note, that the subindices R and X refer to
resistive and capacitive elements, respectively.
The procedure uses the trapezoidal discretization rule to get the
discrete-time approximations for the energy storing elements of
the circuit. In the circuit of the phaser there are only capacitors as
energy storing elements. The resulting state-space system has the
form

x(n) = Ax(n− 1) + Bv(n) + Cin(n) (2)
y(n) = Dx(n− 1) + Ev(n) + Fin(n) (3)

vn(n) = Gx(n− 1) + Hv(n) + Kin(n). (4)
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The matrices A,B,C,D,E,F,G,H, and K can be computed
from S,Ni, and Gi (more detailed information on the state-space
system is provided in [1]). The actual computation of the state-
space system consist of three steps. At first the non-linear relations
between the present voltages at the non-linear element vn(n) and
it’s non-linear currents in(n) are obtained through Eq. (4). This is
done by an iterative non-linear solver (see section 2.3). Then, the
output of the system y(n) can be computed using Eq. (3). At last
the internal states x(n) of the system, representing the amount of
charge in the capacitors, have to be updated using Eq. (2).

2.1. Capacitors

ic(n)

RvC(n) x(n− 1)

Figure 1: Companion circuit for energy-storing elements of the
circuit

From the differential equation, describing the current through
a capacitor

iC = C
d vC
d t

, (5)

it’s discrete-time approximation (using the trapezoidal discretiza-
tion rule)

1

2
(iC(n) + iC(n− 1)) =

C

T
(vC(n)− vC(n− 1)) , (6)

and the canonical state

xC(n) = −2C

T
vC(n)− iC(n) (7)

the state-update equation can be formulated

xC(n) = 2
2C

T
vC(n)− xC(n− 1). (8)

Combining Eq. (7) and Eq. (8) yields

iC(n) =
2C

T
vC(n)− xC(n− 1) (9)

which describes the companion circuit shown in Fig. 1.
Due to this procedure every capacitor is replaced by a parallel cir-
cuit consisting of a resistor R = T

2C
and a current source which

holds the state information.

2.2. Operational Amplifiers

In this work operational amplifiers are considered to be ideal. They
consist of three nodes, describing the inverting input (−), the non-
inverting input (+) and the output (out). The ideal operational
amplifier (op-amp) is considered as a voltage controlled voltage
source, where the voltage difference at the input defines the output
voltage vout = A(v+ − v−). The input resistance Rin = ∞Ω
is infinitely large and the output resistance Rout = 0 Ω infinitely
small as illustrated in Fig. 2. A is the open-load amplification fac-
tor [5].
Without any op-amp in the circuit the relation between the voltage

v−

v+

vout

Rin =∞Ω

Rout = 0 Ω

vout = A(v+ − v−)

Figure 2: Equivalent circuit diagram for an operational amplifier.

incidence matrices (see section 2) would be

Nvi = NT
v (10)

and
Nvo = Nv (11)

with Nv being of n× k size. n corresponds to the number of
nodes in the circuit while k is the number of voltage sources.
To add an ideal op-amp to the state-space system described in sec-
tion 2 the only modifications that have to be made are changes in
the incidence matrices for the voltage sources NT

v and Nv. There-
fore, one row is added to the NT

v matrix and one column to the Nv

matrix. The additional row in the NT
v matrix contains a (+1) at

the corresponding node representing the inverting and a (−1) for
the non-inverting input of the op-amp respectively

ri = (. . . 0 1 − 1 0 . . .), (12)

which yields

Nvi =

(
NT

v

ri

)
. (13)

These modifications indicate that the inputs of an ideal op-amp
have the same potential though they draw no currents.
Since the controlled voltage source describing the op-amps output
is connected to the ground node the additional column in the Nvo

matrix contains only a (+1) at the corresponding node

co = (. . . 0 1 0 . . .)T (14)

leading to
Nvo =

(
Nv co

)
. (15)
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This describes the voltage source from Fig. 2. By using this tech-
nique, an ideal op-amp can be easily integrated in the state-space
representation and its behavior is described by the peripheral wiring
around the op-amp.

2.3. Non-linear Circuit Elements

A major challenge in virtual analog modeling are non-linear ele-
ments. Typically, the non-linear relation between voltages and cur-
rents are iteratively solved by minimizing an error function f(x)
producing the current iteration’s residual e. This costly compu-
tation has to be performed for every sample and every non-linear
component of the desired system. One way to avoid these com-
plex computations, potentially inhibiting real-time functionality,
is to pre-compute the non-linear function for a certain range of in-
put values and store the corresponding results in a lookup table.
Certainly, the storing of lookup tables requires a decent amount of
memory. Hence, an actual implementation is always subject to a
compromise between computational complexity and memory re-
quirements.

The non-linear elements in the Phase 90 circuit are 4 JFETs

Rtest

IDS
VDSM

VGS

Figure 3: Measurement setup for the JFETs.

which modify the center frequency of the allpass filter cascade and
a PNP BJT as a summing amplifier. The input-output characteris-
tic of each JFET was determined by varying the gate-source volt-
age VGS and drain-source voltage VDS and measuring the drain
current IDS of the device. A low-impedance resistor Rtest was
connected in series to the drain-source channel of the JFET for ul-
tra high frequency (UHF) stability as can be seen in Fig. 3. The
relevant voltage ranges for VDS ∈ [−2 V, . . . , 2 V] and VGS ∈
[−2.8 V, . . . ,−1.5 V] were determined using a SPICE simulation
of the phaser circuit and from measurements on the reference de-
vice.
The results of these measurements were saved in lookup tables
which are used in the model to calculate the current-voltage rela-
tions for every JFET in the circuit.

2.4. Non-linear Solver

As previously mentioned, the non-linear voltage-current relations
are solved by iteratively minimizing an error function. The well
known Newton-Raphson method has been used to solve the error
function

f(vn(n)) = Gx(n−1) +Hv(n) +Ki(n)−vn(n) = e, (16)

which is Eq. (4) in a slightly modified form.
The function is linearized at a certain starting value and the root of
the linearization is used as the next starting point until the resid-
ual of the error function is smaller than a predefined tolerance

while |f(vm)| > ε do
vm+1 = vm − b f(vm)

f ′(vm)
;

end
Algorithm 1: Pseudo code for the Newton-Raphson method.

f(vm) < ε, as illustrated with algorithm 1, where m denotes the
iteration index and the step size b is 1.

For the PNP-BJT a damped approach of this method has been
implemented. Due to the exponential functions in the Ebers-Moll-
Model, describing the BJT, a step with a size that is too big may
lead to a function value which can not be represented by normal
floating point arithmetic. Thus the non-linear solver does not con-
verge and this again leads to invalid numbers which can lead to an
unstable state-space system. Therefore the step size of the damped
method is halved as long as the resulting residual is bigger than the
original residual being computed with the previous step size. List-
ing 2 shows the corresponding pseudo-code for the implemented
method

while |f(vm)| > ε do
b = 1;
vm+1 = vm − b f(vm)

f ′(vm)
;

vm̃ = vm+1;
b = b

2
;

vm̃+1 = vm − b f(vm̃)
f ′(vm̃)

;
while |f(vm̃+1)| > |f(vm+1)| do

b = b
2

;
vm̃+1 = vm − b f(vm̃)

f ′(vm̃)
;

end
vm+1 = vm̃+1;

end
Algorithm 2: Pseudo code for the damped Newton-Raphson
method.

3. PHASER EFFECT

Phasing is a common modulation effect in audio applications. Many
hardware realizations are based on the following idea. The input
signal is sent through an allpass filter cascade which leads to a
frequency dependent phase shift. The phase-shifted signal is then
added to the original signal which introduces phase cancellation
and elevation for certain frequencies. Since each first order all-
pass filter introduces a maximum phase shift of 180 ◦ the amount
of resulting spectral notches is half the number of used allpass
stages. The center frequency of each allpass filter is varied by a
low frequency oscillator (LFO) in the same way. This leads to
a time variant phase shift in the output signal of the allpass fil-
ter cascade causing the phase cancellation to sway back and forth
the frequency axis and thus creating the characteristic effect of the
phaser.

3.1. Phase90 Circuit

The circuit of the Phase90 can be divided into functional blocks,
like the power supply block, the low frequency oscillator, and the
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Figure 4: Circuit of the Phase90.

signal processing blocks which actually process the input signal.
For physical modeling of audio circuits only the signal process-
ing blocks of the device are of interest. Other blocks can be ne-
glected as their contribution would not affect the tonal qualities of
the model but only increase the computational effort.
In Fig. 4 the negligible blocks of the circuit have been marked as
power supply and LFO. The complete power supply block can be
replaced by a voltage source with the value of the voltage defined
by the zener diode D1. This voltage will be called Vlift since it
adds a constant DC offset of about Vlift ≈ 5 V to the input signal.
Modeling of the low frequency oscillator (LFO) is not necessary
since the output of the LFO can be described analytically. The
LFO can thus be replaced by another voltage source which pro-
duces an oscillating voltage VOSC of the same characteristics as the
LFO would create.
The signal path of the circuit contains three main blocks. The first
one is the input stage, which is just a simple voltage follower, lift-
ing the input signal up to Vlift. It consists of an op-amp, R1, R2

and C1. The (A) in Fig. 4 marks the output of the input stage.
It is possible to divide the circuit into stages, because the op-amps
have a low output resistance. The corresponding nodes are suit-
able for dividing the signal path of the circuit into blocks. After
the input stage the signal passes a cascade of four allpass filters,
using JFETsQ1−Q4 as variable resistors. The continuous change
of the resistance RJFET leads to alternating center frequencies

fc =
1

2π(Rfix||RJFET)Cfix
(17)

of the allpass filters. Rfix are the resistors [R5, R8, R11, R14],
applied in parallel to the JFETs, and Cfix denotes the capacitors
C2,...,5, that are placed at the positive op-amp input. The output of
the allpass-stage is marked in Fig. 4 as (B).
The resistance R15 introduces a feedback in the allpass cascade
which leads to an amplification of certain frequencies. This reso-
nance introduces a harmonic distortion of the amplified frequen-

cies in the output signal of the Phase 90. By including a switch or
a potentiometer in this feedback path the resonance can be com-
pletely switched off or adjusted by the potentiometer allowing a
kind of tone control. In 1974 the first version of the Phase 90 was
released. The circuit of this early version did not include the feed-
back path with resistor R15. The so called script version (due to
it’s script font MXR logo) is still popular amongst guitar players
and reaches horrendous prices in trade. In the state-space model
this change of circuitry can be easily adapted leading to a usage of
the Phase 90 model beyond the limitations of the circuit.
The last stage of the signal path is the output stage. The phase-
shifted allpass signal is added to the direct signal at the base of the
PNP bipolar junction transistor Q5 driving the output voltage vout

of the phaser. Figure 4 illustrates this process: signal (A) is added
to signal (B) at the base of the PNP-BJT Q5 (C).

4. EVALUATION

This section shall present the undertaken experiments, assessing
the model’s quality. Besides the illustration of the JFET measure-
ments, the static and dynamic behavior of the Phase 90 emulation
is shown in detail. Additionally, the auditory impression is graded.

4.1. JFET Characteristics

The JFETs were measured as described in section 2.3 and the re-
sults of these measurements can be seen in Fig. 5. The absolute
value of the drain-current decreases when the gate-source voltage
VGS declines thus increasing the channel resistance of the JFET.
In [8] or similar literature the functionality of the JFET is described
in detail. To reduce computational complexity the relations be-
tween voltages and currents are stored as a lookup table for the
efficient calculation of the non-linear element in the circuit.
In this circuit and for the given operating point of the JFETs the
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Figure 5: Output characteristic of a single JFET.

gate-source voltage VGS is independent of the drain-source volt-
age VDS or the drain-current IDS . Since the gate-source voltage is
controlled by the LFO it is sufficient to calculate the drain-current
drain-source voltage relations subject to the current value of the
gate-source voltage which can be computed linearly without the
need of a non-linear solver.
Furthermore, it was important to use a matched set of four JFETs
with similar characteristics in the reference device. Due to produc-
tion uncertainties the characteristics of JFETs vary from transistor
to transistor. Since all JFETs are driven by the same control volt-
age an unmatched set of transistors would not have the same oper-
ating point and thus the allpass-filters would not be tuned correctly.

4.2. Static Behavior

The connection between resistorR27 andR24 or capacitor C10 re-
spectively was unraveled to disconnect the LFO from the circuit
(see Fig. 4) and a voltage source with a constant DC value was ap-
plied to this node. A sine wave with the frequency fsin = 1 kHz
and amplitude of 1 V was fed into the input of the reference device
and into the input of the state-space model.

Figure 6 shows the spectra of the output signals for the analog

|H
(f

)|
in

dB

f in kHz

0 analog reference
state-space model-20

-40
-60
-80

0 5 10 15 20

Figure 6: Output spectrum of analog reference device (dashed red
line) and state-space model (solid blue line) for a mono-frequent
excitation signal with fsin = 1 kHz and 1 V amplitude.

reference and the digital model. The model exhibits more signal
energy for lower frequencies than the reference device but apart
from that the similarity of the distortion behavior of model and
system are satisfactory.

4.3. Dynamic Behavior

Since the phaser is a time-variant modulation effect the dynamic
behavior is of major importance since it strongly influences the au-
ditory impression. To visualize the varying spectral notches, both
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Figure 7: Output of (a) the analog reference device and (b) the
state-space model of the phaser for white noise as the input signal
and maximum LFO frequency.

systems were fed with white noise. The output was measured us-
ing the maximum depth setting and two settings for the speed: (1)
the maximum speed and (2) the minimum speed.
As previously mentioned, the amount of spectral notches is half
the number of allpass stages. The Phase90 circuit contains 4 stages
and hence, two notches can be seen in Fig. 7 and 8 in form of os-
cillating dark lines, indicating the frequencies that are canceled.

It is noticeable that the analog signal contains AC hum at
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Figure 8: Output of (a) the analog reference device and (b) the
state-space model of the phaser for white noise as the input signal
and minimum LFO frequency.

f = 50 Hz. In Fig. 7 (b) the charging process of the capacitor
models can be seen for t < 0.1 s. When the capacitors are fully
charged the frequency cancellation occurs at the same frequencies
as in the reference device.
Figure 8 indicates that the approximated output voltage of the state-
space LFO does not behave exactly like its analog counterpart. The
output voltage of the LFO was approximated by a triangular func-
tion while the actual LFO output voltage has slightly curved edges
and the falling edge is a little longer than the rising edge.
The notch width of the analog reference device seems larger than
for the state-space model while the edges of the notches seem to be
sharper in the state-space representation. This is probably caused
by noisy side-effects occurring in the JFETs but not in their sim-
plified model.
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4.4. Auditory Impression

Despite the afore mentioned differences of state-space model and
analog reference device the auditory impression of the model is
satisfactory. The difference of the LFO signals is barely noticeable
for slower oscillation speeds and perceptually diminishes for faster
LFO speeds. Listening examples for the reference device, the em-
ulated system, and the emulated script version (without resonant
feedback) can be found online. See [9] for listening examples.

5. REAL-TIME IMPLEMENTATION

State-space implementations are known to be complex due to the
necessity to perform many matrix operations. Hence, a real-time
implementation was done to test the real-time capability of the
phaser emulation. The authors decided to implement a VST plug-
in in C/C++ using the well-known JUCE framework [10] that al-
lows straight-forward implementations by simply extending an au-
tomatically generated plug-in template with the actual signal pro-
cessing code.
The circuit was divided in several processing-blocks and the same
was done in the real-time implementation. Every module was im-
plemented in a separate class and each object of a module class
is a member of the phaser class. There are 6 modules needed to
calculate a sample of the output signal. At first the input module,
then 4 allpass modules and at the end of this chain the output mod-
ule. The second allpass module is expanded to contain resistance
R15 and another input to integrate the feedback path mentioned
in section 3.1. Alternatively this stage can also be replaced by an
allpass module without feedback via the graphical user interface
of the plug-in to include the afore mentioned 1974 version of the
Phase 90. The phaser class offers a public processing function,
called from the VST host through the JUCE interface, that pro-
cesses a block of audio data.
Initially the authors planned to use a wide-spread C++ library for
linear algebra [11]. It allows a similarly compact representation
of matrix operations as Matlab. The compact representation,
leading to nice readable and maintainable code, is achieved with
the help of massive templating. Unfortunately, the implementa-
tion based on the templated code was intolerably slow. Hence, a
new class providing functionality for memory allocation, addition,
multiplication, and copying of matrices was implemented and used
from thereon. The computation of the matrices A to K of Eq. (2-
4) requires the inversion of the potentially large system matrix S.
This inversion was performed using the well-known Linear Alge-
bra Package (LAPACK) [12], implemented in Fortran. Using these
tools, allows to realize the plug-in, that is now applicable in man-
ifold applications and running real-time. Nevertheless, this first
unoptimized, straight-forward implementation utilizes about 70 %
of a single Intel i5 processing core.

6. CONCLUSIONS

In this work the circuit of the MXR Phase 90 was analyzed and
emulated using a state-space implementation. A D.I.Y. clone of
the effect was assembled and measured to have a reference device.
The measurements focused on measuring the JFETs characteris-
tics, which were saved in a lookup-table to efficiently describe the
behavior of the transistors. To realize the state-space representa-
tion of the effect, the nodal DK method was used, which is a lucid
method to transform an analog circuit into a mathematical model.

A Matlab implementation of the state-space model was devel-
oped allowing to imprint the tonal characteristics of the effect on
pre-recorded .wav files. Additionally a VST plug-in of the effect
was implemented in C/C++ to allow real-time application of the
Phase 90.
The model was analyzed and compared to the reference device in
the static (non-oscillating) and the dynamic case. The compari-
son showed that model and reference are not exactly the same but
particularly in the dynamic case the results are very satisfactory.
The proposed model also has the possibility to expand the effect
beyond the limitations of the circuit. The very first 1974 script ver-
sion of the Phase 90, without the resonant feedback, can be used
as well as todays version.
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ABSTRACT

We present an analysis of the bass drum circuit from the classic
Roland TR-808 Rhythm Composer, based on physical models of
the device’s many sub-circuits. A digital model based on this anal-
ysis (implemented in Cycling 74’s Gen˜) retains the salient fea-
tures of the original and allows accurate emulation of circuit-bent
modifications—complicated behavior that is impossible to capture
through black-box modeling or structured sampling. Additionally,
this analysis will clear up common misconceptions about the cir-
cuit, support the design of further drum machine modifications,
and form a foundation for circuit-based musicological inquiry into
the history of analog drum machines.

1. INTRODUCTION

When Roland discontinued the TR-808 Rhythm Composer in 1984,
it was considered somewhat of a flop—despite significant voice
design innovations, disappointing sales and a lukewarm critical re-
ception seemed clear indicators that digitally-sampled drum ma-
chines were the future. Ironically, this lack of interest drove second-
hand prices down and made it an attractive source of beats for
techno and hip-hop producers. It soon became ubiquitous, play-
ing a central role in the development of acid house. More than a
decade later, when the Beastie Boys rapped “nothing sounds quite
like an 808” [2], no one disagreed.

To this day, the 808 remains a benchmark against which all
other analog drum machines are measured. Among all of its voices,
perhaps the most influential has been the bass drum, the thumping
foundation of countless four-on-the-floor dance beats. It could be
tweaked via stock user controls to sound like a fairly realistic kick,
or extended beyond recognition to a multi-second-long decaying
pseudo-sinusoid with a characteristic sighing pitch. Its clicky at-
tack could cut through a mix, but could be dialed back with a pas-
sive tone control.

Despite the significant work that has been done on cloning1

and emulating2 the 808 bass drum, there is an almost complete

1Full analog clones such as the AcidLab Miami, clones of individual
voices in a modular synth like the Analogue Solutions line of Concussor
modules, and new drum machines using simplified 808 circuitry [3] are
common (references are representative but far from comprehensive).

2The first 808 emulation, Propellerhead’s sample-based ReBirth RB-
338 [4], was introduced in 1997. Since then, there have been many com-
mercial emulations based on structured sampling and black-box models.
Marketing materials for the D16 Group’s Nepheton mention circuit mod-
eling. Roland’s TR-8 Rhythm Performer, from their upcoming AIRA line,
will employ their proprietary Analog Circuit Behavior (ACB) technique,
presumably a form of physical modeling.

lack of published analyses on the circuit.3 The history of the 808
is steeped in anecdote, and misinformation about its voice de-
sign still abounds. Although the fabric of lore surrounding the
design, inception, and use of the 808 lends a richness to its over-
all mythology, they also give credence to a blithe sort of analog
fetishism. The device’s ingenious and satisfying properties are of-
ten attributed to mere circuit element nonlinearities. In addition to
being inaccurate, this mindset directs attention away from a more
interesting story. The designers of the 808’s voice circuits4 master-
fully blended ingenuity and efficiency, creating circuits with great
detail and complexity, but a part count low enough to be amenable
to mass manufacture.5

The 808 was released just before the development of the MIDI
standard (it used Roland’s DIN sync protocol). As MIDI gained
traction, users and technicians became accustomed to retrofitting
the 808 with MIDI capabilities, also making extensive modifica-
tions to its voice circuitry.6 This tradition parallels the develop-
ment of circuit-bending and other music hardware hacking, and
could unfortunately be lost in the process of digitally emulating an
808.7

The goals of this research are to partition the 808’s bass drum
circuit into functional blocks, create a physically-informed analy-
sis of each block, model each block in software, and evaluate the
results, paying special attention throughout to analysis of the cir-
cuit’s behavior in terms of the electrical values of circuit elements
(resistors and capacitors). These methods are well-represented in
virtual analog literature,8 but have not previously been used in the
analysis of analog drum machine circuits.9

3 [5] discusses [1] in the context of designing and building a hardware
clone of the bass drum. [6] offers a qualitative description in the context
of imitating classic bass drum sounds with other synthesizers. [7], which
takes a control systems approach to designing an 808-inspired bass drum
synthesizer, is a rare academic treatment.

4Roland president Ikutaro Kakehashi names Mr. Nakamura, though
also indicates that it was a team effort [8].

5Robert Henke writes [9]: “The TR-808 is a piece of art. It’s engineer-
ing art, it’s so beautifully made. If you have an idea of what is going on in
the inside, if you look at the circuit diagram, and you see how the unknown
Roland engineer was making the best out of super limited technology, it’s
unbelievable. You look at the circuit diagram like you look at an orches-
tral score, you think, how on earth did they come up with this idea. It’s
brilliant, it’s a masterpiece.”

6for instance, Robin Whittle’s professional modification work [10]
7 [11] presents one approach to simulating circuit-bent instruments

based solely on digital circuitry.
8For instance, [12] collects a representative set of references on model-

ing classic analog filters, and [13] is a comprehensive treatment of musical
distortion circuits.

9However, [14] presents a physical and behavioral circuit model of the
digital E-mu SP-12 sampling drum computer.
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Figure 1: TR-808 bass drum schematic, blocks marked (adapted from [1]).

Our analysis of the circuit will clear up a host of common mis-
conceptions about the 808 bass drum, including the role of device
nonlinearities, the difference between the bass drum’s characteris-
tic pitch sigh and the frequency jump during the attack, and why
unmodded bass drums can sound very different from one another.

Drawing on this analysis, we’ll propose methods for software
modeling of a modified/circuit-bent 808 bass drum circuit. By
adopting a physically-informed approach, this work will avoid com-
mon pitfalls of software-based analog drum machine emulations,
including the “machine gun effect,” inaccurate behavior when a
new note is triggered before the previous one has died out, and
inaccurate behavior under various accent voltages.

In addition to the analysis itself, the primary result of this will
be software that implements a circuit-bendable 808 bass drum.

An overview of the circuit is discussed in §2 and an analysis
of each part of the the circuit and their interconnections is given
in §§3–9. This is followed by a discussion of digital modeling
techniques in §10 and results in §11.

2. OVERVIEW

Fig. 1 shows a schematic diagram of the TR-808 bass drum cir-
cuit. This schematic labels important nodes and currents, and em-
phasizes how the circuit can be broken down into blocks: trigger
logic (see §3), a pulse shaper (see §4), a bridged-T network (see
§5 and 7), a feedback buffer (see §6), an output tone and volume
stage (see §9), and an envelope generator with complex behavior
(see §8). Fig. 2 shows a block diagram of the digital model of the
bass drum circuit. Both figures should be consulted alongside the
analysis of each block in the following sections.

A bass drum note is produced when the µPD650C-085 CPU
applies a common trigger and (logic high) instrument data to the
trigger logic. The resulting 1-ms long pulse is delivered via the
pulse shaper to the bridged-T network (a band pass filter), whose
ringing produces the core of the bass drum sound. The 1-ms long
pulse also activates an envelope generator, which alters the bridged-

T’s center frequency for the first few milliseconds and supplies a
retriggering pulse to the center of the bridged-T network after a
few milliseconds. Leakage through the retriggering pulse circuit
accounts for “sighing” of the bass drum’s pitch.

Certain features of the bass drum sound are user-controllable.
The output level is set by variable resistor (potentiometer) VR4,
the tone is set by VR5, and the length of a bass drum note is con-
trolled via VR6.

Partitioning the circuit into blocks will serve the triple purpose
of greatly simplifying the mathematics of the system, elucidating
the design intent of each sub-circuit, and allowing for the design
and simulation of “mods” and “bends” that affect the architecture
of the bass drum (for instance: disconnecting the pitch sigh or by-
passing the tone stage). These partitions are chosen so that they oc-
cur where high-input-impedance stages are driven by low-output-
impedance stages, where loading effects between blocks are neg-
ligible [15].10

By favoring a clear analysis that elucidated the design intent,
this work supports informed modifications/hacks/bends of the cir-
cuit. A more complicated analysis could obscure the logic of the
device’s construction, with minimal gains in accuracy. Framing
the analysis in terms of component values simplifies the simula-
tion of “mods” and “bends” based on component substitution (for
instance: making the pitch tunable, extending the decay time, or
changing the pitch envelope’s timing).

Certain parts of the model assume small-signal conditions and
linearity where they may not be strictly present. Op-amps (the bass
drum uses a dual µPC4558 [16]) are assumed to be linear, feature
zero output impedance, and have an infinite ability to source cur-
rent. In reality, op-amps that are not designed for rail-to-rail per-
formance (including the µPC4558) experience saturation as their
output voltage approaches the power supply rails. Op-amps have
a small (but non-zero) output impedance and feature internal pro-
tection circuitry to limit the amount of current they can source.

10https://ccrma.stanford.edu/~jos/pasp04/
Equivalent_Circuits.html
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Figure 2: TR-808 bass drum emulation block diagram.

3. TRIGGER LOGIC

The CPU controls the timing and amplitude of each sound genera-
tor on the 808. A timing signal and accent signal are produced by
the CPU, and combined into a common trigger signal (Vct), whose
ON voltage is set by a user-controllable global accent level. In
general, instrument timing data (unique to each voice) sequenced
by the CPU is “ANDed” with Vct to activate individual sound gen-
erators.

In the case of the bass drum, the circuit comprised of Q39–
Q40 and R152–R155 “ANDs” the instrument data (Vid) with Vct.
When Vid is present (logic high), a 1-ms long pulse with the same
amplitude as Vct (between 4–14 V, depending on VR3) is passed
to the collector of Q40.

4. PULSE SHAPER

The pulse Vtrig produced by the trigger logic drives a pulse shaper
stage, which uses a nonlinear low shelf filter to deliver a shaped
pulse to the bridged-T op-amp’s inverting input (V+). This circuit
passes the high frequency components of input pulse, while “shav-
ing off” the falling edge of the pulse. Fig. 3 shows the response of
the pulse shaper to input pulses with a range of accents.

In the time domain, the output voltage swings immediately
high in response to an applied trigger pulse, then smoothly set-
tles down to VTRIGR162/(R162+R163). 1 ms later, when the applied
pulse returns to ground, the output swings low and then starts to
rise smoothly up to ground. It is important to note that the falling
edge response is largely independent of the pulse amplitude - each
time 0.71 V (approximately one diode drop) develops across D53.

Since it is the edges of the shaped pulse that will kick the
bridged-T network into oscillation, this analysis is concerned with
the amplitude of each edge. The rising edge has an amplitude equal
to the applied trigger voltage VTRIG, and the falling edge has an
amplitude approximately equal to VTRIGR162/(R162+R163) + 0.71.

4.1. Pulse Shaper ODE

An ordinary differential equation (ODE) describing the behavior
of the pulse shaper will form a baseline for simulating it. First, re-
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Figure 3: Pulse shaper behavior under various input pulses.

call the equations for the impedances of resistors and capacitors11

and the Shockley ideal diode equation, which provides a model of
the relationship between the current I and voltage VD of a p–n
junction diode:

I = Is

✓
e

VD
VT � 1

◆
, (1)

where IS , the reverse bias saturation current (⇡ 10�12 A), and VT ,
the thermal voltage (⇡ 26 mV at room temperature), are properties
of the device.

Nodal analysis yields an implicit nonlinear ODE of first order:

R162R163C40

✓
dVtrig

dt
� dV+

dt

◆
�R162Vtrig

+ (R162 + R163) V+ �R162R163Is

✓
e

�V+
nVT � 1

◆
= 0 . (2)

Although it is possible to simulate ODEs like this with numerical
methods,12 good results can be obtained by cascading a linear filter
into a memoryless nonlinearity [18]. This can be done by deriving
a linear continuous-time transfer function by neglecting the diode,
and developing a physically-informed, memoryless nonlinearity to
account for the diode’s clipping behavior for negative output volt-
ages.

11ZR = R and ZC = 1
sC

, where R is resistance, C is capacitance,
and s is the differentiation operator on the complex plane (the “S plane”).

12 [17] provides a good discussion in the context of audio effect simula-
tion.
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Figure 4: Pulse shaper shelf filter core, magnitude response.
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Figure 5: Pulse shaper diode memoryless nonlinearity.

An alternate approach to this method would be framing the
pulse shaper as a time-variant filter after [19].

4.2. Shelf Filter Core

Neglecting the influence of the diode, the pulse shaper is a passive
low shelf filter. Nodal analysis yields a continuous-time transfer
function as a fraction of polynomials in s:

Hps (s) =
V+ (s)

Vtrig (s)
=
�1s + �0

↵1s + ↵0
, (3)

with coefficients:

�1 = R162R163C40

�0 = R162

↵1 = R162R163C40

↵0 = R162 + R163 .

Evaluating this transfer function along the s = j! axis and tak-
ing the magnitude yields the magnitude response of the filter core
(shown in Fig. 4).

Note well that the DC response (s = 0) of this filter matches
the observed response, R162/(R162+R163).

4.3. Diode Memoryless Nonlinearity

A memoryless nonlinearity that approximates the diode’s function,
based on Eqn. (1) is:

V+,shaped =

(
V+ if V+ � 0

0.71
�
eV+ � 1

�
if V+ < 0

. (4)

As shown in Fig. 5, it will not allow the output voltage to
swing lower than approximately one diode drop, and leaves posi-
tive output voltages unaffected.

5. BRIDGED-T NETWORK

The bridged-T network is a Zobel network topology which found
use in the measurement of high resistances at radio frequencies as

early as 1940 [20]. Bridged-T networks in this context were de-
signed using the image-impedance principle to present the same
impedance at both their input and output ports. In the 1970s,
bridged-T networks found new use in analog drum machines.

When placed in the negative feedback path of an op-amp, a
certain type of bridged-T network (capacitive “arms,” and resistive
“bridge” and path to ground) forms a band pass filter, which can
be used to create decaying pseudo-sinusoids in response to impul-
sive input. This technique was known in the electronics hobbyist
community as early as 197913 and used by drum machine manu-
facturers as early as 1976.14 The 808 represented Roland’s first
implementation of the bridged-T network, and it was used in every
single one of its sound generators in some form.15

The bass drum uses the most complicated form of the bridged-
T network in the 808. It filters multiple inputs, including the output
of the pulse shaper V+, the output of the feedback buffer Vfb, and
the retriggering pulse Vrp applied via R161. The center frequency
of the bridged-T network is subject to modulation (via Q43) by the
output of the envelope generator, as well as by leakage through
R161.

Ignoring the circuitry that will apply the retriggering pulse and
the circuitry which modulates the bridged-T’s center frequency,
the transfer function H(s) = Vbt(s)/V+(s) is found by defining an
intermediate node Vcomm, and applying nodal analysis. Assum-
ing ideal op-amp behavior, this yields a continuous-time transfer
function:

H(s) =
Vbt (s)

V+ (s)
=
�2s

2 + �1s + �0

↵2s2 + ↵1s + ↵0
, (5)

with coefficients:

�2 = Re↵ectiveR167C41C42

�1 = Re↵ectiveC41 + R167C41 + Re↵ectiveC42

�0 = 1

↵2 = Re↵ectiveR167C41C42

↵1 = Re↵ective (C41 + C42)

↵0 = 1 .

Evaluating along the s = j! axis and taking the magnitude
yields a magnitude response Hbt1 (s) for the simplified bridged-T
core, shown in Fig. 6. Respecting superposition (grounding Vrp

and Vfb), the substitution Re↵ective = R161 k (R165 + R166) k
R170 can initially be used. Finding the proper value for Re↵ective

is non-trivial and will be a main focus of the rest of this analysis.
Later, the output of the feedback buffer Vfb and the source of the
retriggering pulse Vrp will be treated as second and third inputs to
the bridged-T network, and modulations of Re↵ective via Q43 will
be considered.

This magnitude response shows a center frequency at ⇡ 49.5
Hz,16 which is close to the entry Roland’s “typical and variable”
tuning chart (56 Hz) [1] and the sound of a real 808 bass drum.

13see: “Rhythm Pattern Generator MM5871” [21, p. 48-49]
14It was used in the Korg’s mini pops 120 bass drum and snare drum

voices. The related twin-T circuit was used in the low and high congas [22].
15The TR-808 snare drum, lo/mid/hi tom/congas, and rim shot/clave all

use bridged-T networks in similar ways to the bass drum, to create decay-
ing pseudo-sinusoids in response to impulsive input. Bridged-T networks
are also used as band pass filters in the remaining voices: handclap, cow-
bell, cymbal, and open/closed hihat.

16 [1] provides an equation for the center frequency of a simple bridged-
T network: fc = 1/

⇣
2⇡

p
ReffectiveR167C41C42

⌘
.
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Figure 6: Magnitude responses of bridged-T network.
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Figure 7: Family of feedback buffer magnitude responses, with var-
ious bass drum decay settings k 2 [0.001, 1.0].

6. FEEDBACK BUFFER STAGE

The length of an 808 bass drum note is user-controllable via po-
tentiometer VR6, “bass drum decay,” which affects the frequency
response of the feedback buffer high shelf filter. The output of the
bridged-T network is applied to the input of the feedback buffer
stage, shaped by its frequency response, and then applied to R170,
another input to the bridged-T network. The less that the feedback
buffer stage attenuates the signal passing through it, the longer the
decay of the 808 note will be.

Assuming an ideal op-amp, there will be no current through,
and therefore no voltage across, R168. Nodal analysis yields a
continuous-time transfer function:

Hfb(s) =
Vfb (s)

Vbt (s)
=
�1s + �0

↵1s + ↵0
, (6)

with coefficients:

�1 = �R169VR6kC43

�0 = �R169

↵1 = R164 (R169 + VR6k) C43

↵0 = R164 ,

where VR6k is the resistance of the decay control with maximum
resistance VR6 and knob position k 2 [0.0, 1.0]. The magnitude
response for the feedback buffer is shown in Fig. 7.

7. BRIDGED-T IN FEEDBACK

When examining the bridged-T network in a feedback configura-
tion, where its input is the output of the feedback buffer section, it
will have a different transfer function. This topology is discussed
in [23, p. 138].

Defining an intermediate node Vcomm at the node joining R166,
C41, and C42, holding V� at ground (apropos superposition the-
orem), applying ideal op-amp assumptions, and applying nodal
analysis yields a continuous-time transfer function:

Hbt2(s) =
Vbt (s)

Vfb (s)
=

�1s

↵2s2 + ↵1s + ↵0
, (7)

with coefficients:

�1 = �RkR167C41

↵2 = RkR167C41C42

↵1 = RkR170 (C41 + C42)

↵0 = Rk + R170 .

Again, superposition must be respected. Rk is the parallel
combination R161 k (R165 + R166). The magnitude response
Hbt2 (s) of the bridged-T in feedback is shown in Fig. 6.

8. FREQUENCY EFFECTS

Discussion of the 808’s bass drum often conflates two phenomenon:
a brief increase in the center frequency of the bridged-T network
by more than an octave during the attack, and the 808’s pitch sigh,
a subtle modulation caused by leakage through R161.

8.1. Frequency Shift on Attack

In addition to supplying a 1-ms wide pulse to the pulse shaper,
the trigger logic also activates an envelope generator comprised of
Q41, Q42, and surrounding resistors and capacitors. The output
voltage Venv of this envelope generator (taken at the collector of
Q42) swings quickly up, and doesn’t settle back down to ground
until approximately 5 ms after the trigger swings low.

While the collector of Q42 is high, some current will flow into
the base of Q43. The effect of this is that the collector of Q43

gets grounded, and the Re↵ective decreases from R165 + R166 to
R166. So, the transfer functions describing the bridged-T networks
behavior will change (labelled “attack”), raising both the Q and the
center frequency, as shown in Fig. 6.

Although this brief change of center frequency (⇡6 ms, less
than a single period at the higher frequency) isn’t long enough to
be perceived as a pitch shift, it greatly affects the sound of the bass
drum’s attack, making it “punchier” and “crisper.”

A few milliseconds after the start of a note, when the center
frequency of the bridged-T network shifts down to its normal po-
sition, most of the energy at the normal center frequency will have
been attenuated already. To keep the note from experiencing an
abrupt jump in amplitude, the circuit composed of C39, R161 and
D52 applies a retriggering pulse to the bridged-T network.

A rough model of this can be obtained by treating the envelope
applied at the collector of Q42 as an ideal voltage source Venv and
treating Vcomm as ground (as shown in Fig. 8). Now, the combi-
nation of C39, R161 and D52 can be viewed as a simple high pass
filter with a diode clipper across its output. This can be analyzed
just like the pulse shaper from §4.

This retriggering pulse Vrp is applied to the bridged-T network
through R161. The transfer function Hbt3 (s) = Vbt(s)/Vrp(s) of
this path through the bridged-T network is very similar to the feed-
back case discussed in §7, save an interchange of of R161 and
R170. Its magnitude response and the shifted version during the
attack are shown in Fig. 6.
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Figure 8: Retriggering pulse filter.
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Figure 9: Fit to memoryless nonlinearity relating Vcomm and iC .

The length of the envelope and the timing of the retriggering
pulse can be changed somewhat by changing C38. Changes on
R156 also affect biasing, and will have more complicated conse-
quences.

8.2. Leakage and Pitch Sigh

Although the center frequency shift during attack is explained in
§8.1, this effect is only active for the first few milliseconds of a
note. It does not account for the bass drum’s characteristic pitch
sigh. This sigh is actually a consequence of leakage through R161.

When Vcomm swings low enough (below about one diode drop
below ground), the base of Q43 gets lifted up and current flows into
the base, causing even more current iC to be drawn in through its
collector. This current changes the effective resistance (Re↵ective,
the ratio between Vcomm and i166, the current drawn through R166),
hence altering its transfer function and center frequency.

Although the physics of this part of the circuit are difficult to
deal with in closed form, a few observations can lead to a sim-
plified model with good properties. Using SPICE to simulate a
stock bass drum note and tabulate Vcomm and iC , it is clear that
their relationship is reasonably well-approximated by a memory-
less nonlinearity, shown in Fig. 9.

This memoryless nonlinearity can be reasonably approximated
using a parameterized equation sharing some topological similar-
ity to Eqn. (1):17

iC = � log
⇣
1 + e�↵(Vcomm�V0)

⌘m

↵
, (8)

where m is the slope of the response in the linear region, V0 is the
voltage offset of the “knee,” and ↵ is a parameter that controls the
width of the transition region. These parameters are chosen by a
three step fitting procedure. First, the method of least squares is
used to estimate m and V0 in the linear region only. These val-
ues of m and V0 are tested with a line search over reasonable ↵
values, again minimizing squared errors. Finally, a fine-grained
brute-force search over a small neighborhood surrounding this fit
yields some small improvements, and the fit parameters:

↵ = 14.3150

V0 = �0.5560

m = 1.4765 · 10�5 .

17This is related to the physics of the p–n junction in Q43, not D52.

To get Re↵ective in terms of just Vcomm, ic’s effect on Re↵ective

must be taken into account. Considering the entire Re↵ective branch
of the bridged-T network (including iC ), defining an intermediate
note VC at the collector of Q43, applying KCL, and rearranging
yields:

Re↵ective =
VcommR166 (R165 + R166)

Vcomm (R165 + R166)�R165 (Vcomm �R166iC)
.

(9)
Note that, when iC = 0, this reduces down to the trivial

R165 + R166, and that as iC increases, Re↵ective goes down. A
low enough Vcomm leads to a higher center frequency.

To apply this insight to the previously-derived transfer func-
tions, the series combination of R165 + R166 should be replaced
by Re↵ective.

Furthermore, to change Re↵ective in terms of Vcomm, the model
must keep track of Vcomm as the sum of each of the bridged-T’s in-
puts, using transfer functions Hc1, Hc2, and Hc3. The particulars
of these transfer functions are related to their counterparts Hbt1,
Hbt2, and Hbt3, and can be derived via nodal analysis.

9. TONE, LEVEL, AND OUTPUT BUFFERING STAGE

The bass drum’s tone and level controls, and output buffering stage
are simply a passive low pass filter, cascaded into a voltage divider,
cascaded into a high pass filter.

There are non-negligible loading effects, but they mostly
change the position of very low (sub-audible) poles. Since these
discrepancies are minimal, inaudible, and are not part of a feed-
back configuration or upstream of a nonlinearity (where they might
have more far-reaching effects), this work breaks this stage into
three blocks and makes clear the function of each, despite non-
zero connection currents and loading.

Nodal analysis yields first-order continuous-time transfer func-
tions (summarized in Table 1) for each stage of the form:

H (s) =
�1s + �0

↵1s + ↵0
. (10)

Table 1: Output Stage Continuous-Time Filter Coefficients.

Stage �1 �0 ↵1 ↵0

Low pass 0 1 ReqC45 1
Level VR6 (1�m) C47 0 VR6C47 1

High pass R177C49 0 R176C49 1

In Table 1, Req is the equivalent resistance of the network
formed by R171 + (R172 k VR5):

Req = R171 +
R172VR5l

R172 + VR5l
. (11)

VR5l and VR6m are the resistances of the tone and level con-
trols with maximum resistances VR5 and VR6 and knob positions
l, m 2 [0.0, 1.0].

10. MODELING

A digital model is implemented in Cycling 74’s Gen˜, a low-
level DSP environment in Max/MSP. This model contains stock
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controls for bass drum decay, tone, and level, as well as “bends”
controlling tuning, attack tuning, extended decay, and input pulse
width.

Memoryless nonlinearities are implemented directly, and the
trigger logic can be implemented with simple algebraic manipula-
tions on the accent level and timing data. All discrete-time filter
coefficients are calculated with the bilinear transform. Although
the bilinear transform has many nice properties (including order
preservation, stability preservation, and avoiding aliasing), the fact
that it maps from continuous-time frequency !a 2 [�1,1] to
discrete-time frequency !d 2 (�⇡, ⇡] means that it necessarily
causes some frequency warping [15].18 The bilinear transform
constant c can be tuned to map one continuous-time frequency
to precisely the right discrete-time frequency. This is not incor-
porated in this model, however, since salient filter features are at
low frequencies with respect to the sampling rate. So, the standard
untuned value of c = 2/T is used throughout [15].19

The choice of filter topology is particularly important, since
many of the filter blocks (especially the bridged-T network) will
feature time-varying coefficients. In the model, all filter blocks are
implemented with Transposed Direct Form-II (TDF-II) topologies.
The TDF-II topology has good numerical properties and behaves
well under changing coefficient values, which is of special impor-
tance for the bridged-T network, with its constantly-shifting effec-
tive resistances. TDF-II seems sufficient, but in the future other fil-
ter topologies such as the normalized ladder filter [15]20 and Max
Matthews’ phasor filter [24] can be explored for even better prop-
erties under time-varying coefficients.

The feedback arrangement of the bridged-T network and the
feedback buffer creates a delay-free loop. In the model, this can be
addressed by inserting a unit delay after the feedback buffer, which
will have only negligible effects on the frequency response.21 Al-
ternatively, the delay-free loop could be avoided by combining the
analog prototypes in feedback before digitization via the bilinear
transform.

Some parts of the analysis feature deviations from the behav-
ior of the real device. In particular, the behavior of Q43 and the
interaction between the bridged-T network and the envelope gen-
erator, though physically-informed, are oversimplified.

Where connection currents between sub-circuits would not be
negligible, results could be improved by methods such as [25].

11. RESULTS

Fig. 10 shows a time-domain plot of the first 13 ms of a single bass
drum note, showing good agreement between the physical model
and a SPICE simulation.

Fig. 11 shows the estimated instantaneous frequency of the
first 300 ms of a single bass drum note,22 showing good agreement
between the physical model and a SPICE simulation. Note well
the unique characteristics of the pitch sigh.

18https://ccrma.stanford.edu/~jos/fp/Frequency_
Warping.html

19https://ccrma.stanford.edu/~jos/pasp/Bilinear_
Transformation.html

20https://ccrma.stanford.edu/~jos/pasp/
Conventional_Ladder_Filters.html

21since all of the frequency response features are very low in frequency
with respect to the sampling rate

22estimated by taking the Hilbert transform of the time-domain signal to
obtain an analytic version, then estimating the derivative of its phase

0 0.002 0.004 0.006 0.008 0.01 0.012
−1

−0.5

0

0.5

1

time (seconds)

am
pl

itu
de

 (v
ol

ts
)

 

 

SPICE
physical model

Figure 10: Transient response.
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Figure 12: Lack of “machine gun effect” in model output.

Fig. 12 shows a time-domain plot of the bass drum physical
model when it is retriggered before the previous note has gone
silent. Each note is slightly different, as in a real 808, since the
remaining filter states may interfere constructively or destructively
with the response to a new trigger—the model avoids the “machine
gun effect.”

In light of this analysis, variations in sound between individual
808s are easily understood as a consequence of the tolerances of
the circuit elements (the voice circuits featured ±20% capacitors
and ±5% resistors). These variations have significant effects on
the gain, center frequency, Q, decay time, &c. of filter sections,
especially when they are in feedback configurations (the bridged-
T network and feedback buffer).

Audio examples and other supplementary materials can be
found online at this work’s companion page.23

12. CONCLUSION

In addition to informing a real-time computer model of the TR-808
bass drum, these findings will have many secondary applications.
Due to the original hardware’s value (and the danger of working
with mains-powered electronics), 808 modifications are often quite
conservative, and it has been a rare subject for circuit benders. This
work supports the design of further modifications and can inform
the design of future drum machines.

This research forms a foundation for musicological inquiry
into Roland’s line of analog drum machines, which traces roots

23https://ccrma.stanford.edu/~kwerner/papers/
dafx14.html
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back to Ace Tone’s 1964 R1 Rhythm Ace.
The modeling of additional 808 voices will open the door for

experimentation with flexible signal routings and feedback between
voices and sub-circuits.

We’ve partitioned the circuit into blocks, and made a detailed
first-order model of each block. The performance of this model
makes it clear that the architecture of the 808 bass drum and com-
plex interactions between subcircuits are more important than sub-
tle device nonlinearities.

Even without tuning, a modeling scheme derived from this
analysis shows the same features as a SPICE model and record-
ings of a TR-808 [26], including basic tuning and timing, a lack of
the “machine gun effect” on quickly repeated notes, accurate tran-
sient behavior on different accent levels, and proper handling of
the complicated Q and center frequency trajectories of the bridged-
T network under the entire range of decay settings and accents.
This correspondance is consistent with the results of informal lis-
tening tests.
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ABSTRACT

In this paper, we propose the Modulation Scale Spectrum as an
extension of the Modulation Spectrum through the Scale domain.
The Modulation Spectrum expresses the evolution over time of the
amplitude content of various frequency bands by a second Fourier
Transform. While its use has been proven for many applications,
it is not scale-invariant. Because of this, we propose the use of
the Scale Transform instead of the second Fourier Transform. The
Scale Transform is a special case of the Mellin Transform. Among
its properties is "scale-invariance". This implies that two time-
stretched version of a same music track will have (almost) the same
Scale Spectrum. Our proposed Modulation Scale Spectrum there-
fore inherits from this property while describing frequency content
evolution over time. We then propose a specific implementation
of the Modulation Scale Spectrum in order to represent rhythm
content. This representation is therefore tempo-independent. We
evaluate the ability of this representation to catch rhythm charac-
teristics on a classification task. We demonstrate that for this task
our proposed representation largely exceeds results obtained so far
while being highly tempo-independent.

1. INTRODUCTION

Automatic description of audio content has become over the years
an important research field. When the audio content is music, the
related research field is named Music Information Retrieval. Its
growth over the years is explained by the massive digitalization
of music and its accessibility through online-services (on-line mu-
sic sellers –as iTunes– or music streaming services –as Spotify
or Deezer–). This necessitates the organization and tagging of the
music data to enhance their accessibility. While manual annotation
is still possible, it is time-consuming hence money-consuming.
Because of this, tools are developed for automatically organizing,
tagging and visualizing the music data. These tools rely on au-
tomatic audio content analysis. In the case of tagging, automatic
content analysis tools rely on two parts: extracting the right infor-
mation (named audio features) from the audio signal and matching
this information to the required tags.

In this paper, we propose a new representation, named Modu-
lation Scale Spectrum, that allows an efficient description of time/
frequency content over time. We apply it to create an audio fea-
ture that allows an efficient description of the rhythm content of
a music track. Rhythm, along harmony (melody) and timbre (or-
chestration) are the three perspectives that describe music content.

The direct applications of this feature are the search by rhythm
pattern (for example looking for identical rhythm pattens with-
out being affected by the tempo), the automatic classification into

rhythm-classes. A better description of rhythm would be also ben-
eficial to genre, mood classification or search by similarity sys-
tems. Applications of the Modulation Scale Spectrum outside the
music field also concern generic audio recognition.

1.1. Related works

In this part, we only review works related to audio rhythm repre-
sentation. We also provide an overview on the Modulation Spec-
trum since our proposal is based on it. For a good overview on
other methods to represent time and frequency content see [1].

Works can generally be divided according to the use of tempo-
ral, spectral or spectro/temporal representations; according to the
matching model (Dynamic Time Warping, or statistical models),
according to the necessity to have a preliminary tempo detection.

In [2], Foote introduces the beat spectrum. The beat spectrum
is computed by parametrizing audio (with STFT amplitude coeffi-
cients or with its MFCC). A similarity measure (cosine or euclid-
ian distance) is then taken between each feature vector and em-
bedded in a 2-dimensional representation named Self-Similarity-
Matrix (SSM) S. Finally the beat-spectrum is found by looking
for periodicities in S with diagonal sums or auto-correlation. In
[3], Foote uses his beat spectrum to measure rhythmic similarity
between songs. Bartsch extends the beat spectrum to create an
audio thumbnail in [4]. Antonopoulos in [5] also uses the SSM
approach. He extracts from a song (or its thumbnailed version) a
chroma-based MFCC feature. He computes a rhythmic signature
by using Dynamic Time Warping (DTW) to calculate the similarity
between two feature vectors. He validates his method by measur-
ing rhythmic similarity on a greek and an african music corpus.

Dixon [6] uses rhythmic patterns to classify rhythm on the
Ballroom Dataset. It achieves 50% correctness, and up to 96%
(85.7% without annotated tempo) by combining with other fea-
tures derived from these patterns, from features of Gouyon [7],
and from annotated tempo. However, a limitation of this method is
that position of the first bars is needed to extract the rhythmic pat-
tern. It has been estimated with BeatRoot algorithm [8] but have
been "corrected manually". Paulus [9] firstly detects tatus, tatum
and bar length to segment a song into patterns. Then he computes
features on theses patterns (loudness, brightness for example) and
measures the similarity of rhythmic patterns with DTW. Wright
[10] creates clave pattern templates to analyse afro-cuban music.
He uses matched-filtering to enhance claves, and a rotation-aware
dynamic programming algorithm to find tempo, beat and downbeat
positions. Jensen [11] uses a log-scale autocorrelation to create
tempo-independent rhythmic patterns. His method works nicely
on the rhythm classification task on the Ballroom Dataset if we
ignore nearest neighbours with similar in tempo (50% accuracy
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instead of 20% for state-of-the-art method).
Tzanetakis [12] proposes a Beat histogram computed by using

an enhanced auto-correlation function and peak-picking algorithm.
This beat histogram, along with timbre and pitch features is used
for music genre classification. Gouyon [7] uses a set of 73 features
based on the tempo, on the periodicity histogram and on the inter-
onset-interval histogram. The system achieves a 78.9% accuracy
on the Ballroom Dataset classification task, and up to 90.1% using
the annotated tempo.

Peeters [13] compares various spectral and temporal periodic-
ity representations to describe the rhythm of a song. He firstly ex-
tracts an onset function from the signal then computes three feature
vectors (based on the amplitude of the Discrete Fourier Transform,
the Auto-Correlation Function, and Hybrid-Axis-Autocorrelation-
Fourier-Transform representation). He then makes these vectors
tempo independent and compact by sampling them at multiple of
the tempo frequency. Theses features are tested for rhythm classi-
fication on the ballroom dataset. They achieve 96.1% classification
accuracy with the annotated tempo and 88% without.

Holzapfel [14] proposes Dynamic Periodicity Warping to clas-
sify rhythm. He uses a DTW distance on the periodicity spectrum
between each song of the ballroom dataset as input of a k-nearest
neighbours classifier. The process achieves 82.1% accuracy on the
ballroom dataset, which is a bit less than state-of-the-art methods,
but outperforms all other algorithms on a dataset made of Cretan
dances (70% against 50%).

Directly related to our method are the following works.
Holzapfel [15] proposes a representation to describe rhythm:

the Scale Transform. The main property of the scale transform is
that the scale transforms of two identical songs played at different
speed will be the same. He uses this scale transform in the cre-
ation of a tempo-independent descriptor. The performance of this
descriptor on the ballroom dataset are good: 85.1% (state of the art
is about 88%). In [16], Holzapfel tests his descriptor on two ad-
ditional datasets (Turkish and Greek traditional music which have
wider within-class tempo distribution). It achieves better classes
recognition than other methods.

Rodet and Worms [17, 18] proposes the Modulation Spec-
trum (without naming it explicitly Modulation Spectrum) for a
task of audio identification by fingerprint. It models the tempo-
ral evolution of the energy content in different frequency bands
with a Fourier Transform. McKinney [19] computes the Modula-
tion Spectrum on the output of 18 4th order bandpass GammaTone
filters, then sums the energy on four frequency bands to get 18x4
descriptors. He uses these features to classify five audio classes
(classical, pop music, speech, noise, crowd) and 7 musical genres.
Whitman [20] proposes the "Penny" features to create a system
of automatic recording reviews that understands and labels songs
based on their audio content. Atlas [21] proposes a joint acous-
tic/modulation frequency model to improve audio coding. This
model coded at 32 kbit/s has been found better by listeners than
MP3 coding at 56 kbit/s.

1.2. Paper overview and organization

The Modulation Spectrum allows a compact description of the
time and frequency content. Its use has been proven for many
applications (audio fingerprint [18], generic audio classes or genre
recognition [19], auto-tagging [20], speaker separation [21]). How-
ever, this representation is not scale-invariant.

In this paper, we propose the Modulation Scale Spectrum as an
extension of the Modulation Spectrum to the Scale domain. This
makes it scale-invariant. This property allows then to derive au-
dio features for music audio signals which are tempo invariant. As
MFCC provides the spectral-envelope information complementary
to the fundamental frequency, the Modulation Scale Spectrum pro-
vides the information complementary to the music tempo. While
the Scale Transform by itself already allows this, the Scale Trans-
form does not allow to represent the spectral-envelope informa-
tion (only a single energy value is used to represent the whole
spectrum). The Modulation Scale Spectrum does represent this
spectral-envelope information, as the Modulation Spectrum does,
but is tempo-invariant, while the Modulation Spectrum is not.

The paper is organized as follows. In part 2, we introduce the
Modulation Scale Spectrum. We first describe the Scale Transform
(part 2.1) and the Modulation Spectrum (part 2.2) it is based on and
then present in part 2.3 our proposed Modulation Scale Spectrum.
We provide a specific implementation of it for rhythm description
in part 2.4 and successfully demonstrate its use for a task of rhythm
class recognition in part 3.

2. MODULATION SCALE SPECTRUM

In this part we propose the Modulation Scale Spectrum. It is based
on both the Scale Transform (ST) and the Modulation Spectrum
(MS). We first briefly review those.

2.1. Scale Transform

The Scale Transform is a special case of the Mellin Transform.
It has been introduced by Cohen in [22]. Scale, like frequency
is a physical attribute of the signal. We can see the scale con-
tent of a signal by using the Scale Transform, just like we can see
the frequency content by using the Fourier Transform. The scale
transform is defined by :

D(c) =
1√
2π

∫
x(t)t−jc−

1
2 dt (1)

where c is the scale variable, t the time, and x the signal.
It can be viewed as the Fourier transform of an exponentially

re-sampled signal x(et) weighted by an exponential window e
1
2
t:

D(c) =
1√
2π

∫
x(et)e

1
2
te−jctdt (2)

One of the most important property of the Scale Transform is
scale invariance. Scale invariance is expressed as

x(t) 
 D(c)
√
a x(at) 
 ejc ln aD(c)

(3)

This implies that both x(t) and
√
a x(at) share the same modulus

of the scale spectrum but differ in their phase.
It should be noted however that the Scale Transform is not

shift invariant: |ST (x(t))| 6= |ST (x(t+ a))|. For this reason, the
Scale Transform is often applied to the auto-correlation of x(t)
instead of x(t) itself.

If x(t) represents the energy of the audio signal, two audio
signals with the same rhythm pattern and starting at the same time
but played at different speed will share the same modulus of the
scale spectrum (this is the property used by Holzapfel [15, 16]).
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Figure 1: Flowchart of our proposed Modulation Scale Spectrum for rhythm description.

Computation: As seen, the ST can be computed in an effi-
cient way from the Fourier Transform of x(et)e

1
2
t with ω = c.

In the case of the Discrete Fourier Transform ωk = 2π k
N
sr with

k ∈ N, N the size of the FFT and sr the sampling rate. In this
case, c as ωk is linearly-spaced. In the following we will use the
implementation kindly provided by [23]1.

The exponential resampling step is detailled in [23]. We briefly
review it here. We create an exponential axe between t0 = Ts and
te = nTs where Ts = 1

sr
is the sampling period and n the num-

ber of samples of the original signal. To fulfill the Nyquist-Shanon
resampling condition, the maximum step between two adjacent ex-
ponential sample can not exceed Ts. In order not to have too many
exponential samples, we choose as the distance between the two
last samples the largest allowed distance: Ts. We then use a spline
interpolation to create the resampled points. This leads to approx-
imately n ln(n) exponential samples.

2.2. Modulation Spectrum

The modulation spectrum represents the evolution over time of the
amplitude content of the various frequency bands ω of an STFT
by a second Fourier Transform. It has been proposed by differ-
ent authors under various names: dynamic features [18], modu-
lation spectrum [21], auditory filterbank temporal envelopes [19],
"penny" features [20]. It is also closely related to the scattering
features proposed by [24]. The modulation spectrumX(ω,Ω) can
be expressed as (using [18] notation)

x(ω, τ) =
1√
2π

∫

t

x(t)h(τ − t)e−jωtdt

X(ω,Ω) =
1√
2π

∫

τ

|x(ω, τ)|e−jΩτdτ
(4)

In this ω denotes the frequencies of the STFT (ranging from 0
to half-Nyquist frequencies), t the time, τ the center-time of the
STFT windows and Ω the frequencies of the second Fourier Trans-
form (which upper frequency depends on the hop-size of the STFT).

1http://profs.sci.univr.it/~desena/FMT/

In [19], it is proposed to use 18 GammaTone filters to create
x(ω, τ) instead of the STFT. The bands of the GammaTone filters
are centered on a log-space from 26 to 9795 Hz.

2.3. Modulation Scale Spectrum

We propose here the Modulation Scale Spectrum as an extension
of the Scale Transform to allow its application to individual fre-
quency bands. It therefore allows to take the benefits of the Mod-
ulation Spectrum while ensuring the scale invariance property.

It is expressed as

D(ω, c) =
1√
2π

∫
|x(ω, eτ )|e 1

2
te−jcτdτ (5)

where ω is defined as above and c is the scale (as in eq. (2) ).

2.4. Modulation Scale Spectrum for rhythm description

We propose a specific implementation of the Modulation Scale
Spectrum to describe the rhythm content of a music signal. In this,
x(ω, τ) does not represent the signal itself but the auto-correlation
of an onset-energy function2 derived from the signal in a specific
frequency band ω.

The flowchart of its computation is indicated into Figure 1 and
described below.

1. As in [19], we first separate the audio signal x(t) using 4th

order bandpass GammaTone filters centered on a log-space
from 26 to 9795 Hz. In our case, we use 12 filters instead
of the 18 proposed by [19]3.

2. We then calculate an onset-energy function o(ω, τ) on the
output of each filter. For this, we used the function proposed
by Ellis [26]4. We parametrized it to have a sampling rate
of 50 Hz.

2A onset-energy-function is a function taking high values when an on-
set is present and low values otherwise.

3For the GammaTone filters, we used the implementation kindly pro-
posed by Ma [25] whose code is available at http://staffwww.dcs.
shef.ac.uk/people/N.Ma/resources/gammatone/.

4http://labrosa.ee.columbia.edu/projects/
coversongs/
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3. We then perform a frame-analysis with an 8 s. length rect-
angular window and a 0.5 second step. We denote the frames
by u.

4. As in [15], we then compute on each frame the autocorrela-
tion of each o(ω, τ). We denote the resulting functions by
Rxx(ω, τ, u).

5. Finally we compute the Modulation Scale Spectra on each
autocorrelation functions Rxx(ω, τ, u). We denote it by
D(ω, c, u).

6. In order to obtain a single representation for the whole au-
dio signal, we compute the average value ofD(ω, c, u) over
u. We denote it by D(ω, c). The resulting dimensionality
is [12, 2000].

7. In order to reduce this dimensionality, we could group the
values of the various scale-bands c (as McKinney and Whit-
man did for the FFT frequencies). Another possibility starts
from the consideration that most of the information of the
Modulation Scale Spectrum is contained in the first scale
coefficients c. Using this, Holzapfel in [15] only kept the
first 40 coefficients of the Scale-Transform. In our case,
we keep the first 60 scale coefficients (c ∈ [1, 60]) of the
Modulation Scale Spectrum.

3. APPLICATION OF THE MODULATION SCALE
SPECTRUM FOR RHYTHM RECOGNITION

In order to validate our Modulation Scale Spectrum we apply it to
the task of rhythm recognition.

3.1. Test-set

For this, we use a test-set annotated into classes of rhythm: the
Ballroom test-set. This one contains 698 titles divided into 8 mu-
sic genres. Because in ballroom music, the genre ("ChaChaCha",
"Rumba" . . . ) are closely related to the type of rhythm pattern, we
consider this genre labels as classes of rhythm. This test-set was
created for the ISMIR 2004 rhythm description contest [27]. It is
extracted from the website www.ballroomdancers.com.

3.2. Experimental scenario

In the first experimental scenario, the task consists in recognizing
the correct rhythm class.

Ballroom rhythm classes have a predominant tempo (i.e.
ChaChaCha tracks are usually around 125bpm, QuickStep around
200bpm . . . ). Which means that it would be possible to recog-
nize the rhythm classes simply by using the tempo of the track (if
tempo==200 then class=QuickStep). This has been shown for ex-
ample by Gouyon [7] who reported 82.3 % accuracy using only
annotated tempo and a k-Nearest Neighbours (k-NN) classifier.
Because of this, it is difficult to highlight the benefits of using a
tempo-invariant-feature such as the Modulation Scale Spectrum.
In order to show this benefit, we created a second experimental
scenario. Considering that our classification algorithm is a KNN,
in the second scenario we will ignore the tracks that have a tempo
within 4 % of the tempo of the target5.

5It should be noted that Viennese Waltz genre has been discarded in this
experiment since all its tempi are within a 5 % range.

3.3. Classifier

As explained in part 2.4, each track is represented by its Modula-
tion Scale Spectrum Di(c, ω) as described. For the two scenario
described above, we use a modified K-Nearest-Neighbor to per-
form the classification.

As showed in eq. (3), the Scale Transform is scale-invariant
ignoring a global multiplication factor

√
α. Because of this factor,

we use the one-minus-cosine-distance6 in the K-NN instead of the
usual Euclidean distance.

If we denote by i the target point of the K-NN, and by j ∈
[1,K] the K nearest-points, we assign to each j the following
weight: wi,j = 1 − di,j

dK+1
. We then attribute a global score to

each class by summing the weights wi,j of the points j that be-
long to the class. The class with the largest score is then assigned
to i. This modified K-NN algorithm has been found superior to
the equally weighted K-NN by Holzapfel [14]. The best value of
K and C (the number of scale coefficients) have been found by
performing a grid-search.

The results presented in the following has been obtained using
10-fold cross-validation.

3.4. Results and discussions

Results are indicated into Table 1. In this table, we compare the
performances obtained by our method to the ones obtained by
Holzapfel [15] and Peeters [13]. The sign "-" denotes the fact that
the result is not available for the given configuration. In order to
be able to compare our algorithm to the one of Holzapfel in the
second scenario (Exp. 2), we re-implemented Holzapfel method.
Surprisingly, this re-implementation provides better results than
the ones published by the author7.

For the first scenario (Exp. 1), our proposed Modulation Scale
Spectrum (93.12% accuracy) outperforms state-of-the-art methods
by more than 5 %. Holzapfel method obtains 86.9 % and Peeters
87.96 %.

For the second scenario (Exp. 2), which remove tracks
closely-related in tempo from the K-NN, our proposed Modula-
tion Scale Spectrum (75.52% accuracy) outperforms state-of-the-
art methods by more than 9 %. Jensen [11] reports 48.4% with
his "tempo-insensive rhythmic pattern", our re-implementation of
Holzapfel reaches 66.48%. This second experiment demonstrates
that our Modulation Scale Spectrum is able to capture rhythmic
content, without being dependent on the tempo.

On Fig 2, we represent the first 60 coefficients corresponding
to the 9-th GammaTone filters8of the Modulation Scale Spectrum
for the 698 tracks of the Ballroom test-set. Each row of the matrix
represents the 60 coefficients of our Modulation Scale Spectrum
for a given track. As can be seen, the various tracks are visually
clustered according to the rhythm-classes (represented on the y-
axis). Each rhythm class has a dominant pattern. Unsurprisingly,
Waltz and Viennese Waltz have close patterns where most of their
energy is concentrated on the first coefficient.

6di,j = 1− Di.Dj

|Di||Dj |
7This may be due to a different split of the test-set into ten folds.
8It should be noted that we couldn’t display all the Modulation Scale

Spectrum for the 12 frequency bands, so we selected the 9th GammaTone
band as an example. All other bands show similar behavior.
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Table 1: Results and parameters (best values of C and K) for the recognition of the ballroom rhythm classes.

Method Exp. 1 Exp. 2
Accuracy C K Accuracy. C K

Jensen - - - 48.4 % 1
Holzapfel 86.9 % 40 5 - - -
Holzapfel (re-implemented) 87.82 % 40 11 66.48 % 20 5
Peeters 87.96 % - - - - -
Modulation Scale Transform 93.12 % 60 5 75.52 % 20 5

Figure 2: First 60 coefficients (x-axis) of the Modulation Scale
Spectrum for all the songs of the Ballroom test-set. The songs
of the test-set are grouped by rhythm-classes on the y-axis. The
coefficients are normalized : their amplitudes are represented in
gray scale (black for a normalized amplitude of 1, white for 0)

4. CONCLUSION

In this paper, we proposed the Modulation Scale Spectrum as an
extension of both the Modulation Spectrum and the Scale Trans-
form. It takes the benefits from the Modulation Spectrum while
ensuring scale invariance. We used the Modulation Scale Spec-
trum to create a rhythm description feature. The whole process
includes GammaTone filtering, onset-strength energy estimation,
auto-correlation of those and finally Scale Transform. We tested
this feature for a rhythm-class recognition task. We demonstrated
that for this task our proposed feature largely exceeds results ob-
tained so far. With a second experiment we showed that this fea-
ture is indeed tempo-independent. In future works, we will extend
our use of the Modulation Scale Spectrum as audio representation
for other MIR tasks such as genre classification.
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ABSTRACT

We propose a new audio fingerprinting method that adapts findings
from the field of blind astrometry to define simple, efficiently rep-
resentable characteristic feature combinations called quads. Based
on these, an audio identification algorithm is described that is ro-
bust to large amounts of noise and speed, tempo and pitch-shifting
distortions. In addition to reliably identifying audio queries that
are modified in this way, it also accurately estimates the scaling
factors of the applied time/frequency distortions. We experimen-
tally evaluate the performance of the method for a diverse set of
noise, speed and tempo modifications, and identify a number of
advantages of the new method over a recently published distortion-
invariant audio copy detection algorithm.

1. INTRODUCTION

The typical use of an audio fingerprinting system is to precisely
identify a piece of audio from a large collection, given a short
query. This is typically done by extracting highly discriminative
content features, a “fingerprint”, from the collection of audio files
as well as the query piece, and subsequently comparing these fea-
tures. The focus in fingerprinting systems is on being able to
discriminate between non-identical pieces of audio, even if they
sound very similar to a listener, as in the case of different versions
of the same song (e.g., “Album Version” vs. “Radio Version”).

There are numerous application scenarios for audio finger-
printing. A well established one is to enable curious users to learn
the name of the song they are currently listening to [1]. Other ap-
plications, mainly used by industry, include the large-scale tasks
of media monitoring and audio copy/plagiarism detection [2].

Depending on the application, audio fingerprinting systems
should be robust to different kinds of distortions of query audio
material. The minimum requirement would seem to be robustness
to various types of lossy audio compression and a certain amount
of noise. Application domains such as DJ set track identification,
media monitoring, audio copy detection and plagiarism detection,
pose additional requirements. There, it is also necessary to rec-
ognize audio material that was modified in tempo and/or in pitch,
and perhaps also tolerate nonlinear noise encountered when a DJ
blends two songs in order to achieve a perceptually smooth transi-
tion. In the latter case, the time and frequency scale changes may
not even be constant over the duration of a song. All these are
significant challenges to automatic audio identification systems.

In this work we propose an efficient audio fingerprinting method
that meets the above robustness requirements. It is not only robust
to noise and audio quality degradation, but also to large amounts

of speed, tempo or frequency scaling.1 In addition, it can accu-
rately estimate the scaling factors of applied time/frequency dis-
tortions. The key technique that makes this possible was found
by researchers working on blind astrometry, who use a simple and
fast geometric hashing approach to solve a generalization of the
“lost in space” problem [3]. The specific task is to determine the
pointing, scale and orientation of an astronomical image (a picture
of a part of the sky), without any additional information beyond
the pixel values of the image. We adapt this method to the needs
of audio fingerprinting and based on this, develop an extremely ef-
ficient and robust audio identification algorithm. The central com-
ponents in this are compact hash representations of audio that are
invariant to translation and scaling, and thereby overcome the in-
herent robustness limitations of systems that depend on equal rel-
ative distances of reference and query features to find matches,
such as the well-known Shazam algorithm [1]. More precisely,
our algorithm uses a compact four-dimensional, continuous hash
representation of quadruples of points, henceforth referred to as
“quads”. The quad descriptor [3] has also recently been adopted
in the field of computer vision, for the task of accurate alignment
of video streams [4, 5].

The system we propose can be used for DJ set monitoring
and original track identification, audio copy detection, audio align-
ment, as well as other tasks that demand robustness to certain lev-
els of noise and scale changes.

The paper is organized as follows. Section 2 discusses rel-
evant related work and, in particular, focuses on a very recently
published state-of-the art method [2] that will act as our main ref-
erence here. Section 3 gives a brief overview of the main points of
our new method, in order to set the context for the precise method
description, which comes in two parts: Section 4 describes the pro-
cess of constructing audio fingerprints – the extraction of special
features from audio, how to obtain hash representations from these
features, and how to store these in special data structures for effi-
cient retrieval. The actual identification method, i.e. the process of
matching query audio with reference data by using the extracted
features and their hash representations, is then explained in Sec-
tion 5. Section 6 systematically evaluates the performance of our

1 To clarify our terminology: if both scales are changed proportionally,
we call this a change in “speed”: the song is played faster and at the same
time at a higher pitch. This can be achieved by simply changing the rota-
tional speed of the turntable, or by modifying the sampling rate of a digital
media player – while keeping the sampling rate of the audio encoding un-
changed. Changing the time scale only will be referred to as a “tempo”
change: here, the audio is sped up or slowed down without observable
changes in pitch. Vice versa, if only the frequency scale is modified, this
will be called pitch shifting.
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method in two experiments. The first experiment considers song
identification on a database consisting of one thousand full length
songs of different musical genres. For the second experiment we
extend the database to 20,000 full length songs.

2. RELATED WORK

Numerous fingerprinting algorithms have been described in the lit-
erature (e.g., [1, 6, 7, 8, 9]), not all of which are applicable to
the tasks described in the introduction. Some algorithms extract
global fingerprints for entire songs, and are not suitable for our
given tasks because identifying snippets or excerpts of songs in the
reference database requires local fingerprints. In [9], a fingerprint-
ing approach is proposed that computes the scale invariant feature
transform (SIFT) [10] on the audio spectrograms with logarithmi-
cally scaled frequencies. While good results are shown, SIFT is
not invariant to scale changes if only one of the two dimensions is
scaled. Therefore, the algorithm proposed in [9] is not robust to
what we call tempo changes.

A tempo- and speed-invariant audio fingerprinting algorithm
has recently been proposed in [11]. By using pitch class his-
tograms as fingerprint features, it tends to compute similar finger-
prints for similar content, which is an interesting property on its
own. The algorithm has a certain robustness to tempo and speed
changes, but its performance degrades considerably for noisy queries.
Also, the performance degrades when the query audio is shorter
than the specific references, which is why the method is not well
suited for the tasks we described above.

A very recent publication proposing a fingerprinting algorithm
for audio copy detection, that also meets the demands of robust-
ness against speedup, tempo changes and pitch-shifting of query
audio is [2]. The work reports near perfect percentages of correct
song association. The described method performs feature extrac-
tion on a two-dimensional time-chroma representation of the au-
dio. First a set of candidate feature points is selected, which are
then purified by extracting and comparing up to 30 two-dimensional
image patches of different width, centered around the candidate
feature point. A candidate point is selected as feature point if most
of the (up to 30) extracted image patches fulfill a similarity crite-
rion. This is determined via k-means clustering, which assigns the
extracted patches to a number of c classes. Similarity is calculated
by computing low frequency discrete cosine transformation (DCT)
coefficients which represent the actual similarity metric. The pro-
posed method performs feature point selection for an average of 20
candidate points per second of audio, of which approximately 40%
pass the similarity constraints and are used for fingerprint compu-
tation. The actual fingerprints are generated from a number of low
frequency DCT coefficients of the extracted image patches, and
are scaled and translated to result in vectors of zero mean and unit
variance. According to the explanation given in the work, such a
fingerprint should result in a vector of 143 floating point values.
Fingerprint matching is done by nearest neighbor lookups, with
distance defined as the angle of two fingerprint vectors.

We will take this as our reference method in the present paper,
because it is the latest publication on this topic, and it reports ex-
tremely high robustness and performance results for a large range
of tempo and speed modifications (though based on experiments
with a rather small reference database – see Section 6 below).

3. METHOD OVERVIEW

The basic idea of our proposed method is to extract spectral peaks
from the two-dimensional time-frequency representation of refer-
ence audio material, then group quadruples of peaks into quads,
and create a compact translation- and scale-invariant hash for each
quad (a single hash is a point in a four-dimensional vector space).
Quads and their corresponding hashes are stored in different data
structures, i.e. quads are appended to a global index, and an in-
verse index is created to assign the corresponding audio file-id to
its quad indices. The continuous hashes are stored, together with
the index of their quad, in a spatial data structure, such that the
index that is associated with the hash corresponds to the index of
the quad that forms the hash.

For querying we extract quads and their hashes from the query
audio excerpt. For each query hash we perform a range search in
the spatial data structure and collect the indices of search results,
which in turn give the indices of matching reference quads in the
global index. The time and frequency scaling factor can be found
by comparing a query quad to its matching reference quad. To pre-
dict the match file ID for a query snippet, we adapt the histogram
method from [1].

4. FEATURE EXTRACTION

In this section we describe the extraction of audio features to be
used for audio identification, how to obtain hashable representa-
tions from these features, and how to finally store these for efficient
retrieval. The same feature extraction process is applied to the ref-
erence recordings that are used to build the fingerprint database,
and the query audio that is to be identified in the recognition phase.

To begin with, all audio files are downmixed to one-channel
monaural representations and processed with a sampling rate of
16 kHz. We compute the STFT magnitude spectrogram using a
Hann-window of size 1024 samples (64 ms) and a hopsize of 128
samples (8 ms), discarding the phases.

4.1. Constructing Quads

The fingerprinting algorithm works on translation- and scale-invariant
hashes of combinations of spectral peaks. Spectral peaks are lo-
cal maxima in an STFT magnitude spectrogram, and identified by
their coordinates in the spectrogram. Since the notion of a peak P
as a point in 2D spectrogram space will be used extensively in the
following, let us formally introduce the notation:

P = (Px, Py)

where Px is the peak’s time position (STFT frame index), and Py

is the peak’s frequency (index of STFT frequency bin).
The extraction of spectral peaks is implemented via a pair of

two-dimensional filters, a max filter and a min filter, where the
neighbourhood size is given by the filter window size. We use a
max filter to find the coordinates of spectral peak candidates in
the spectrogram, and use a min filter with a smaller window size
to reject peaks that were extracted from uniform regions in the
spectrogram, e.g., silence. In the following we explain how quads
are created from spectral peaks, and how compact hash values are
computed from quads.

To create translation- and scale-invariant hashes from spectral
peaks, we first have to group peaks into quads [3]. A quad consists
of four spectral peaks A,B,C,D, where we define A to be the
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root point of the quad, which is the peak with the smallest frame
index (i.e. the first of the four peaks in time) and B is the most
distant point in time from A (thus C,D lie somewhere between
the STFT frames of A,B). The quad is valid if B > A and C,D
lie within the axis-parallel rectangle defined by A,B:

Ax < Bx (1)
Ay < By (2)

Ax < Cx, Dx ≤ Bx (3)
Ay < Cy, Dy ≤ By (4)

At the top level, the quad grouping process proceeds through
an audio file from left to right, trying each spectral peak as a po-
tential root point A of a set of quads, with the goal of creating up
to a number of q quads for each peak.

For a given root point A, the process of constructing up to
q quads by selecting appropriate sets of B,C,D points is as fol-
lows.2 We construct a region of width r, spanning r STFT frames,
such that the region is centered k STFT-frames from A and A is
outside of the region (earlier in time, i.e., the region is located to
the right of A), as shown in Figure 1. We then sort the peaks that
are contained in the region, by time. We let t = 0 and pick the first
n peaks pt, pt+1, . . . pt+n−1 in the region and try all

(
n
3

)
combi-

nations of 3 peak indices in order to construct a valid quad with
root point A and the points from the current combination. If a
valid quad can be constructed we append it to a list of quads and
proceed until q quads are created. If no valid quad could be con-
structed, we increase t by one and try again until there are no more
peaks in the region.

The total number of resulting valid quads for a given root point
A depends not only on the parameter values, but is fundamentally
dependent on the specific layout of spectral peaks, and thus on
the signal itself. As already mentioned, for creating the reference
database we want to create a small number of quads. We therefore
choose a small n and a region of small width r. For queries we
create an extensive set of quads by choosing a larger n, rquery �
rref, and qquery � qref. k is the same in both cases.

The reason for different parameterization for query quad con-
struction is as follows: When the time scale of a query audio is
modified, this affects not only the density of peaks in the given au-
dio snippet, but also their relative positions. An example is given
in Figure 1, which shows the grouping for a quad for a given root
point A. In 1a a reference quad is created for a region of width
r that is centered k frames from A. The analogous example for
grouping a query quad for the same audio, but increased in tempo,
or decreased in tempo, is given in 1b and 1c, respectively. We see
that the green points, which are points B,C,D for the reference
quad, may happen to move outside of the grouping region of width
r if the time scale of the audio is modified. By choosing a larger
region width r and a larger number q of quads that may be created
for a root pointA, we can ensure to obtain a quad that corresponds
to the reference quad.

Note that when we consider audio queries of a fixed, limited
duration d (e.g., 15sec), there is an important difference between

2 We will parametrize this process differently, depending on whether
we compute quads for the reference database, or for a piece of query audio.
For reference database creation, we choose parameters in such a way that
we only create a small number of reference quads to keep the resulting
reference database as small as possible. For a query snippet, we will choose
parameters to create a large amount of quads. The explanation for this will
be given later in this section.

r

k

A

(a) Reference quad grouping

r

k

A

(b) Query quad grouping. Query audio was increased in tempo. New
peaks are shown in white facecolor.

r

k

A

(c) Query quad grouping. Query audio was decreased in tempo.

Figure 1: Reference quad grouping (1a) and query quad grouping
with increased tempo (1b), and decreased tempo (1c).

increased speed/tempo and decreased speed/tempo. Increasing the
tempo of the query audio excerpt relative to the reference leads to
a higher density of relevant audio content; all the content that was
used during the phase of reference quad creation is also present
when creating the quads for the query. However, decreasing the
tempo of the query, i.e., stretching the time scale, may cause some
of the relevant spectral peaks to fall out of the 15sec (i.e., not
be part of the query any more), so some important quads do not
emerge in the query. This problem arises when tempo or speed are
decreased by large amounts. This difference in increasing vs. de-
creasing the time scale is actually reflected in the evaluation results
(see Section 6). To summarize, if the same parameters are used
for both reference and query quad grouping, and the time scale
changes, it is very likely that no matching quads will be found in
subsequent queries.

4.2. From Quads to Translation- and Scale-invariant Hashes

We now have created quads from spectral peaks in audio, but these
quads are not the actual summarizing representation that we later
use to find match candidates between a query audio and the ref-
erence database. That representation should be translation- and
scale-invariant, and quickly retrievable. To achieve this, we com-
pute translation- and scale-invariant hashes from the quads. For
a given quad (A,B,C,D), the constellation of spectral peaks is
translated to the origin and normalized to the unit square, resulting
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Figure 2: Example of a quad hash computed from an arbitrary
quad A,B,C,D.

in the four points A′, B′, C′, D′ such that A′ = (0, 0) and B′ =
(1, 1), as shown in Figure 2. The actual continuous hash of the
quad is now given by C′, D′, and is stored as a four-dimensional
point (C′x, C′y, D′x, D′y) in a spatial data structure. Essentially,
C′, D′ are the relative distances of C,D to A,B in time and fre-
quency, respectively. Thus, the hash C′, D′ is not only translation
invariant (A′ is always (0, 0)), but also scale invariant. A feature
extraction example showing spectral peaks and resulting quads is
shown in Figure 3
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Spectral peaks and quads

Figure 3: Extracted spectral peaks and grouped quads on a
15 seconds excerpt of “Radiohead - Exit Music (For a Film)“.

4.3. Fingerprints: Storing Hashes for Efficient Recognition

Once peaks, quads and their hashes are computed, we store these
in data structures that allow for efficient selection of match candi-
dates and subsequent verification of match hypotheses from query
audio. The reference data consist of four data structures:

• quadDB: A file that contains all reference quads (the origi-
nal, unnormalized ones).

• fidindex: An index file that stores file-id, quad index range
(into quadDB) and filename for each reference audio file.

• reftree: A spatial data structure containing all reference
quad hashes.

• refpeaktrees: Two dimensional search trees for the spectral
peaks that are extracted from reference audio files.

The quadDB is a binary file that stores the sequence of quads for all
reference files, and the fidindex is an index file which maps each

reference file to a unique file-id and also stores the index range
(i.e. startindex, number of quads in quadDB) for the sequence of
quads that was extracted from the reference files. For the spatial
data structure (reftree) we use an R-Tree [12] with an R* split-
heuristic that stores all quad hashes, together with their positional
index in the quadDB. The R-Tree enables us to add songs the ref-
erence database without the need of rebuilding the tree in order to
maintain high query performance. In addition, the R-Tree is well
suited for large out-of-memory databases.

The refpeaktrees are used for the verification of match candi-
dates, which will be explained later.

4.4. Chosen Parameter Values

The specific set of parameter values that we chose for our im-
plementation and that are used in the evaluation in Section 6, is
as follows: The extraction of spectral peaks is performed with a
max-filter width of 91 STFT-frames, and a filter height of 65 fre-
quency bins. The min-filter, used to reject maxima that resulted
from uniform magnitude regions, has a width of 3 STFT-frames
and a height of 3 frequency bins. For reference quad grouping we
choose the center of the grouping window k to be four seconds
from each root pointA. The width r of this region window for ref-
erence quad extraction is two seconds. We group q = 2 quads for
each root pointA along with a group size of n = 5. This results in
an average number of roughly 8.7 quads per second of audio. For
query quad extraction we choose the same k of four seconds, and a
large grouping window width r that spans 7.9 seconds. A number
of up to q = 500 quads are extracted from a group size of n = 8.

5. RECOGNITION ALGORITHM

The method for identifying the correct reference recording, given
a query audio excerpt, consists of several stages: the selection of
match candidates, a filtering stage in which we try to discard false
positive candidates, and a verification step adapted from the find-
ings in [3]. After the verification stage we efficiently estimate a
match sequence with the histogram binning approach that is used
in algorithm [1]. In the following the selection of match candidates
is explained.

5.1. Match Candidate Selection and Filtering

For each quad hash that was extracted from a query audio, an ep-
silon search in the reftree is performed. This lookup returns a set
of raw match candidate indices: the indices of those quads in the
quadDB whose quad-hashes are similar (identical up to epsilon:
Bq

x − ε ≤ Br
x ≤ Bq

x + ε etc.) to the query quad-hashes. We call
this the set of raw candidates, as it will most likely be a mixture of
true positives and a (large) number of false positive matches. The
raw candidates are used to obtain estimates of the time/frequency
scale modification of the query audio, by looking at the different
orientation of the original (non-normalized) quads corresponding
to the query (q) and reference (r) hash, giving us the scaling factors
for time and frequency:

stime = (Bq
x −Aq

x)/(B
r
x −Ar

x) (5)
sfreq = (Bq

y −Aq
y)/(B

r
y −Ar

y) (6)

It makes sense to parametrize the system with scale tolerance bounds
as, depending on the application, one might not be interested in
trying to identify audio that is played at, e.g., half the speed or
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double the tempo, or has undergone extreme pitch-shifting modi-
fications. Such constrained tolerances considerably speed up the
subsequent hypothesis testing by rejecting raw match candidates
that lie outside the specified bounds.

Instead of directly starting with hypothesis tests on the raw
candidate set we first apply filters in order to clean up the match
candidates. This filtering process aims at discarding false posi-
tive matches while keeping a large number of true positives. In
addition to the previously mentioned scale tolerances we perform
a spectral coherence check, similar to the spatio-temporal coher-
ence check described in [5]. Here we reject match candidate quads
whose root point A is far away in the frequency domain compared
to root point A of the query quad.

We now consult the fidindex to sort the remaining match can-
didates by file-id, and enter the verification step (Section 5.2) –
those candidates that pass the following step are considered true
matches and are passed to the match-sequence estimation.

5.2. Match Verification and Sequence Estimation

Match verification is performed once all match candidates for all
query quads are collected and filtered as described above. Most
likely, the remaining match candidates correspond to a large num-
ber of file-ids that are referenced in the database. Since our goal is
to identify the correct file-id, we perform this stage of match can-
didate verification on a per-file-id basis. To do this we consult the
fidindex file (cf. Section 4.3) and look up the file-ids for all match
candidates, and sort the match candidates by file-id.

Verification is based on the insight that spectral peaks that are
nearby a reference quad in the reference audio, should also be
present in the query audio [3]. Naturally, depending on the au-
dio compression, the amount of noise or other distortions, there
might be a larger or smaller number of nearby peaks in the query.
We define the nearby peaks as the set of N peaks closest to the
match candidate’s root point A (for some fixed N ), and retrieve
those by performing a k-nearest-neighbor search in the refpeak-
trees (cf. Section 4.3) for the given file-id. We define a threshold
tmin, the minimal number of nearby peaks that have to be present in
the query in order to consider the candidate an actual match. Note
that in order to find relevant nearby peaks in the query, we have
to align the query- and reference-peaks by transforming the query
peak locations according to the previously estimated time/frequency
scale (cf. Section 5.1). The candidates that pass the verification
step are considered true matches, and they are annotated with the
number v ≤ N of correctly aligned spectral peaks, and the scale
transformation estimates. This number v will be used for an opti-
mization described below.

After match candidates for a given file-id are verified, we try
to find a sequence of matches for this file-id by processing the
matches with a histogram method similar to the one used in the
Shazam algorithm [1], with the difference that the query time (the
time value of root point A of each query quad in the sequence)
is scaled according to the estimated time scale factor. Finally, the
file-id for the largest histogram bin (the longest match sequence)
is returned, together with the match position that is given by the
minimal time value of the points in the histogram bin. We now
know the reference file that identifies the query audio, the po-
sition of the query audio in the reference track, and the associ-
ated time/frequency scale modification estimates. Note that the re-
ported scale transformation estimates are expected to be quite ac-
curate, because with these estimates, for each “surviving” match

candidate at least tmin nearby spectral query peaks could be cor-
rectly aligned to corresponding reference peaks during the verifi-
cation phase. A lookup in the fidindex now gives us the filename
of the reference audio as well as any kind of optional meta data.

To speed up the verification process, we define a threshold for
the number of correctly aligned nearby peaks tv > tmin. When the
v value of a match reaches or exceeds this threshold, we allow a so-
called “early exit” for this file-id. Once all match candidates of an
early exit file-id are verified, we directly enter the match sequence
estimation for this file-id, without subsequent verification of any
other file-id.

5.3. Runtime and Data Size Considerations

Our system operates on a number of data structures (cf. Section 4.3)
that together constitute what we call the reference database; the
largest components are the reftree and the refpeak trees.

The quadDB linearly stores binary records of quads. A quad
consists of four two-dimensional discrete points (coordinates in the
STFT spectrogram) and can be represented and stored as 8 ∗ 32bit
integers, which amounts to 32 byte per quad. It is not necessary
to keep this file in-memory, as the proposed method is designed to
operate on big out-of-memory reference data.

There exists exactly one quad hash per quad. A quad hash is a
continuous four-dimensional point that is stored as an array of four
float32 values by the reftree. The actual number of quads in the
quadDB depends on the filter size parameters of the spectral peak
extraction and the quad grouping parameters. For an example ref-
erence database consisting of 20,000 full length songs we choose
the parameters such that we create an average of approximately
8.74 quads per second of audio, with a median of ≈ 8.68 and a
standard deviation of σ ≈ 1.19. The histogram of the number
of quads per second is shown in Figure 4. This specific database
consists of ≈ 4.29 ∗ 107 quads, or roughly 1.3GB. The reftree,
a four-dimensional R-Tree, consumes approximately 4.8GB. To
speed up the verification process we also store two dimensional
trees of spectral peaks for each file-id, which consume roughly
3GB for 20, 000 songs. We currently store the fidindex file as text,
along with some meta data. In this example the size of the fidindex
amounts to 2.3MB.
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Figure 4: Histogram of the average number of quads per second
for all files in a reference database of 20,000 songs.

Naturally, depending on application scenarios and hardware
constraints, it is possible to trade runtime for storage space and
vice versa. If minimal space consumption is of priority, one can
pack the binary quad records of the quadDB to 16 bytes by ex-
ploiting the limited number of STFT frequency bins (i.e. 512), and
storing the time values of points B,C,D as offsets from point A.
This saves 50% per quad, reducing the size of the quadDB file to
≈ 650MB.
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Regarding the runtime, using our unoptimized pure Python
implementation of the method, feature extraction and quad cre-
ation for the database of 20, 000 songs took approximately 24h
utilizing seven out of eight logical cores of an Intel Core i7 860
(2.8GHz) Processor.

The runtime for a query is made up of audio decoding, feature
extraction, querying the database and filtering the results, match
candidate verification and match sequence binning. For a query on
a 15 seconds audio excerpt against a reference database of 1000
songs, this takes approximately 4 to 12 seconds. Here, half of the
time is taken by the preprocessing (decoding, quad extraction).

Querying a larger database of 20, 000 songs takes consider-
ably (though, of course, not proportionally) longer. The main rea-
son is the higher number of match candidates that have to be pro-
cessed. The same query excerpt as used above is processed in
approximately 14 to 60 seconds. Here, at least half of the time is
consumed by the reftree range queries. Again, this is based on an
unoptimized, experimental Python implementation; there is ample
room for improvement. Section 6.3 gives more detail.

6. EVALUATION

We systematically evaluate the performance of the system for dif-
ferent speed, tempo and noise modifications of 15 seconds query
audio snippets. The reference database for the first experiment is
constructed from N = 1000 full length songs in .mp3 format.
To create test queries, we randomly choose 100 reference songs
and subject these to different speed, tempo, and noise level mod-
ifications. We then randomly select a starting position for each
selected song, and cut out 15 seconds from the audio, such that
we end up with 100 15sec audio queries. The evaluation consid-
ers speed and tempo ranges from 70% to 130% in steps of 5%.
To evaluate the noise robustness of our system we mix each query
snippet with white noise to create noisy audio in SNR level ranges
from 0 dB to +50 dB in steps of 5 dB. Furthermore, we create
all query audio snippets from .mp3 encoded data, and encode the
modified snippets in the Ogg Vorbis format [13], using the default
compression rate (cr = 3). We do this to show that the system
is also robust to effects that results from a different lossy audio
encoding. All modifications are realized with the free SoX audio
toolkit [14]. The following terms are used in defining our per-
formance measures: tp (true positives) is the number of cases in
which the correct reference is identified from the query. fp (false
positives) is the number of cases in which the system predicts the
wrong reference. fn (false negatives) is the number of cases in
which the system fails to return a reference id at all.3

We define two performance measures: Recognition Accuracy
is the proportion of queries whose reference is correctly identified:

Accuracy =
tp

tp+ fp+ fn
=
tp

N
(7)

Precision is the proportion of cases, out of all cases where the sys-
tem claimed to have identified the reference, where its prediction
is correct:

Precision =
tp

tp+ fp
(8)

Thus, high precision means low number of false positives.

3There are no true negatives (tn) in our scenario (i.e., cases where the
system correctly abstains from identifying a reference because there is no
correct reference) because for all queries, the matching reference is guar-
anteed to be in the DB.

db 1000 songs db 20,000 songs
Speed tot. tree feat. match tot. tree feat. match
130% 12 1 6 5 60 31 7 22
110% 11 2 6 3 52 28 6 18
100% 9 1 6 2 35 20 6 9
90% 9 1 5 2 37 22 5 10
70% 4 0 3 1 14 7 3 1

Table 1: Query runtimes in seconds. “tot” is the total time, “tree”
is the time taken by tree intersection, “feat.” is the feature extrac-
tion time for spectral peaks and quad grouping and “match” is the
matching and verification time.

6.1. Detailed Results on Small Reference-DB (1, 000 Songs)

Each data point in the visualisation shows one of the aforemen-
tioned quality measures for 100 queries. The overall system per-
formance for speed, tempo, and SNR changes is shown in Figure 5.
For this experiment a total of 5900 queries of length 15 seconds
were run against the database consisting of thousand songs.

Figure 6 shows the performance for the tested SNR levels for
speed and tempo modifications of 95% and 105%.

Concerning the noise robustness of the proposed method, the
results show that a stable performance of > 95% for the tested
quality measures is achieved for SNR levels down to +15dB. Ac-
cording to these results the proposed quad-based hashes seem to
be sufficiently robust for queries of various noise levels that may
be encountered in real application scenarios.

6.2. Extending the Reference-DB to 20, 000 Songs

In the previous experiment on a database of thousand songs we
reach a very high precision. To further investigate the precision
of our proposed algorithm we extend the reference database to
20,000 songs, and query the same audio excerpts that we created
for the previous experiment, with the same modifications, against
this large database. Figure 7 shows that the performance of our ap-
proach does not degrade even if there are many songs in the refer-
ence. Note that we parametrized our system to discard any match
candidates if their transformation estimates are outside the scale
tolerance bounds of ±32% for either frequency and time scale.
The performance is comparable to that of the first experiment, re-
sulting in more false positives only for the larger speed modifica-
tions. For tempo modifications the system gives basically the same
performance as in the first experiment.

6.3. Runtimes

In Table 1 we give information about the runtimes observed in the
two above experiments. We randomly pick one of the generated
audio query excerpts, and compare the query runtime for the small
and the large databases for different scale modifications. The in-
creased runtime for faster speed and tempo is a result of the higher
number of spectral peaks in the audio excerpt, for which a larger
number of tree-intersections and raw match candidates have to be
processed.

6.4. Comparison with Reference Method [2]

While it is not possible to directly compare our results to those
of [2] (because we do not have access to their test data), from the
published figures it seems fair to say that in terms of recognition
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Figure 5: Precision and accuracy for speed (5a), tempo (5b) and SNR (5c) modifications, on a database of 1000 songs.
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(a) SNR variations for speed 95%
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(b) SNR variations for speed 105%
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(c) SNR variations for tempo 95%
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(d) SNR variations for tempo 105%

Figure 6: SNR variations for 95% and 105% speed and tempo on a database of 1000 songs.
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Figure 7: Precision and accuracy for speed (7a) and tempo modifications (7b) on a database of 20,000 songs.
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accuracy and robustness, both approaches seem comparable, and
both are at the upper end of what can be expected of an audio iden-
tification algorithm – for tempo and pitch distortion ranges that
are larger than what we expect to encounter in real applications.
It should be noted that the results reported in [2] are based on a
small reference collection of approximately 250 songs only and
that, unfortunately, no information is given about either the size of
the resulting database, or about runtimes.

The advantage of our proposed method is its efficiency in terms
of data size and fingerprint computation. In contrast to [2], where
log-spaced filter banks have to be applied to the spectrogram in or-
der to compute the time-chroma representation, the selection of
spectral peaks for quad grouping is done directly on the STFT
magnitude spectrogram of the audio, and the quads can be grouped
in linear time. Our proposed method chooses spectral peaks that
are local maxima of the magnitudes in the spectrogram, in con-
trast to the method of [2], where 600 DCT computations per sec-
ond of audio have to be performed (similarity computations for
30 rectangular image patches for each of approximately 20 feature
candidates per second) in order to find stable feature points. The
hash representation we propose is very compact and can be stored
as four float32 values, while the algorithm of [2] uses fingerprints
that are represented by 143-dimensional vectors.

Our match candidates are retrieved via an efficient range search
in a spatial data structure, for which we use an R-Tree. The dis-
tance of hashes is the euclidean distance between four-dimensional
points, while the distance measure used in [2] is the measure of the
angles of the 143-dimensional fingerprint vectors.

7. CONCLUSIONS

We have presented a new audio identification method that is highly
robust to noise, tempo and pitch distortions, and verified its ability
to achieve overall high performance on a medium-large database
consisting of 20,000 songs. While there is a lot of potential for
false positive matches in a database of this size (roughly 43 mil-
lion quads) in combination with the rather large tolerated scaling
ranges, the method’s filtering stage and the subsequent verification
process enable the system to maintain high precision and accuracy.
The results show a stable high performance for a large range of
scale changes, with as few as≈ 9 compact fingerprints per second
of audio.

In preliminary experiments on DJ sets and media broadcast
data we have not yet found any examples that exceeded 7% of
speed or tempo scale modifications. We also assume that scale
modification attacks against audio copy detection algorithms are
usually done with very subtle scale changes, almost imperceptible
to human ears. Our proposed algorithm achieves near perfect over-
all performance within scale modification ranges of 90% to 115%
for speed, and 80% to 120% for tempo scale modifications.
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ABSTRACT
In this paper, we propose a novel algorithm for score-informed
tracking of the fundamental frequency over the duration of single
tones. The tracking algorithm is based on a peak-picking algorithm
over spectral magnitudes and ensures time-continuous f0-curves.
From a set of 19 jazz solos from three saxophone and three trum-
pet players, we collected a set of 6785 f0-contours in total. We
report the results of two exploratory analyses. First, we compared
typical contour feature values among different jazz musicians and
different instruments. Second, we analyzed correlations between
contour features and contextual parameters that describe the met-
rical position, the in-phrase position, and additional properties of
each tone in a solo.

1. INTRODUCTION

The personal style of a musician or singer encompasses various
features of her or his performances such as micro-timing, into-
nation (i.e., pitch accuracy according to a certain tone system),
glidings at beginnings and endings or between successive tones
and several features of sound, e.g. breathiness or roughness of
tones or their overall timbre [1, 2]. However, for the task of Au-
tomatic Music Transcription (AMT), tones are commonly under-
stood as acoustic events with a fixed pitch, onset, and offset time
[3]1. This symbolic music representation can be beneficial for a
score-level analysis of musical properties such as interval distribu-
tions, chords, and scales. At the same time, further artist-specific
aspects of a music performance such as pitch glides, intonation,
or timbre are completely neglected. Some authors analyze pitch
contours as part of automatic melody transcription systems. For
instance, Salamon et al. extract different statistical features from
pitch contours in polyphonic music, which are used as criteria to
assign them to the main melody [4].

When observing jazz improvisation performances of trumpet
and saxophone players, the fundamental frequency rarely remains

1Throughout this publication, we use the terms note for annotated pitch
values and tone for all sound events that were performed / played on a
musical instrument.

constant over the full duration of a tone. Instead, frequency mod-
ulation techniques such as pitch bends, glissandi between tones,
vibratos of varying speed and range, and other ornamentations are
used to give individual expressiveness to the tones and melodic
lines [5]. In African American music genres like jazz, especially
thirds, fifths, and sevenths are played in a peculiar way—sometimes
a bit too low, sometimes with a gliding movement of the pitch.
This phenomenon is often referred to as blue notes or blue note
areas by ethnomusicologists [6, 7]. Moreover, jazz musicians of-
ten play with vibrato and shape their vibrato in different ways, e.g.
faster or slower, or with different amounts of pitch deviations. De-
pending on jazz style and artist, longer tones are played without
vibrato at the beginning and then, often starting on a strong metri-
cal position, are enriched by adding vibrato [8].

In this paper, we primarily focus on the intonation of tones in
improvisation of jazz musicians, which could be a pivotal feature
of their personal “sound” and playing style. Therefore, we ne-
glect other perceptual aspects related to the instrumental timbre or
micro-timing and solely focus on how the fundamental frequency
evolves over the duration of a melody tone. In particular, we an-
alyzed audio recordings from six well-known trumpet and saxo-
phone players. We initially extracted tone-wise f0-contours based
on manual transcriptions of instrument solos and then performed
two different analyses: Firstly, we investigated whether signifi-
cant differences can be found for contour feature values among
different artists and different instruments. Secondly, we analyzed
whether and how contour features such as the deviation of the fun-
damental frequency from the annotated pitch depend on contextual
properties such as the tone’s pitch, duration, and metrical position.

This paper is structured as follows. The selection of commer-
cial jazz recordings used for this publications will be described in
Section 2.1 In section 2, the proposed algorithm for score-informed
f0-tracking as will be explained in detail. Section 2.7 will give a
brief description of the features we extract for each f0-contour. In
Section 3, the differences between artist / instruments and the bias
of contextual parameters will be explored. Finally, some conclu-
sions for elaborated transcription strategies and jazz research will
be drawn in Section 4.
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2. NOVEL APPROACH

Figure 1 illustrates the proposed method for score-informed esti-
mation of fundamental frequency contours from jazz solos.

Figure 1: Flow-chart of the proposed algorithm for score-informed
f0-tracking. Steps illustrated with thicker outline are performed
manually, all other processing steps are performed automatically.

2.1. Dataset & Melody Transcription

In this publications, we analyze 19 solos played by three saxo-
phone and three trumpet players as listed in Table 1. These solos
were taken from the Weimar Jazz Database (WJazzD) [9], which
currently comprises 174 fully transcribed jazz solos. Based on the
original audio recordings, the solos were manually transcribed and
cross-checked by musicology and jazz students at the Liszt School
of Music. The transcriptions include the MIDI pitch as well as
the onset and offset time for each tone played by the soloist. Fur-
thermore, each solo was segmented into melodic phrases, which
often coincide with breathing cycles of the saxophone and trumpet
players during their improvisation.

2.2. Segmentation

Given a jazz recording, we first manually extract two segments of
interest. The solo part contains the transcribed instrumental solo
and the reference part has only the accompanying rhythm section,
i.e., piano, double bass, and drums, but no soloist playing. The last
two columns of Table 1 show the durations of the solo parts and
the reference parts for the used data set.

2.3. Reference Tuning Frequency Estimation

Jazz recordings often show tuning deviations, for instance due to
speed variations of tape recorders in the recording process or the

particular tuning of the piano used. Amongst others, we aim to an-
alyze the deviation between the note intonation of the soloist and
the note intonation of the accompanying rhythm section. There-
fore, we first perfom a tuning estimation over the reference part
discussed in the previous section to obtain a reference tuning fre-
quency fref.

In particular, we follow the approach implemented in the
Chroma Toolbox [10]: Based on a given tuning hypothesis (fun-
damental frequency of the pitch A4), a triangular filterbank is con-
structed in such way that its center frequencies are aligned to the
semitone fundamental frequencies within the full pitch range of
the piano. The STFT magnitude spectrogram is computed, aver-
aged over the duration of the reference part, and filtered using the
filterbank to get a measure-of-fit for the current tuning hypothe-
sis. In contrast to the original implementation, we search for the
tuning frequency around 440 Hz with a margin of ± 1

2
semitone

(MIDI pitch range: 69± 0.5) and use a very small stepsize of 0.1
cents for the grid search.

2.4. Pre-processing

After the reference tuning frequency fref is estimated, the next
step is to estimate the f0-contours for each tone played in a given
solo. In order to reduce the computation time, we apply a down-
sampling by factor 2 to a sampling rate of fs = 22.05 kHz, since
all fudamental frequency values that can be played on the saxo-
phone and the trumpet are below the Nyquist frequency of fs/2.
For each tone, the corresponding audio signal is extracted between
the tone’s onset time and offset time.

2.5. Spectral Estimation

In order to track the fundamental frequency contour over time, we
compute a reassigned magnitude spectrogram MIF based on the
instantaneous frequency (IF) as follows. The instantaneous fre-
quency f̂(k, n) for each time-frequency bin in the STFT spectro-
gram X(k, n) is estimated using the method proposed by Abe in
[11]. The approach uses the time derivative of the phase for a fre-
quency correction. We use a zero-padding factor of 16, a blocksize
of b = 2048, and a hopsize of h = 64. The magnitude spectro-
gram is computed as M(k, n) = |X(k, n)|.

We define a logarithmically-spaced frequency axis flog(klog)
with a resolution of 50 bins per semitone. This axis is aligned to
the reference tuning frequency fref and defined for each target tone
with a pitch tolerance band of ± 2 semitones around its annotated
MIDI pitch value P as

flog(klog) = fref · 2
P−69−2+klog/50

12 (1)

The MIDI pitch value of 69 refers to the pitch A4, which corre-
sponds to fref. The frequency index is denoted as klog with
0 ≤ klog ≤ 201.

The spectral magnitude reassignmend is performed as follows.
In each time frame n, each magnitude valueM(k, n) (of the STFT
magnitude spectrogram) is mapped to the frequency bin k̃log of the
reassigned spectrogram MIF, whose frequency flog(k̃log) is closest
to the instantaneous frequency value f̂(k, n). Hence, the original
magnitude values of M(k, n) are accumulated in MIF(klog, n) as
follows:

MIF(k̃log, n) =
∑

k

∑

n

δ(k, n) ·M(k, n) (2)
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Table 1: Selection of saxophone and trumpet solos taken from Weimar Jazz Database (WJazzD) that is analyzed in this paper. The columns
show the solo number, the artist name, the song title, the solo instrument, the number of notes per solo, the estimated tuning frequency fref

from the reference part (see Section 2.3), the deviation of fref from the tuning frequency from 440 Hz in cent, as well as the duration of the
reference part Dref and the duration of the solo part Dsolo. The total number of notes per artist is given in brackets after the artist name. The
last row shows the mean (µ) and standard deviation (σ) values over all solos. Additional solo metadata can be found at [9].

Solo # Artist Title Instrument Notes fref [Hz] ∆fref [cent] Dref [s] Dsolo [s]

1 Coleman Hawkins (1195) Body And Soul Saxophone 636 445.45 21.3 9.11 167.44
2 My Blue Heaven Saxophone 213 447.28 28.4 10.58 58.1
3 Stompin’ At The Savoy Saxophone 346 438.71 -5.1 33.86 61.99
4 Michael Brecker (1271) Midnight Voyage Saxophone 589 441.94 7.6 33.27 153.86
5 Nothing Personal Saxophone 682 440.84 3.3 23.82 118.59
6 Sonny Rollins (999) Blue Seven - 1 Saxophone 354 442.5 9.8 21.51 109.71
7 Blue Seven - 2 Saxophone 138 442.5 9.8 21.51 38.41
8 Tenor Madness Saxophone 507 438.73 -5 31.06 130.63
9 Clifford Brown (1085) George’s Dilemma Trumpet 429 440.08 0.3 46.5 100.7
10 Joy Spring Trumpet 455 441.35 5.3 43.38 94.73
11 Sandu Trumpet 201 439.59 -1.6 50.68 44.79
12 Freddie Hubbard (1043) 245 Trumpet 481 435.78 -16.7 37.75 120.03
13 Down Under Trumpet 114 440.28 1.1 25.37 38.56
14 Society Red Trumpet 448 439.59 -1.6 36.25 149.83
15 Miles Davis (1192) Blues By Five Trumpet 371 443.24 12.7 39.49 130.62
16 Oleo - 1 Trumpet 223 442.06 8.1 30.92 56.36
17 Oleo - 2 Trumpet 224 442.06 8.1 30.92 55.26
18 So What Trumpet 221 452.08 46.9 13.78 112.11
19 Vierd Blues Trumpet 153 436.81 -12.6 28.62 100.17

µ (σ) 366.95 (213.91) 440.9 (3.24) 3.49 (12.63) 30.98 (9.57) 96.65 (42.38)

with

δ(k, n) =

{
1, if k̃log = arg minklog

∣∣∣flog(klog)− f̂(k, n)
∣∣∣

0, otherwise.
(3)

2.6. Score-Informed f0-tracking

After computing the reassigned spectrogram MIF(klog, n), the f0-
contour of the target tone is tracked over its complete duration.
As an example, Figure 2 illustrates a tone taken from the solo
“Stompin’ At The Savoy” by the saxophonist Coleman Hawkins.
The transcibed pitch value is P = 65. In the following sections,
it will be detailed, how the starting location (indicated as blue cir-
cle) is derived and how the f0-contour (indicated as red circles) is
tracked.

2.6.1. Starting Location

Before the f0-contour can be tracked, a suitable starting location
(klog,start, nstart) must be identified. Therefore, we first retrieve the
frequency bin positions klog,max(n) of the frame-wise magnitude
maxima as:

klog,max(n) = arg max
klog

MIF(klog, n) (4)

Then, we aim to find the frame nstart, in which the magnitude peak
is closest to the frequency bin klog = 100, which corresponds to
the transcribed pitch of the given tone. Therefore, we compute the
starting frame for the tracking as

nstart = arg min
n
|klog,max(n)− 100| (5)

and set the starting frequency bin to klog,start = klog,max(nstart). In
case multiple frames show a minimum peak distance to the f0 bin,
we select the frame with the highest magnitude in MIF.
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Figure 2: Example f0-contour of a tone taken from the solo
“Stompin’ At The Savoy” by the saxophonist Coleman Hawkins
with an annotated pitch of P = 65. The time axis is normalized
such that t = 0 refers to the tone onset. The reassigned mag-
nitude spectrogram MIF is shown in dB in the background. The
tracked f0-contour is shown as red circles, the starting location for
the forwards-backwards tracking is shown as the bigger blue circle
at t ≈ 0.06 s.

2.6.2. Contour Tracking

After finding the starting location (klog,start, nstart), the f0-contour is
tracked on a frame-wise basis forwards and backwards in time. We
assume that the f0-contours are continuous, hence we only allow a
maximum absolute frequency deviation between the fundamental
frequency values in adjacent frames of 10 bins, which corresponds
to 20 cent for the given frequency axis. In each frame, we choose
the f0 frequency bin based on the maximum peak position in the
search range around the previous f0 estimate. For the backwards
tracking, we obtain

klog,0(n) = argmaxklog
MIF(klog, n) (6)

for klog,0(n+ 1)− 10 ≤ klog ≤ klog,0(n+ 1) + 10

The forward tracking is performed in a similar fashion. Hence, the
estimated fundamental frequency is f̂0(n) = flog (klog,0(n)).
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2.7. Feature Extraction

This section details a set of contour features, which are computed
to characterize each estimated f0-contour. We measure the local
deviation between the estimated fundamental frequency f̂0(n) and
the annotated fundamental frequency f0 = fref · 2

P−69
12 in cents as

∆f0(n) = 1200 log2

(
f̂0(n)/f0

)
. (7)

∆f0(n) provides a pitch-independent measure of frequency de-
viation, which is easy to interpret (100 cents correspond to one
semitone). We extract the features

• AvF0Dev—median over the frequency deviation ∆f0(n),
which can indicate a sharp or flat intonation,

• AvAbsF0Dev—median over the absolute frequency devia-
tion |∆f0(n)|, which measures the total deviation from the
reference pitch values,

• LinF0Slope—approximated (linear) slope of the f0-contour
over the duration of a tone (based on linear regression over
f0(n)),

• F0Progression—overall pitch progression in cent from the
first to the last 5 % of the tone’s total duration [12], and

• three features that can characterize a vibrato by measuring
the modulation frequency (ModFreq), the total modulation
range in cent (ModRange), as well as the number of mod-
ulation periods (ModNumPeriod) [12].

The most prominent modulation frequency detected as from the
position of the highest peak of the FFT magnitude spectrogram
over f0(n) in the range between 0.3 and 10 Hz. However, this
approach will result in a modulation frequency value for all tones
but doesn’t necessarily imply a vibrato articulation. As will be dis-
cussed in Section 4, future work must adress an initial filtering of
tones played with vibrato before the modulation frequency values
are further interpreted.

2.8. Contextual Parameters

We want to closer investigate the hypothesis that the intonation of
each tone depends on its position in the solo, its position in the cur-
rent melodic phrase, as well as on its metrical position. Therefore,
for each tone in a solo, we extract several contextual parameters
based on the ground truth transcriptions (see Section 2.1).

While onset time (Onset) indicates the position of a tone in the
solo in absolute time (seconds), we obtain two features of relative
tone position from the melodic phrase annotations:

• PhraseNum—number of the corresponding melodic phrase
and

• RelPosInPhrase—relative position of a tone within that
phrase (the relative phrase position is a normalized value
with 0 indicating the first tone and 1 indicating the last tone
of a melodic phrase).

Besides duration (Duration) in seconds, we use two features to
indicate the position according to the meter:

• BeatNum—corresponding beat number within a bar and

• SubBeatNum—corresponding sub-beat number (relates to
the tatum, i.e., the metrical subdivision that coincides with
most of the tone onsets).

Finally, pitch (Pitch) refers to the overall ambitus.

3. STATISTICAL ANALYSIS

In this section, we describe several exploratory analyses that we
performed to reveal characteristic correlations and relationships
within the data set.

3.1. Feature dependency of artist and instrument

In the first analysis, we investigated the distribution of feature val-
ues among solos played by different artists and solos played with
different instruments. In particular, we focused on the features
AvF0Dev, ModRange, and F0Progression. Figure 3 shows the
boxplots over these four features for varying artists and instru-
ments. Several observations can be made:

• Particularly Sonny Rollins and Clifford Brown show a ten-
dency to a sharp intonation with median AvF0Dev values
of 6.4 and 14.0 cent while Miles Davis tends to a flat into-
nation (-6.0 cent).

• No strong difference of the AvF0Dev feature values can be
observed when averaged over all trumpet and saxophone
players. This leads to the assumption that the tendency to-
wards a sharp or flat intonation is not instrument-specific
but rather artist-specific.

• It can be seen that the saxophone players, especially Cole-
man Hawkins (median ModRange value of 40.8 cent) show
a higher modulation range than the trumpet players.

• Concerning the F0Progression feature, the results indicate
that all of the investigated jazz musicians but Freddy Hub-
bard show a tendency towards upwards pitch glidings (pos-
itive F0Progression values). The difference between saxo-
phone and trumpet solos is rather small (5.2 vs. 1.5)

3.2. Correlation between Contour Features and Contextual
Parameters

In the second analysis, we investigated the correlations between
contour features and contextual parameters. An initial Lilliefors
test showed that none of the contour features nor the contextual
parameters showed a normal distribution. Therefore, throughout
the analyses discussed in this section, we used the Kendall τ rank
correlation coefficient. The correlation results between pairs of
features and contextual parameters are shown in Table 2 (moderate
effect sizes of |τ | ≥ 0.3 are emphasized using bold print). The
following observations can be made:

• While many highly significant correlations between features
and contextual parameters exist (due to the large number of
tones), most of them have only a small effect size.

• Neither the tuning deviation AvF0Dev, the absolute tun-
ing deviation AvAbsF0Dev, the slope of the f0-contour
LinF0Slope, nor the F0Progression feature seem to de-
pend on investigated contextual parameters.

• With increasing tone duration, the modulation frequency
decreases (τ = −0.62) while the modulation range and
the number of periods increase (τ = 0.23 and τ = 0.32).
Apparently, longer notes are played with slower but more
extreme vibrato than shorter notes.

• Also, the modulation range in cent decreases with increas-
ing pitch (τ = −0.28), which is most likely caused by
playing difficulties in higher pitch registers. As shown in
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Figure 3: Boxplots over features AvF0Dev, ModRange, and F0Progression over different artists and different instruments.

Table 2: Kendall’s τ between features and contextual parameters. Moderate correlation levels (|τ | ≥ 0.3) are indicated in bold print. Only
significant correlations are shown (p < .05). The different significance levels based on the p-value are indicated as ∗∗∗ (p < .001), ∗∗

(p < .01), and ∗ (p < .05).

Features Contextual Parameters

Metrical Position In-phrase Position Basic Tone Parameters

BeatNum SubBeatNum PhraseNum RelPosInPhrase Pitch Onset Duration
AvF0Dev 0.02* 0.02* -0.07*** -0.04***

AvAbsF0Dev -0.02* 0.04*** -0.02** -0.11*** -0.13***

LinF0Slope -0.03** -0.03*** -0.02*

ModFreq 0.15*** -0.09*** -0.05*** -0.05*** -0.06*** -0.62***

ModRange -0.05*** 0.05*** 0.06*** -0.28*** 0.05*** 0.23***

ModNumPeriod -0.09*** 0.06*** 0.32***

F0Progression -0.03*** -0.02**

the boxplots in Figure 4 and 5, this phenomenon can be ob-
served in a similar fashion for both trumpet and saxophone
solos.

4. CONCLUSIONS

In this paper, we propose a novel method for score-informed track-
ing of fundamental frequency contours. Furthermore, we intro-
duce a set of basic contour features that characterize various as-
pects such as modulation range, tuning deviation towards the equal-
temperament scale, as well as the overall pitch progression. In the
second part of our paper, we present several exploratory analy-
ses to investigate, how feature values differ among different artists
as well as different instruments and how the contour features and
contextual parameters corelate with each other.

This leads to several observations which could be fruitful for
future investigations of personal style in jazz improvisation as well
as for music research in general. Obviously, different jazz musi-
cians have different tendencies to glide towards or within pitches—
with a general trend to glide upwards. Personal vibrato styles
are characterized mainly by different modulation ranges as well
as minor differences of vibrato frequency. Our method of score-
informed tracking of fundamental frequency contours could help
to characterize those idiosyncratic vibrato styles.

Preceding to a vibrato analysis, all tones in a solo that are
played with vibrato must be identified first. As shown in [12], a su-
pervised classification approach based on contour features such as
discussed in Section 2.7 seems as a promising approach. Since vi-
brato is often put on longer tones (and only occasionally on shorter

ones) by jazz musicians, vibrato analyses could be enhanced by fil-
tering the data for longer tones only, which is easily done by the
MeloSpySuite software that was developed in the Jazzomat Re-
search Project [13]. Similarly, with MeloSpySuite we could sim-
ply filter the data for thirds, fifths, and sevenths according to the
underlying chords in order to analyze selectively the pitch con-
tours in those blue note areas and learn about the bias of different
artists to play blue notes. In this manner, computer-based meth-
ods of transcription and analyses of audio recordings could be ex-
tended from the symbolic or structural level (pitch, onset, duration
of tones) to the micro-level of musical sound which is, presumably,
pivotal for the understanding of performance style in jazz and other
music genres.
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Figure 4: Boxplot over feature ModRange in cent over the pitch range for trumpet tones.
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ABSTRACT

This paper proposes a real-time capable method for transcribing
and separating occurrences of single drum instruments in poly-
phonic drum recordings. Both the detection and the decomposi-
tion are based on Non-Negative Matrix Factorization and can be
implemented with very small systemic delay. We propose a sim-
ple modification to the update rules that allows to capture time-
dynamic spectral characteristics of the involved drum sounds. The
method can be applied in music production and music education
software. Performance results with respect to drum transcription
are presented and discussed. The evaluation data-set consisting of
annotated drum recordings is published for use in further studies
in the field.

Index Terms - drum transcription, source separation, non-
negative matrix factorization, spectral processing, audio plug-in,
music production, music education

1. INTRODUCTION

The rapid development of music technology in the past decades
has inevitably changed the way people interact with music today.
As one result, music production has shifted almost entirely to the
digital domain. This evolution made music recording affordable
for amateurs and semi-professionals. Furthermore, it enabled the
rise of completely novel approaches to music practice and edu-
cation. With these developments in mind, our work focuses on
the real-time processing of drum set recordings. We aim at tran-
scribing and isolating the single drum instruments that are played
in a monaural, polyphonic drum set recording. Thus, our topic
is at the intersection of automatic music transcription and source
separation, two major fields in Music Information Retrieval (MIR)
research [1, 2]. Strictly speaking, we are performing drum detec-
tion rather than transcription, since our approach is agnostic to the
underlying metric structure (relations of beats and bars). However,
we will use the term drum transcription for the sake of simplic-
ity throughout the paper. We also use the term decomposition as
synonym for source separation.

Our paper is structured as follows. First, the goals of our work
are outlined in Sec. 2. After a review of the related work in Sec. 3,
we explain the proposed transcription and separation algorithm in
detail in Sec. 4. Finally, Sec. 5 describes the evaluation conducted
and Sec. 6 summarizes this work.

∗ All correspondance should be adressed to this author.

Figure 1: A simple, one-bar drum rhythm in music notation. Taken
from [3].

2. GOALS

In professional music production, drum kits are usually recorded
using several microphones that allow for separate processing of
the different drum instrument signals via mixing desks. However,
proper microphone setup is not trivial and even professional audio
engineers often have to cope with heavy cross-talk between record-
ing devices. In addition, amateur music producers might only have
a single microphone available due to limited budget. Thus, our
goal is to detect and separate occurrences of single drums within
monaural polyphonic drum set recordings in real-time.

Our first application scenario is music production software,
where post-processing of individual drum instruments in the mix
plays an important role. In digital music production, so-called
drum trigger plug-ins, such as Drumagog 1 or Steven Slate Trig-
ger 2 are quite common. When applied to multi-channel drum set
recordings, onsets can be detected in each drum channel and can
be used to trigger additional digital audio samples. In a sense,
these tools already perform monophonic drum transcription. One
drawback of these plug-ins is the need for manual setting of trigger
thresholds. Furthermore, they offer only conventional means (e.g.,
equalization, noise-gates) for attenuating cross-talk between drum
channels. Of course, it would be desirable to better isolate the sin-
gle drum-sounds automatically. As will be explained in Sec. 4, our
approach requires to train the system with isolated drum sounds of
the expected drum instruments. Having in mind that all drum in-
struments are played in succession during sound-checks, it is quire
realistic to fulfill that requirement in practice.

The second application scenario are educational music games,
such as Songs2See3, BandFuse4 and RockSmith5. Only a small
number of music video games and music education software also
offer the possibility to practice drums. In all cases, this functional-
ity is enabled by using MIDI-fied drum sets. However, none of the
existing applications allows users to practice on real-world acous-

1http://www.drumagog.com/
2http://www.stevenslatedrums.com/
3http://www.songs2see.com/
4http://bandfuse.com/
5http://rocksmith.ubi.com/
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tic drum sets. We want to enable budding drummers to play along
to a given rhythm pattern or song, while their performances, in
terms of striking the correct drums to the correct points in time,
are assessed in real-time. As a pre-requisite, it is necessary to rec-
ognize the different drum instruments in a monaural audio signal.
Having beginners in mind, the system is constrained to detect on-
sets of three drum instruments as explained in Sec. 2.1. In ed-
ucational music video games available on the market, it is pretty
common to have a tuning stage before playing a song. In the same
manner, we can require the use to play all drum instruments in
succession for training the system.

2.1. The drum kit

A conventional drum kit usually consists of the drum instruments
shown in Figure 2. They comprise the kick (1), snare (2), toms
(3,4), hi-hat (5) and cymbals (6,7). The drums can be classified
into membranophones (kick, snare, toms) and ideophones (hi-hat,
cymbals). The sound is produced by striking them with drum
sticks usually made of wood. In this work we are focusing on kick,
snare and hi-hat. The kick is played via a foot pedal, generating a
low, bass-heavy sound. The snare has snare wires stretched across
the lower head. When striking the upper head with a drum stick,
the lower head vibration excites the snares, generating a bright,
snappy sound. The hi-hat can be opened and closed with another
foot pedal. In closed mode, it produces a clicking, instantly de-
caying sound. In opened mode, it can sound similar to a cymbal
with many turbulent high frequency modes. Real-world acoustic
drums generate sound spectra that vary slightly with each succes-
sive stroke. Sample-based drum kits usually feature a limited num-
ber of pre-recorded drum sounds, while synthetic drum kits often
provide just one particular sound (given the synthesis parameters
are fixed).

Generally speaking, kick, snare and hi-hat can be ordered as-
cending by their spectral centroid. However, when polyphonic
drum rhythms are played on a drum set, it is pretty common that
different drums are struck simultaneously. In many common drum
rhythms, the hi-hat plays all quarter or eighth notes and therefore
coincides with kick and snare quite often. An example is shown
in Figure 1. If such short rhythms of one to four bars are con-
stantly repeated they are also called drum loop. In these cases,
discerning the instruments by their spectral centroid is no longer
possible, since only the mixed sound can be measured. In the worst
case, a kick occurring simultaneously with a hi-hat could be mis-
taken for a snare drum. Besides the recognition of ghost-notes
and other special playing techniques, the ambiguity in classifying
polyphonic drum sounds poses the major challenge in automatic
drum transcription.

3. STATE-OF-THE-ART

In this section, the most important directions of research in auto-
matic drum transcription are presented. As described in [4], the ex-
isting approaches can be discerned into three different categories.

3.1. Source separation methods

The first category is also known as separate and detect because
the signal is first decomposed into individual streams via source
separation, before onset candidates are detected in each individ-
ual stream. The pre-requisite is typically a time-frequency trans-

form (e.g., the Short-term Fourier Transform (STFT)). The generic
signal model decomposes the resulting magnitude spectrogram X
into a linear superposition of individual component spectrograms.
The components are usually represented by fixed spectral basis
functions B and corresponding time-varying amplitude (or gain)
envelopesG. An intuitive interpretation is that theB describe how
the constituent components sound, whereas the G describe when
and how intense they sound. The approaches described in the lit-
erature mostly differ in the decomposition method as well as the
constraints and initialization imposed on B and G.

Independent component analysis (ICA) computes a factoriza-
tion

X = B ·G (1)

such that the separated source spectra are maximally independent
and non-Gaussian. Independent subspace analysis (ISA), first de-
scribed in [5], applies Principal Component Analysis (PCA) and
ICA in succession for decomposing X . In order to classify the ar-
bitrarily permuted and scaled components afterwards, feature ex-
traction and classifiers such as k-Nearest-Neighbor (kNN) or Sup-
port Vector Machines (SVM) can be used [6]. An extension to ICA
called Non-Negative ICA (NICA) has the constraint that the matrix
B must be non-negative [7]. In [8], it is shown how to use NICA
for transcription of kick, snare and hi-hat from polyphonic music.

Prior subspace analysis (PSA) was first proposed in [9] and
utilizes a set of template spectrum basis functions in a matrix Bp.
These consist of the averaged spectra drawn from a large collec-
tion of isolated drum sounds. A first approximation of G can be
computed by

Ĝ = B+
p ·X (2)

where B+
p denotes the pseudo-inverse of Bp. The rows of matrix

Ĝ contain the temporal activations of the template spectra in the
spectrogram, but are not independent. In order to make them in-
dependent, ICA is applied afterwards. This results in an unmixing
matrix W transforming Ĝ into independent amplitude gain func-
tions according to

G =W · Ĝ (3)

Subsequently, an improved estimate of the source spectra can be
computed by

B = X ·G+ (4)

which now contains the source spectra adapted to the actual sig-
nal. Using this method, [10] reports an F-measure of 0.75 for the
detection of kick and snare in polyphonic music.

An early work applying Non-negative Matrix Factorization
(NMF) [11] for the separation of drums from polyphonic music
is presented in [12]. It uses NMF minimizing the Kullback-Leibler
Divergence (KL), with random initialization of B and G. From
the resulting components, spectral and temporal features are com-
puted and classified with an SVM trained on the classes drums vs.
harmonic. The reported results show that the NMF and SVM ap-
proach performed better than ISA and SVM. Another variant of
NMF for drum transcription is described in [13]. The NMF is first
applied to individual drum samples for kick, snare and hi-hat in or-
der to derive Bp, which are later fixed during the NMF iterations.
The method shows good performance on drum loops, yielding an
average F-measure of 0.96 for kick, snare and hi-hat detection. In
[14, 15], it is shown how source separation of instruments with
time-varying spectral characteristics (such as drums) may benefit
from an NMF extension called Non-Negative Matrix Factor De-
convolution (NMFD). Recently, NMF-based methods have also
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Figure 2: A conventional drum kit with annotated drum instruments, taken from [3].

been applied to real-time drum detection [16], where each drum
onset is identified with Probabilistic Spectral Clustering based on
the Itakura-Saito Divergence (IS).

3.2. Template matching

The second category of drum transcription techniques follow a so-
called match and adapt approach. It relies on temporal or spectral
templates for the events that should be detected. In a first approx-
imation, the occurrences of events that are similar to the template
are detected. Afterwards, the templates are iteratively adapted to
the given signal. The work presented in [17] uses seed templates
for kick and snare, that are constructed from a collection of iso-
lated drum sound spectrograms. First, onset detection determines
possible candidates for drum sounds. At each onset candidate, a
spectrogram snippet with the same size as the template is stored
and compared with the templates. The reciprocal of the distance
between the observed spectrogram and the template yields the re-
liability for that drum’s occurrence. In the adapt stage, the seed
templates are updated by taking the median power over all pre-
viously selected frames. This suppresses highly variable spectral
peaks from pitched, harmonic instruments. The process of tem-
plate adaption is applied iteratively, so that the output of this me-
dian filtering is used as the next seed template. The final stage
determines whether the drum sound actually occurs at the onset
candidate. Application of the template matching in conjunction
with harmonic structure suppression, yielded an F-measure of 0.82
for kick and 0.58 for snare. A combination of template matching
and sound separation is described in [18], where the candidates for
template extraction are first detected using NMF. Instead of me-
dian filtering, a modified minimum filtering is applied. Another
example of template matching is given in [19], where characteris-
tic band pass filter parameters are learned. The training process is
realized as an optimization of the characteristic filters with the Dif-
ferential Evolution (DE) algorithm and fitness evaluation measures
for determining each filter’s ability to correctly detect the onset of
the respective drum. The output of each filter represents the ac-
tivations of the single drums and can be transcribed by means of
envelope extraction and peak picking.

3.3. Supervised classification

The last category of transcription algorithms is referred to as seg-
ment and classify. It first employs temporal segmentation of the
audio track into onset events. Usually, a fixed number of frames
following each detected onsets is kept or a temporal grid of fixed
periodicity is aligned to the audio track. Subsequently, each tem-
poral event is identified by a classifier. Often, well-known machine
learning methods such as SVM or GMM are used in conjunction
with features extracted from each segment. The method in [20]
uses a set of features comprising averaged MFCCs, various spec-
tral shape parameters and the log-energy in six frequency bands
corresponding to the spectral centroids of different drum instru-
ments. The features are classified by a set of eight binary SVMs
that have been trained on the classes kick, snare, hi-hat, clap, cym-
bal, rim shot, toms and percussion. Evaluated on a data-set of drum
loops, the best configuration yielded a recognition rate of 83.9%.
The method proposed in [21] uses a similar approach, but is ap-
plied for drum transcription in polyphonic music. The algorithm
achieved an average F-measure of 0.61 for kick, snare and hi-hat.
Finally, Hidden Markov models (HMM) are a machine learning
method that can be used to model drum sequences. Although they
are often counted as part of the segment and classify approach,
they stand out as they are able to perform the segmentation and
detection jointly. HMMs model temporal sequences by comput-
ing the probability that a given sequence of observed states were
generated by hidden random variables, i.e., the activations of the
drum classes. In [4], HMMs are used to model MFCCs and their
temporal derivatives. The method achieves an F-measure of 0.81
for the recognition of kick, snare and hi-hat in drum loops and 0.74
in polyphonic music.

4. PROPOSED METHOD

In the preceeding section, we showed that good results have al-
ready been achieved in drum loop transcription. However, only a
fraction of the methods is capable of real-time processing and only
very few are suited for sound separation as well. As laid out in Sec-
tion 2, our approach should cover both aspects. An overview about
our proposed method is given in Figure 3. As in other works, we
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Figure 3: Overview of the proposed method. Prior basis vectors Bp are derived from isolated drum sound spectrograms. Drum set
recordings are split into spectral frames individually subjected to NMF. The resulting B and G are used for onset detection as well as
inverse STFT in order to obtain isolated drum instrument recordings.

also transform the drum recording to the time-frequency domain
via STFT. As indicated in Sec. 2, we follow the approaches de-
scribed in [13, 16]. We assume that an initial training phase can be
conducted, where the individual drum sounds expected in the drum
recordings are available in isolation. During training, we compute
one prior basis vector Bp per drum instrument by just averaging
along the time axis of each training spectrogram. The choice of
just a single basis vector per drum is motivated by the findings in
[22] as well as our general goal to spare computation time for real-
time applicability. Of course, it is possible to use more than one
component per drum and still reach real-time capability. In order
to keep the number of samples required for processing as small as
possible, the NMF decomposition is applied to each spectral frame
of the drum recording individually, thus generating a succession of
activations for kick, snare and hi-hat in G. In the following, three
variants of the NMF decomposition are detailed.

4.1. NMF decomposition with adaptive bases

For decomposition, we use the KL Divergence resulting in the well
known update rules [11] for both the spectral bases (5) as well as
the amplitude envelopes (6):

B ← B ·
X
BG

GT

1BT
(5)

G← G · B
T X
BG

BT 1
(6)

It should again be noted, that X represents an N × 1 matrix
corresponding to one individual spectral frame with N linearly
spaced frequency bins. The matrix 1 consists of all ones in the
appropriate dimensions. The spectral basis matrix B is initialized
with Bp as proposed in other works [13, 23, 16].

4.2. NMF decomposition with fixed bases

As proposed by other authors [24], we optionally omit the update
ofB in Eq. 5 and just replaceB with the fixed prior basisBp. This
way, it can be ensured that only the expected spectra will lead to
activations in G. It can be assumed, that NMF with only one fixed
basis vector per instrument will not be able to model time-dynamic

spectral characteristics of drum sounds, which is in line with the
findings of [16], where separate NMF templates for head and tail
of a drum sound are used. Intuitively, this method is also likely to
produce spurious activations in case the incoming signal consists
of other components than the previously trained drum sounds. The
NMF updates rules will try to model the currently observed spec-
tra as good as possible given the fixed prior basis vectors, thus
yielding activations of all drum components in the form of cross-
talk. Consequences for the resulting approximation of X will be
explained in 5.3.

4.3. NMF decomposition with semi-adaptive bases

In our novel approach, we introduce a modification imposing semi-
adaptive behavior on B during the NMF iterations. In contrast to
the procedure described in Sec. 4.1, we do not just initialize B
with Bp and let them iterate freely afterwards. Instead, we allow
the spectral content inB to deviate more from the initial value, the
closer we are to the NMF iteration limit. This behavior is simply
achieved by blending between the initial Bp and B from the cur-
rent iteration as given in Equation 7. The blending parameter α
depends on the ratio of current iteration count k to iteration limit
K taken to the power of β as show in Equation 8.

B = α ·Bp + (1− α) ·B (7)

α = (1− k

K
)β (8)

Thus, the NMF components are first pushed towards the ex-
pected drum sounds. The adaption to subtle variations in the in-
coming spectra are allowed later. It should be noted, that the pro-
posed procedure is not equal to Online Non-Negative Matrix Fac-
torization (ONMF) algorithms (e.g., [25, 26]). Instead of learn-
ing the final NMF decomposition of an infinite stream of spec-
tral frames over time by updating B with every incoming spectral
frame, we revert to Bp prior to the NMF decomposition of every
individual frame.
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Figure 4: Comparison of drum loop spectrograms obtained from the different decomposition methods. The top spectrogram is obtained
from the input drum loop. The bottom spectrogram shows the idealized (oracle) target when separating the kick. The second, third and
fourth spectrogram show the separation results obtained with adaptive B, fixed B = Bp and semi-adaptive B, respectively. The kick
separated using fixed B is clearly inferior compared to the oracle kick. This is evident by the smeared transient (light green brackets). It
does exhibit less cross-talk from the snare (light blue brackets) yielding better transcription results than adaptive B (see Sec. 5.2). Thus,
semi-adaptive B seems to be the optimal compromise between both.
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4.4. Onset detection

After decomposition, frame-wise matrix multiplication of the acti-
vations in G corresponding to a single drum with the correspond-
ing columns in B yields well separated individual spectrograms
for kick, snare and hi-hat. Based on these, onset detection is per-
formed in a straightforward manner by means of peak-picking.
While other authors used the amplitude envelopes in G directly,
we encounter different spectra in every frame for the adaptive and
semi-adaptive bases. Thus, we take the extra step of spectrogram
reconstruction prior to onset detection. Following the approach
proposed in [27], novelty curves D are extracted from the suc-
cessive spectral frames for each drum by differentiating the loga-
rithmic magnitude along time. Afterwards, all bins per frame are
summed up and half-wave rectification is applied since only salient
positive peaks corresponding to onsets are of interest. Inevitably,
cross-talk artifacts that can occur due to imperfect decomposition
may lead to erroneous spikes that can be mistaken as drum onsets.
Thus, an adaptive threshold procedure is applied to the novelty
curve. The threshold T is derived by element-wise nonlinear com-
pression D0.5, subsequent application of an exponential moving
average filter and nonlinear expansion of the result D2.0. A vari-
able boost factor b can be used to adjust the additive offset of T
manually. This is done by simply multiplying b with the arith-
metic mean of T and adding the result to T . In real-time mode,
the long-term arithmetic mean is derived by a frame-wise iterative
update. If the novelty curve rises above T for several frames and
fulfills additional plausibility criteria (see [16]), it is marked as an
onset. Finally, the onset detection stage returns a list of onset times
per drum instrument, yielding the final transcription result.

5. EVALUATION

In order to assess the drum transcription performance, experiments
with manually transcribed drum set recordings were conducted.
The well known Precision, Recall and F-measure were used as
evaluation metrics with a tolerance of 50 ms between annotated
and detected onsets.

5.1. Test data

A training set was created for initialization of single drums (kick,
snare, hi-hat) in [3]. In order to capture the individual character-
istics, the drums were hit separately with varying velocity. For
recording, an overhead microphone at a fixed height of 1 m was
used. The recordings were made with 10 different drum kits, con-
sisting of different drum sizes and a broad range of materials. The
size of the kick drum ranges from 18 inch to a 24 inch diameter,
and depths of 16 inch up to 22 inch. Materials were birch, ma-
hogany or maple. The snare drums all had the same size of 14
inch diameter and 6.5 inch in depth but different materials (such as
metal, wood or acrylic). The sizes for hi-hat ranged from 13 inch
to 15 inch. A second subset was generated using sample-based
drum sets from the BFD6 plug-in. The third part of the set fea-
turing purely synthetic drum kits was generated using Steinberg’s
Groove Agent7 plug-in. The onsets were transcribed manually by
an experienced drummer using the software Sonic Visualiser [28].

6www.fxpansion.com/BFD
7http://www.steinberg.net/en/products/vst/

groove_agent/groove_agent.html

In total, the test set consisted of 33 drum sequences which
were fairly simple groove patterns of kick, snare and hi-hat. The
tempo of the performed drum rhythms varies between 100 and 140
BPM. Overall, 10 minutes of audio were recorded (in 44.1 kHz,
mono, 16 Bit) resulting in 3471 annotated onsets. The shortest
annotated interval between consecutive onsets is 107 ms (16th note
at 140 BPM). The combined data-set is available online as a public
benchmark for drum transcription8.

Real acoustic drums Sample−based drums Synthetic drums
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Figure 5: Overview of transcription F-measure rates versus the
threshold boost b on the different drum sets. The largest plot shows
the combined results for all drum sets. The F-measures for fixed
B = Bp and semi-adaptive B are very similar, thus the corre-
sponding curves are almost indistinguishable.

5.2. Results

Using the described test data, an extensive grid search was per-
formed in order to estimate the optimal set of parameters. We
omit the details and just explain that the most influential param-
eters were the threshold boost and the number of NMF iterations
used during decomposition. The best average F-measure of 0.95
across all drum kits was obtained with H = 512 samples hop-
size, N = 2048 bins spectrum size, b = 1.25 threshold boost,
K = 25 NMF iterations and β = 4 blending non-linearity in
case of the semi-adaptive bases. Most surprisingly, the acoustic
and sample-based drum kits lead to better F-measure scores than

8http://www.idmt.fraunhofer.de/en/business_
units/smt/drums.html
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the synthetic drum kits. This is somewhat counter-intuitive, since
we expected the drum transcription performance to decrease when
dealing with drum recordings under larger natural variation in the
single drum sounds. We interpret this as a benefit of the semi-
adaptive bases, which can be seen by the comparison between the
different approaches in Figure 5. There, we show the influence of
b on the F-measure scores across the different drum kits as well
as the three different adaption degrees of the spectral bases. It can
clearly be seen, that the adaptive B yield slightly worse transcrip-
tion results, which we account to the more pronounced cross-talk
artifacts. Differences between F-measure scores of fixed B and
semi-adaptive B are extremely small. Nevertheless, the discus-
sion in Sec. 5.3 shows that fixed basis vectors have their weak-
nesses when the drum sounds to be separated exhibit high spectral
variability over time.

5.3. Influence of basis adaption

We present an illustrative example for the different degrees of adap-
tivity. The uppermost plot in Figure 4 shows the spectrogram of
a synthetic drum loop consisting of kick, snare and hi-hat playing
the rhythm given in Figure 1. It should be noted that the magni-
tude of the spectrograms has been converted to dB and has been re-
sampled to a logarithmically spaced frequency axis for visualiza-
tion purposes only. The bottom plot shows the oracle spectrogram
of the kick playing in isolation. This kick, sampled from a Roland
TR 808 drum computer, is obviously rather invariant across the
repeated onsets but exhibits a very time-dynamic behavior per on-
set. One can clearly see a strong vertical head-transient caused
by the sharp attack. Afterwards, a slightly decreasing center fre-
quency can be observed in the tail. In the second plot of Figure 4
we see the kick spectrogram obtained from NMF decomposition
with adaptive bases. The third plot shows the approximation of
the kick spectrogram achieved with only one fixed spectral basis
vector per drum instrument. The modeling of the attack transient
is inferior, since it is smeared into the tail of the drum sound. The
fourth plot shows the kick spectrogram resulting from decompo-
sition with semi-adaptive spectral bases. When compared to the
oracle spectrogram, one can clearly see that the attack transients
are preserved very well. On closer inspection, all NMF variants
exhibit cross talk from hi-hat and snare in the kick spectrogram
(marked with light blue brackets). They are most pronounced for
the fully adaptiveB and can cause erroneous onset candidates dur-
ing onset detection (see Sec. 4.4).

5.4. Real-time capability

The proposed algorithm has been implemented as VST plugin. A
screen-shot of the user interface is shown in Figure 6. Three dif-
ferent drum sounds can be trained via live input or prepared audio
files. Alternatively, artificial spectral basis templates can be used
and refined in an iterative update. The plugin works in quasi-real-
time, the systemic delay is only dependent on the input delay of
the audio hardware and the used hop-size. For the optimal pa-
rameter settings given in Sec. 5.2, we could measure a delay of
approximately 6 ms.

6. CONCLUSIONS

This paper presented a method for real-time transcription and sep-
aration of drum sounds from drum set recordings. It is based on

Figure 6: Screen-shot of a VST plug-in encapsulating the proposed
algorithm. The semi-transparent colored curves visualize the ex-
tracted G of the individual drums, the colored spectra on the right
show the extracted B. Blue corresponds to hi-hat, green to snare
and red to kick. The individual onset detection functions D are
overlayed as black lines and the dynamic thresholds T as solid
colored lines.

NMF decomposition initialized with prior spectral basis templates
for the expected drums. Under the assumption, that the isolated
drum sounds are available for training, the transcription perfor-
mance for polyphonic drum input featuring the specific instru-
ments is on par with state-of-the-art results. The novel concept of
semi-adaptive spectral bases does not yield improvements in tran-
scription but seems promising for enhancing the perceptual quality
of drum sound separation. Our collected data-set used for evalu-
ation is contributed to the research community in order to foster
reproducible research results. Future work will be directed to sys-
tematically evaluate alternative decomposition strategies, such as
ONMF and NMFD. Furthermore, the applicability to a larger va-
riety of different drum instruments (toms, cymbals, etc.) will be
assessed allowing the inclusion of commonly used test corpora,
such as the ENST drums data-set.
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ABSTRACT
In this paper, a novel approach for the computation of a pitch
salience function is presented. The aim of a pitch (considered here
as synonym for fundamental frequency) salience function is to es-
timate the relevance of the most salient musical pitches that are
present in a certain audio excerpt. Such a function is used in nu-
merous Music Information Retrieval (MIR) tasks such as pitch,
multiple-pitch estimation, melody extraction and audio features
computation (such as chroma or Pitch Class Profiles). In order to
compute the salience of a pitch candidate f , the classical approach
uses the weighted sum of the energy of the short time spectrum at
its integer multiples frequencies hf . In the present work, we pro-
pose a different approach which does not rely on energy but only
on frequency location. For this, we first estimate the peaks of the
short time spectrum. From the frequency location of these peaks,
we evaluate the likelihood that each peak is an harmonic of a given
fundamental frequency. The specificity of our method is to use as
likelihood the deviation of the harmonic frequency locations from
the pitch locations of the equal tempered scale. This is used to cre-
ate a theoretical sequence of deviations which is then compared to
an observed one. The proposed method is then evaluated for a task
of multiple-pitch estimation using the MAPS test-set.

1. INTRODUCTION

A salience function is a function that provides an estimation of the
predominance of different frequencies in an audio signal at every
time frame. It allows to obtain an improved spectral representa-
tion in which the fundamental frequencies have a greater relevance
compared to the higher partials of a complex tone. The compu-
tation of a salience function is commonly used as a first step in
melody, predominant-pitch (pitch is considered here as synonym
to fundamental frequency or f0) or multiple-pitch estimation sys-
tems [1, 2, 3, 4].

1.1. Classical approach

In the classical approach [5], the salience (or strength) of each f0
candidate is calculated as a weighted sum of the amplitudes of the
spectrum at its harmonic frequencies (integer multiples of f0). In
the discrete frequency case, this can be express as:

S[k] =
H∑

h=1

wh|X[hk]| (1)

∗ Thanks to the Quaero Program funded by Oseo French State agency
for innovation.

where k is the spectral bin,H is the number of considered partials,
wh is a partials’ weighting scheme and |X[k]| is the amplitude
spectrum. This process is repeated for each time frame m. In
this approach, the choice of the number of considered harmonics
H and the used weighting scheme wh are important factors and
directly affect the obtained results [5]. The weighting scheme wh
implicitly models the sound source. Since the classical approach
is based on the amplitude/energy of the spectrum, it is sensitive to
the timbre of the sources. In order to make the estimation more
robust against timbre variations, spectral whitening or flattening
processes have been proposed [2, 6, 7, 8].

Among other approaches, the one of [9] proposes to estimate
the salient pitch of a complex tone mixture using a psychoacoustic
motivated approach. It uses the notions of masking and virtual
pitch (sub-harmonic coincidence) calculation.

1.2. Proposal

In this paper, we propose a novel salience function which does
not rely on the amplitude/energy of the spectrum but only on the
frequency location of the peaks of the spectrum. Doing this, our
method is not sensitive to timbre variations hence does not neces-
sitate whitening processes.

The specificity of our method is to use as likelihood the de-
viation of the harmonic frequency locations from the pitch loca-
tions of the equal tempered scale. This is illustrated in Figure 1,
for the harmonic frequencies of the pitch C4 (MIDI Key Number
i = 60), which 3-rd and 6-th harmonic frequencies are slightly
above the pitches i = 79 and i = 81 respectively, while its 5-th
and 7-th are below the pitches i = 88 and i = 94 respectively
(in the equal tempered scale). This is used to create a theoretical
sequence of deviations which is then compared to an observed one
derived from the peaks detected in the spectrum.

Paper organization: In section 2 we present the motivation
behind the concept of this novel salience computation approach
(section 2.2) and the details of its computation (sections 2.3, 2.4,
2.5 and 2.6 ). In section 3 we propose a basic evaluation framework
of salience function based on a multi-pitch estimation paradigm
(section 3.1) and asses the performances of our proposed method
(section 3.4). We finally conclude in section 4 and provide direc-
tions for future works.

DAFX-1

DAFx-195



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

1 2 3 4 5 6 7 8

Frequency [Hz]

Pitch location (−) and Harmonic frequencies of C4 (−−)

Figure 1: (Lower part) Frequency location of the pitches of the
equal tempered scale for a tuning of 440 Hz. (Upper part) Fre-
quencies of the harmonic series of the pitch C4 (261.6 Hz).

2. PROPOSED METHOD

2.1. Overview

The global flowchart of our method is represented in Fig. 2.
The content of the audio signal is first analyzed using Short

Time Fourier Transform (STFT). At each time frame m, the peaks
of the local Discrete Fourier Transform (DFT) are estimated using
a peak-picking algorithm.
We denote by Pm = {(f1, a1), . . . , (fP , aP )} the set of peaks
detected at the frame m where fp and ap are the frequency and
amplitude of the p-th peak. Since our salience function is based
on an equal tempered cents grid, we then need to estimate the tun-
ing frequency fref of the audio signal. We then compute at each
frame m the salience value of each peak p by comparing its fre-
quency to the ones of an equal tempered scale tuned on fref . This
salience allows to discriminate peaks which are fundamental fre-
quency from the ones that are harmonic partials.

STFT

Spectrum Peak−Picking

Input Song

Salience computation Salience Output

Estimation

Referece Frequency

Figure 2: General scheme of the method.

2.2. Motivations for using frequency deviations for pitch salience
computation

The computation of our salience function only relies on the fre-
quency positions of the peaks of the spectrum (not on their en-

ergy). The basic idea we develop is the following: for a given note
at fundamental frequency f0 its h-th harmonic frequency exhibits
a specific deviation from the equal tempered scale. For example,
for a tuning at 440 Hz, the third (h = 3) harmonic of a A4 note
(f0 = 440 Hz) is at frequency 1320 Hz while the closest note of
the equal tempered scale is at 1318.5 Hz. The specific deviation of
the third harmonic is then 1.95 cents.

For a given frequency f0, the frequency of its h-th harmonic
is defined by

ff0h = h · f0 (2)

The deviation in cents of the harmonic ff0h from the equal tem-
pered grid is defined as:

df0h = 100

[
12 log2

(
ff0h
fref

)
−
⌊

12 log2

(
ff0h
fref

)⌉]
(3)

where b·e is the rounding operator and fref is the A4 tuning fre-
quency estimated from the data1. We denote by {ff0h }, the se-
quence of all the harmonic frequencies of f0 and by {df0h }, the
theoretical sequence of deviations.

This deviation is independent2 of the actual f0. We therefore
simply denote it by {dh} in the following. In Fig. 3, we illustrate
the deviation of the first 20 harmonics of a complex tone from the
equal tempered note scale.

Figure 3: Deviation of the first 20 harmonic frequencies of a com-
plex tone from the pitch of the equal tempered scale.

Salience computation: Since the sequence {dh} is indepen-
dent of fundamental frequency, we can simply compute the salience
of each f0 candidate at frequency fp, as the correlation between

1Or blindly chosen as 440 Hz.
2Proof that df0h is independent of f0: Under the hypothesis that the

analysed musical excerpt is played on the equal temperament scale and us-
ing an accurately tuned instrument, we can calculate each equal-tempered
note frequency fi in the audio spectrum using an integer number i as fol-
lows:

fi = fref · 2(
i
12

) (4)
The integer number i represents the note index in the MIDI notation

without the offset of 69 (for the sake of simplicity, we assume that A4
correspond to i = 0 instead of i = 69). Now, it is easy to check that for
all fundamental frequencies f0 = fi, (3) can be rewritten as:

d
fi
h = 100 [12 log2(h) + i− b12 log2(h) + ie]

= 100 [12 log2(h)− b12 log2(h)e] (5)

Since i ∈ Z, we can say that b12 log2(h) + ie = i + b12 log2(h)e and
it is clear that the sequence {dfih } does not depend on the fundamental
frequency fi.
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the theoretical sequence of deviation {dh} and the measured se-
quence of the deviation {d̂fph }. The measured sequence of devia-
tions is the one corresponding to the peak detected in the spectrum
Pm.

Extension to inharmonic signals: Inharmonicity is a phe-
nomenon related to the physical characteristics of a non-ideal string.
The frequencies of the modes of vibration of an ideal string are ex-
act integer multiples of the fundamental, but the stiffness of the
material of the real strings shifts the modes of vibration at non-
integer multiples [10].
In mathematical terms, the relation between the h-th partial ff0h
and the fundamental frequency f0 can be modelled as

ff0h (β) = hf0
√

1 + βh2 (6)

where β is the inharmonicity coefficient which is related to the
physical properties of a string. In order to take into account in-
harmonicity we use (6) instead of (2) into equation (3). It should
be noted that whatever inharmonicity is taken into account or not,
the theoretical sequence of deviations is always independent of f0.
However, the theoretical sequence of deviations now depends on
the parameter β and it is denoted by {dh(β)}.

In the next sections, we describe in details each block of our
algorithm (see Fig. 2).

2.3. Short Time Fourier Transform

The N -terms STFT, at time frame m, of a discrete signal x[n] is
defined as

Xm,k =

N−1∑

n=0

x[n+ τm] · w̄[n] · e−j2π kN n (7)

where k ∈ [−N/2 + 1, . . . , N/2], τ is the hop size (in samples)
from two subsequent frames and w̄[n] is the windowing function.
For our computation, we only use the amplitude of the STFT de-
noted by |Xm,k|. We use N = 4096 samples (which corresponds
to 92.9 ms for a sampling rate of 44.1 KHz), τ = 2048 samples
(overlap of 50%) and w̄[n] is a Hanning windowing function.

2.4. Spectrum Peak Picking

In order to detect the local peaks of the spectrum, we use the al-
gorithm proposed in the context of the Sinusoidal Modelling Syn-
thesis framework (SMS) [11, 12]. In this context, a fixed number
P of local maxima is detected in the amplitude spectrum |Xm,k|.
For each local maximum, its frequencyMp is refined using a 3-
point parabolic interpolation using [Mp − 1,Mp,Mp + 1]. The
obtained frequency is denoted by fp in Hz. The result of the peak
picking algorithm is the sequencePm = {(f1, a1), . . . , (fP , aP )}
made of pairs of peaks frequency location fp and amplitude ap.
The peak-picking is performed at each time frame m ∈ [1 . . .M ].
The concatenation of all peaks sequences,Ptot = P1‖P2‖ . . . ‖PM ,
is used as input for the reference tuning estimation algorithm.

2.5. Reference Frequency Estimation

Since our algorithm relies on the equal-tempered cent scale, the
tuning fref (or reference frequency) of the audio signal being ana-
lyzed need to be estimated. For this, we use the method presented
in [13]. This approach is entirely based on the observation that
the deviation d is a periodic measure and not an absolute measure,

since it is a “wrapped around” quantity that should be evaluated
from the nearest 100 cents grid point. Each cent value is mapped
onto a unit circle 100 cents-periodic, and represented as a vector
as follows

up = ap · ejφp (8)

where

φp =
2π

100
· 1200 · log2

(
fp
440

)
(9)

and ap is the peak amplitude used to weight each vector to avoid
high impact of small (noise) peaks. We take the mean vector û of
all circular quantities up as follows

û =

∑Ptot
p=1 up

∑Ptot
p=1 ap

(10)

wherePtot is the element count of the concatenated sequencePtot.
The overall deviation is then computed from the angle of the re-
sulting vector û, that is

D =
1

2π
∠(û) (11)

The reference frequency of the entire music piece can be com-
puted as

fref = 440 · 2 D12 (12)

2.6. Salience Function Computation

As previously said, the salience Sp(β) of a given peak p can be
calculated as the correlation C between the theoretical sequence
of deviation {dh(β)} and the measured one {d̂fph (β)}. From the
abstract point of view, Sp(β) is calculated using:

Sp(β) = C
(
{dh(β)}, {d̂fph (β)}

)
(13)

where C(·, ·) is a generic correlation measure. The two deviation
sequences can be seen as two vectors d(β) = [d1(β), . . . , dH(β)]

and d̂p(β) = [d̂
fp
1 (β), . . . , d̂

fp
H (β)], so that, a good correlation

measure can be the inner product < ·, · >. In practice, in order
to reduce the influence of very small values (hence often noisy) in
the computation of the salience, the correlation is weighted by the
local amplitude ap of the f0 candidate fp:

Sp(β) = ap < d(β), d̂p(β) >= ap

H∑

h=1

dh(β) · d̂fph (β) (14)

Computation of d̂fph (β): {ffph (β)} is the sequence made
of the harmonic frequencies of a detected peak p: f

fp
h (β) =

hfp
√

1 + βh2. {d̂fph (β)} is the vector of measured deviations
corresponding to {ffph (β)}. {d̂fph (β)} is computed for all the de-
tected peaks p ∈ Pm at frame m (i.e. we consider each detected
peak as a potential pitch candidate).

To validate a given pitch candidate fp, we look among the
detected peaks the ones that are harmonics of this candidate. This
is done by using a function G centered on the h−th harmonic of
fp and evaluated at the detected peaks fp′ .

More precisely, G(fp′ ;µh,p(β), σh,p(β)) is a Gaussian func-
tion evaluated at fp′ , with

• mean µh,p(β) = hfp
√

1 + βh2 and
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• standard deviation σh,p(β) = µh,p(β)
(

1− 2
α

1200

)

where the parameter α = 20 cents is chosen experimentally in
order to take into account the effect of the frequency location error
of the peak picking step. We chose the α such that the number
of the False Positive is reduced without losing Precision (see the
section 3.2 for the explanation of the evaluation measures).
The Gaussian function we use, has a maximum value of one when
fp′ = µh,p(β) = hfp

√
1 + βh2; in other words G will only take

non-zero values for the fp′ (the detected peaks) which are close to
hfp
√

1 + βh2.
To each detected peaks fp′ is associated a deviation d̄p′ as

defined in (3).

d̄p′ = 100

[
12 log2

(
fp′

fref

)
−
⌊

12 log2

(
fp′

fref

)⌉]
(15)

The deviation of ffph (β) is then computed as the following
weighted sum:

d̂
fp
h (β) =

P∑

p′=1

G(fp′ ;µh,p(β), σh,p(β)) · d̄p′ (16)

A single value of β is assigned to each pitch candidate fp.
The typical range of β for a piano string [10] is β ∈ B = {0} ∪
[10−5, 10−3]. In order to estimate β we maximize

Sp = max
β∈B

[Sp(β)] (17)

Notice that in the practical case, all the values of β in the search
range must be tested exhaustively because Sp(β) is an “unpre-
dictable” function and no numerical optimized algorithm can be
used in order to find the maximum of that function. The maxi-
mization of (17) provides simultaneously the value of Sp and the
one of the inharmonicity coefficient β for each spectral peak p.
Of course, only the values of β corresponding to true notes make
sense.

The limits of the equal temperament: Using the equal-
tempered grid of semitones is fundamental for the consideration
made in Sec. 2.2. Moreover, it is reasonable to think that only ex-
act tuned instruments3 are needed in order to maintain the validity
of equation (5). However, the gaussian weighting scheme used in
(16) ensures that the slighted deviated fundamental frequencies are
not much negatively affected. However, the spectral peaks that are
detuned more than ±α cents can be excessively penalized.

3. EVALUATION

There is no standard method to evaluate the performances of a
salience function by itself. This is because such a function is usu-
ally a pre-processing step of a more complicated algorithm (as for
example a pitch-estimation method [2, 14]). Therefore, in order to
be able to test our salience, we chose to construct a very simple
and straightforward multiple-pitch estimation algorithm from our
salience function. In section 3.1, we explain the post-processing
applied to the salience function in order to obtain a multi-pitch
estimation.

3For example, the octave stretching in piano tuning can be a problem.

3.1. Multiple-pitch estimation: post-processing of the salience
function

In order to test our salience function as a multi-pitch estimation
algorithm, we chose to apply a basic post-processing process that
transforms the salience function into a piano-roll representation.
The piano-roll R̂m,i can be seen as a spectrogram-like binary rep-
resentation where the rows are the time framesm and the columns
are the MIDI Key Number i4 . If a note i is marked as detected
at the time frame m, the corresponding element R̂m,i is set to 1;
otherwise it is set to 0.

At each time frame m, we have a sequence of P pairs of peak
frequency and salience values Sm = {(f1, S1), . . . , (fP , SP )}.
We normalize the values Sp in order to obtain maximum amplitude
of one at each time frame. The negative values of salience are set
to zero. Each peak frequency fp is quantized to the nearest MIDI
Key Number using

ip = 69 + 12 log2

(
fp
fref

)
(18)

where 69 correspond to the MIDI Key Number associated to the
note A4 in the MIDI Tuning Standard (MTS). In order to remove
holes (estimation errors) in the middle of notes (disruption in the
salience value), we then apply a sliding median filter of size L
frames along the time dimension m. Finally the binary piano-roll
is obtained by applying a fixed threshold T to the values of R̂m,i.
We set to 1 all the values that are above T , and 0 the other ones.
In Fig. 4, an example of piano-roll transcription is shown and dif-
ferent colors are used in order to highlight the True Positive, False
Positive and False Negative. Notice that a considerable number of
False Positive are just after a True Positive in the same MIDI Key
Number. This is caused by the release time of the piano sound that
is extended by the reverberation time simulated in the recordings.

Figure 4: Piano roll representation R̂m,i obtained using our
salience function. In this case P = 0.65, R = 0.8 and F = 0.72
(see explanation of the evaluation measures in section 3.2).

3.2. Evaluation measures

In order to evaluate our salience-based piano-roll, we have to com-
pute a ground-truth piano-roll Rm,i for each song in the dataset.

4Ranging from 21 (A0) to 108 (C8).
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Rm,i is obtained from the ground-truth text annotation that re-
ports onset time, offset time and MIDI Key Number for each note
played in a specific song. The note onset and offset time are quan-
tized with the same hop size τ (converted in seconds) used by the
algorithm.

We compare the ground-truth piano-rollRm,i to the estimated
piano-roll R̂m,i by comparing the values on each cell (m,i). We
then compute the Precision (P), the Recall (R) and the F-Measure
(F) defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(19)

where TP (True Positive) is the total number of correctly identi-
fied notes, FN (False Negative) of missed notes and FP (False
Positive) the number of false notes detected.

3.3. Test-Set

Experiments are performed on the MIDI Aligned Piano Sounds
test-set [15]. MAPS provides CD quality piano recording (44.1
kHz, 16-bit). This test-set is available under Creative Commons
license and consists of about 40GB (65 hours) of audio files
recorded using both real and synthesized pianos. The aligned
ground-truth is provided as MIDI or plain text files. The align-
ment and the reliability of the ground-truth is guaranteed by the
fact that the sound files are generated form this MIDI files with
high quality samples or a Disklavier (real piano with MIDI in-
put). In order to have a generalized test-set, the pianos have been
played in different conditions, such as various ambient with dif-
ferent reverberation characteristics (9 combinations in total). This
collection is subdivided into four different subsets. The set ISOL
contains monophonic excerpts, MUS contains polyphonic music,
UCHO is a set of usual chords in western music, and RAND is a
collection of chords with random notes.

3.4. Results

Setting the parameters: The parameters of our algorithm are:

• H: the total number of considered harmonics,

• L: the length of the median filter,

• T : the salience threshold.

In order to tune these parameters we used the AkPnStgb audio
files of the test-set5. The values that maximize the F-Measure are
H = 8, L = 6 and T = 0.2. The total number of peaks per frame
P , is not itself a parameter of the salience algorithm. P = 40 is
chosen experimentally.

Harmonic vs Inharmonic model: We first compare in Figure
5 the Pitch estimation obtained by our model in harmonic setting
(the β parameters is forced to 0) to the inharmonic setting (β is
estimated). This is done using the whole MAPS test-set.

As we expected, taking into account the inharmonicity brings
an improvement on overall. The precision P increases by 12%
(from 0.43 to 0.55) and the F-Measure increases by 5%. Since the
Recall does not change significantly, while the Precision does, we
can say that considering string inharmonicity allows reducing the

5This is one of the nine different piano and recording condition set-up
in the MAPS test-set

Figure 5: Pitch estimation results for our model in Harmonic
(model forced to β = 0) vs Inharmonic setting (β is estimated).

number of False Positive. Because the results are better with our
inharmonic model, we only consider this one in the following.

Detailed Analysis: In Fig. 6, we provide the results in terms
of Pitch estimation for each subset of MAPS using the inharmonic
model. In Fig. 7, we provide the results in terms of Pitch-Class
(i.e., without octave information). As we can see from the Figures,
our approach is prone to octave errors. This is due to the fact
that the deviation template itself does not exploit the octave
information6. This octave ambiguity could only be solved with
an ad hoc procedure. Figures 6 and 7 also show that on average,
the precision P is greater than the recall R. For a fixed number
of True Positive, this means that the number of False Negative
(missed notes) is greater than the False Positive (added notes).

Influence of the T parameter: In Figure 8, we show the
variation of the Recall and Precision in function of the choice of
the parameter T (threshold on salience values). We see that the
choice of T is a key parameter for the Precision/Recall trade-off,
hence for the FP / FN trade-off. If our system is used as a
front-end of a more complicated system which can filter-out the
False Positives, we should use a value of T which maximizes
Recall. It should be noted that Figure 8 is computed using only
the MUS subset of MAPS. Because of this, the best value for T
(in F-Measure sense) is T = 0.1 (which is different from the
global optimum value for the entire MAPS test-set).

Comparison to state-of-the-art: In Table 1, we indicate the
Pitch F-Measure results of our system in harmonic setting (P1, β
is forced to 0) and in inharmonic setting (P2 , β is estimated). We
compare our results to the ones obtained by Emiya et al. [15] and
Benetos et al. [7] on the same test-set. Also, the results obtained
by directly applying a threshold on the detected peaks are reported
as a baseline results. As expected, the results obtained with our
methods are not as good as the ones obtained with dedicated
multi-pitch estimation algorithms.

The main reason is that our system is not a multi-pitch estima-
tion method but only a pre-processing step to be used in a more
complex system. Our straightforward post-processing procedure

6In a hypothetical scenario where the peak peaking algorithm detects
the peaks at frequency fp and in an infinite number of its harmonics with
amplitude equal to ap, the salience value for the peak p and for the peaks
with frequency h̄fp with h̄ = 2j , j ∈ N+ will be the same. To put it
in another way, the peaks with frequency that is j octaves above fp will
measure the same salience value as fp.
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Figure 6: Pitch estimation result for each subset and the overall av-
erage (β is estimated).

Figure 7: Pitch-Class estimation result for each subset and the over-
all average (β is estimated).

Peak P1 P2 Emiya et al. Benetos et al.
F-Meas. 0.31 0.44 0.49 0.82 0.87

Table 1: Comparison of Pitch F-Measure results on MAPS test-
set. Peak is a fixed threshold on detected peaks, P1 is the proposed
method without considering inharmonicity (β forced to 0) and P2
is with the inharmonic model (β is estimated). Emiya et al. is
presented in [15] and Benetos et al. in [7].

Figure 8: Pitch Recall/Precision curve for different values of T
for the MUS subset. The best F-Measure (0.62) is obtained for
T = 0.1 and is marked with the “O”.

has been introduced only to asses the potential performances of
our novel salience function design. In this context, our salience
exhibit very promising results.

4. CONCLUSIONS

The performances obtained by our proposed salience function
for the estimation of pitch-classes (Fig. 7) show that this kind
of salience, even with simple post-processing procedure, is suit-
able for extracting audio features like Pitch Class Profile (PCP
[16]) used in cover song detection or key/chord recognition tasks
[17, 18]. Moreover, especially for a piano music test-set such as
MAPS, considering the string inharmonicity is beneficial in terms
of precision and F-Measure. Despite the fact that our salience
function look promising, further development of an ad-hoc post-
processing procedure is needed in order to be used for multi-pitch

estimation. Moreover, as indicated in Section 3.4, the parameter T
should be tuned depending on the application, in order to favour
the F-Measure or the Recall. During our tests we have identified
some weakness that are subjects for future research. The accuracy
of the peak peaking algorithm is a key factor. A missing peak can
negatively affect the overall accuracy performances. The octave
ambiguity discussed in the previous section can be treated by de-
veloping specific procedure. Furthermore, the worst resolution in
the low frequency spectrum can led to a large error when calculat-
ing the high order harmonic frequencies. Conversely, the note in
the high portion of the audio spectrum does not have a sufficient
number of partials to give a consistent value of salience because of
the spectral roll-off near the Nyquist limit.
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ABSTRACT

Recently, we have witnessed an increasing use of the source-
filter model in music analysis, which is achieved by integrating
the source filter model into a non-negative matrix factorisation
(NMF) framework or statistical models. The combination of the
source-filter model and NMF framework reduces the number of
free parameters needed and makes the model more flexible to
extend. This paper compares four extended source-filter mod-
els: the source-filter-decay (SFD) model, the NMF with time-
frequency activations (NMF-ARMA) model, the multi-excitation
(ME) model and the source-filter model based on β-divergence
(SFbeta model). The first two models represent the time-varying
spectra by adding a loss filter and a time-varying filter, respec-
tively. The latter two are extended by using multiple excitations
and including a scale factor, respectively. The models are tested
using sounds of 15 instruments from the RWC Music Database.
Performance is evaluated based on the relative reconstruction er-
ror. The results show that the NMF-ARMA model outperforms
other models, but uses the largest set of parameters.

1. INTRODUCTION

The source-filter model is a widely-used approximate physical
model (considered as a physical model only when the coupling
between the source and the filter is weak) for musical instrument
modelling. The source (also called excitation) represents the vi-
brating object, and the filter models the frequency response of the
instrument body. Introductions to physical modelling and source-
filter models can be found in [1] and [2], respectively. Since Vir-
tanen et al. used the source-filter model in audio analysis, and es-
timated the model parameters using the methods extended from
NMF and non-negative matrix deconvolution (NMD) [3], we have
observed some combinations of the source-filter model and NMF
frameworks or statistical models for music analysis. In these com-
bined models, the parameters are estimated in NMF framework
[3, 4, 5, 6, 7, 8], with NMD [9], non-negative tensor factorisation
[10], statistical models (Gaussian Scaled Mixture Model and ex-
tended Instantaneous Mixture Model) [11], or using EM [12].

By using the source-filter model, the spectral basis can be rep-
resented as a product of a source and filter, which reduces the num-
ber of free parameters and makes the estimation more reliable. On
the other hand, the NMF or statistical model not only provides the

∗ Tian Cheng is supported by a China Scholarship Council (CSC)/
Queen Mary Joint PhD scholarship.
† Matthias Mauch is funded by a Royal Academy of Engineering Re-

search Fellowship.

baseline update rules for estimating parameters, but also makes the
model more flexible to extend. For instance, the multi-excitation
model extended the excitation as a weighted sum of multiple ex-
citations with a harmonic constraint [8]; and Kirchhoff et al. ex-
tended the source-filter model with a scaling factor to compensate
for gain differences [9]. A further extension is to include the time
dimension in order to describe the time-varying spectral energy
distribution. The source-filter-decay model proposed by Klapuri
[13] extended the source-filter model with a loss filter to represent
the time-varying spectral shape of pitched musical instruments.
In [14], a model was proposed for representing the time-varying
spectral characteristics of a quasi-harmonic instrument sound by
assuming the spectral envelope to be determined by the partials’
amplitude trajectories. A source-filter factorisation was proposed
to model non-stationary audio events in [15]. In this model, the
source works as the spectral basis of the NMF, and the filter is
extended and works as the frequency-dependent temporal activa-
tions. The parameters of the source-filter model are estimated
based on NMF. These models have shown their usefulness in sev-
eral MIR applications, such as source separation [6, 10, 12, 13],
melody extraction [5, 11] and music transcription [4, 7, 8, 9].

In this paper, four extended models are chosen for compar-
ison: the source-filter-decay (SFD) model [13], the NMF with
time-frequency activations (NMF-ARMA) model [15], the multi-
excitation (ME) model [8] and the source-filter model based on
β-divergence (SFbeta model) [9]. For the sake of completeness,
a standard NMF is also included as a base line of comparison.
The evaluation is based on the relative reconstruction error, and
the complexities of the models are analysed in terms of parame-
ter dimensionality. The results tested on the sounds from 15 in-
struments show that the average relative reconstruction error of
the NMF-ARMA model is smallest, while its parameter dimen-
sionality is largest. It approximates wind instruments well, while
the other three models have better results on string instruments.
All the models perform well on piano and guitar, while no model
works well for all the instruments because of differences between
the structures of the instruments. The poor performance for violin
and vocals indicates a limitation of the models when encountering
vibrato, which can be investigated in future work.

The rest of the paper is organised as follows: Section 2 gives
a brief introduction to the models with modifications and parame-
ters. The comparison results are illustrated in Section 3. Conclu-
sions are drawn in Section 4.
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2. MODELS

In this section, we present four different extended source-filter
models. We mainly focus on the motivations and how the models
are formulated rather than the detailed parameter learning equa-
tions which can be found in corresponding papers. Where appli-
cable, we specify the modifications we made in order to run the
methods and provide information on parameter settings.

2.1. Source-Filter-Decay Model

The source-filter-decay model [13] provides a way of representing
the time-varying spectral energy distribution of pitched musical
instruments. The changing spectral distribution of an instrument
is modelled by extending the source-filter model by a loss filter,
which models the frequency-dependent decay along the time axis.
The model on a decibel scale is given as follows:

S
(t)
dB(fh) = γdB +XdB(h) +BdB(fh) + tLdB(fh) + E

(t)
dB(fh)

(1)
where fh ≈ hF , is the frequency of hth harmonic of the fun-
damental frequency F , S(t)

dB(fh) is the power spectrum (but only
modelled at the positions of the harmonics), γdB denotes the over-
all gain of the sound, XdB(h) is the initial level of the hth har-
monic, BdB(fh) represents the frequency response of the instru-
mental body, LdB(fh) is the frequency-dependent loss filter and
E

(t)
dB(fh) represents modelling error.

The ‘source’ X , ‘filter’ B and ‘decay’ L are further repre-
sented by the linear models:

XdB(h) =

Cx∑

i=1

ξixi(h)

BdB(f) =

Cb∑

j=1

βjbj(f) and LdB(f) =

Cl∑

k=1

λklk(f)

(2)

The basis functions xi(h) are found by performing PCA on the
harmonics of sounds collected from 33 instruments, while bj(f)
and lk(f) are defined in the same way with overlapped triangu-
lar bandpass responses on a critical-band frequency scale. After
choosing the basis functions, XdB(h), BdB(fh) and LdB(fh) are
determined by the weights ξi, βj and λk, respectively.

The parameters are estimated by minimizing the least-square
(LS) error between the observed and modelled harmonic level us-
ing a weighted LS estimator. The influence of γdB is eliminated
by performing subtraction between two observed harmonics or two
consecutive frames.

2.1.1. Modifications

As the F0 estimation method used in the model [16] is unavailable
to us, we use the pitches extracted by the SWIPE algorithm [17]
with manual corrections (referred to as detected F0s, also used in
Section 2.3.1 and 2.4.1). The model is built on the first two frames
with stable pitches (frames after transient) of each note.

As the model only captures the harmonic levels of the sound,
we convolve the result with the magnitude response of the window
function to generate the reconstruction.

2.1.2. Parameters

The model is analysed in two scenarios: with and without decay
filter, denoted by SFD(111) and SFD(110), respectively. How-
ever, as the decay rate modelled in two frames is not reliable to re-
construct the spectra of the whole note clip, we use only the model
without decay filter for the reconstruction.

2.2. NMF-ARMA Model

Hennequin et al. extended the temporal activations of the stan-
dard NMF framework to be frequency-dependent, in order to
model non-stationary notes [15]. The spectral basis and frequency-
dependent activations in the NMF framework work as the sources
and time-varying filters in the source-filter model. The time-
varying filters are modelled using the Autoregressive Moving Av-
erage (ARMA) model and parameters are learned in the NMF
framework, which is called source-filter factorisation. The spec-
trogram is modelled as follows:

Vft ≈ V̂ft =
R∑

r=1

ωfrhrt(f) (3)

where Vft and V̂ft are the original and reconstructed spectro-
grams, ωfr are the spectral bases (the sources), hrt(f) are the
frequency-dependent activations (the time-varying filters), which
are parameterized following the general ARMA model:

hrt(f) = δ2rt
|∑Q

q=0 b
q
rte
−i2πvf q|2

|∑P
p=0 a

p
rte
−i2πvfp|2

(4)

where δ2rt is the global gain of the filter, and bqrt and aprt are the
coefficients of the MA and AR parts of the filter, respectively.
vf = (f − 1)/(2(F − 1)), where f is frequency bin and F the
total number of frequency bins.

This time-varying filter represents the spectral variations of the
sound which are not modelled in standard NMF. The parameters
are learned in an NMF framework using β-divergence.

2.2.1. Parameters

For each instrument, N sources are used, one for each note. Two
sets of ARMA parameters are in use: Q = 0, P = 2 for the
instruments with strongly varying spectral shapes andQ = 1, P =
1 for others. They are represented by ARMA(02) and ARMA(11),
respectively.

2.3. Multi-Excitation Model

The multi-excitation model is motivated by the non-smooth struc-
ture of the spectral envelopes often observed in wind instruments
[8]. To tackle this problem, note-varying excitations are repre-
sented by the weighted summation of excitation bases, which are
modelled under a harmonic constraint as follows:

en,j(f) =
M∑

m=1

am,n,jG(f −mf0(n))

am,n,j =
I∑

i=1

wi,n,jvi,m,j

(5)
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where en,j(f) is the excitation for pitch n and instrument j,
am,n,j is the amplitude of the mth partial of the same note and
G(f −mf0(n)) is the harmonic component of pitch n. vi,m,j is
the excitation basis vector belonging to partial m and instrument
j, and wi,n,j is the weight of the ith excitation basis for pitch n
and instrument j.

The spectral basis function is modelled as the product of the
excitation and the filter h in the usual way:

bn,j = hj(f)en,j(f) (6)

and the reconstructed spectrogram is given as follows:

x̂t(f) =
∑

n,j

gn,t,jbn,j (7)

where gn,t,j are gains of instrument j.
The parameters are learnt in an NMF framework with KL di-

vergence. For post-processing, temporal continuity is enforced
over the gains by adding a cost term to penalize large changes in
the gains between adjacent frames.

2.3.1. Modifications

The harmonic components are built based on detected F0s rather
than the ideal pitches. We give up temporal continuity as no sig-
nificant improvement is found (maybe because of an unsuitable
parameter). Instead, we apply the sparsity constraint used in [18]
for the post-processing as the test dataset only consists of isolated
notes.

2.3.2. Parameters

The system is tested with 1,2 and 4 excitations (represented by
ME(I), where I is the number of excitations) to find out the relation
between the number of excitations and the performance. In this
paper, only the situation with one instrument at a time has been
considered.

2.4. SFbeta Model

The source-filter model proposed by Kirchhoff et al. [9] is for esti-
mating the missing templates for user-assisted music transcription.
The model is built using a common excitation spectrum and a filter
response on a log-frequency scale with a scaling factor. The pro-
posed source-filter model represents the spectrum wp of pitch φp
as follows:

wp ≈ ŵp = sp ·
φp↓
e ⊗ h (8)

where ŵp is the estimated spectrum, sp is the scaling factor, e is the
excitation, and h the filter response. The frequency is represented
on a logarithmic scale. The ⊗ operator denotes element-wise mul-
tiplication of the vector, and the operator φp ↓ shifts the excitation
spectrum e along the frequency axis by φp frequency bins.

For all pitches φp (p ∈ [1, · · · , P ]), the scalars sp are com-
bined into a vector s of length P , and vectors wp are combined
into a matrix W ∈ RK,P+ , where K is the number of frequency
bins. Ŵ is a matrix with the same dimension as W combined from
vectors of ŵp.

The parameters s, e and h are estimated by using gradient
descent on each vector iteratively to gradually decrease the β-
divergence between W and Ŵ. The vectors are randomly initial-
ized and details of the derivation of the update equations can be
found in [19].

Table 1: Instrument categories

Categories Instrument
String piano, harpsichord, guitar, violin
Wind accordion, harmonica, pipe organ, horn,

saxophone, oboe, bassoon, clarinet, flute
Vocal alto (female), tenor (male)

2.4.1. Modifications

In the model [9], spectra are shifted down to get the relative spectra
according to the note pitches. Here we shift the spectra down using
detected F0s rather than the ideal pitches, as not all instruments in
the dataset are tuned to the same reference frequency. Preliminary
tests have shown that this is necessary in order to obtain reasonable
results.

3. EVALUATION

To evaluate a physical model for music analysis, the criterion is
mainly based on the difference between the model’s output and
the original sound. In this paper, we evaluate the models accord-
ing to the relative reconstruction error between the modelled and
observed spectra. In addition, the parameter dimension of each
model is analysed.

3.1. Evaluation Metrics

The relative reconstruction error (RRE) is chosen for the evalua-
tion, which is defined as below:

RRE = ‖OS− RS‖F /‖OS‖F (9)

where ‖ · ‖F is the Frobenius norm, OS is the observed spectrum
and RS is the reconstructed spectrum, both are amplitude spectra.
We use the relative reconstruction error instead of the reconstruc-
tion error as the time-frequency representations of the models are
different and the lengths of the sounds vary with instruments.

The parameter dimensionality indicates the complexity of the
model, which is analysed in association with the time-frequency
representation, the note ranges of the instruments, harmonic num-
ber and so on.

3.2. Experimental Setup

3.2.1. Test Dataset

To evaluate the four models, we choose the sounds of 15 instru-
ments from the Musical Instrument Sound Database in the RWC
Music Database[20], including string, wind instruments, female
and male vocals, as listed in Table 1. Two violin recordings are
chosen: Violin and Violin2 referring to notes played with and with-
out vibrato, respectively.

For each instrument, we use the first 1s of each recorded note
or the duration of the note if the note lasts for less than 1s. The
onsets are detected using SuperFlux [21] with manual corrections.
The F0s of the notes of the instruments are extracted using the
SWIPE algorithm [17] with manual corrections. The ground truth
(onsets and pitches) for these files can be found on-line.1

1available at https://code.soundsoftware.ac.uk/projects/onsetpitch/files
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3.2.2. Time-Frequency Representation

For the source-filter-decay model, the NMF-ARMA model and the
multi-excitation model, the original spectra are computed using the
Short-Time Fourier Transform (STFT). Frames are segmented by
a 2048-sample Hamming window with a hop-size of 441. A Dis-
crete Fourier Transform is performed on each frame with 2-fold
zero-padding. The sampling rate is fs = 44100 Hz. For the SF-
beta model, the time-frequency representation is calculated using a
constant-Q transform [22] with 48 frequency bins per octave. The
frequency range of all models is from 25 to 12500 Hz covering
about 9 octaves.

The reconstructed spectra of the time-varying models (SFD
and NMF-ARMA) cover the whole duration of the sound clips.
For the multi-excitation model and SFbeta model, we first generate
the spectral dictionary for the instruments based on the model, then
calculate the reconstructed spectra using a standard NMF frame-
work (multiplicative update) with the dictionary. This is also done
when not using the decay filter in the source-filter-decay model.

3.3. Results

For the sake of completeness, the reconstruction result for NMF
with no constraint is also included as a bottom line for comparison.
The models are analysed in terms of the relative reconstruction
error and parameter dimensionality.

3.3.1. Relative Reconstruction Errors

The results of the relative reconstruction error of the models are
listed in Table 2. Models are tested with different parameters. De-
tailed parameters can be found in Section 2.

The average RRE of the source-filter-decay model is largest
among the models, up to 42.9%. The model works relatively well
on guitar, bassoon and flute (RRE < 30%) but performs badly on
the harmonica and vocals. Although the model is simplified by
using a small set of parameters based on data from only 2 frames,
the performance of the model is then affected.

The NMF-ARMA model outperforms other models with an
average RRE of 16.9%. The model was proposed to model sounds
with a strongly varying spectral shape, and the results show that
it works well on most instruments (except violin with vibrato and
vocals). The missing results (denoted by ‘–’) are caused by in-
verting a singular matrix, which shows that the spectra of these
instruments are flat and are not suitable for a model designed to
deal with strong spectral variations. On the other hand, the im-
provement brought by using the parameter set (0, 2) indicates that
the notes have time-varying spectral shapes. An advantage of this
model is manifested in the performance on the wind instruments
with an average RRE of only 12.1%. Best results are found in
bassoon and horn with RREs of 4.99% and 6.10%, respectively.
However, performance dramatically drops on violin with vibrato
and vocals with about 40% RREs using the parameter set (1, 1),
while the errors decrease by 4% for violin and by about 0.6% for
the vocals using the parameter set (0, 2). The poor performance
occurs on the vibrato sounds such as those shown in Figure 1 (b).
This is mainly because the model uses one filter per note, which
fails to model the fluctuating pitches.

The multi-excitation model is proposed to approximate the
non-smooth spectral envelopes of wind instruments by using a
combination of excitations. We observe that the performance of
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Figure 1: Spectrograms of violin, female and male vocals: (a) all
notes (64 notes for violin, 22 and 23 notes for female and male
vocals, respectively), (b) individual note example.

the model gradually improves with increasing number of excita-
tions. The average RRE drops from 31.3% to 28.9% when us-
ing 2 excitations rather than 1; while a further 1.5% decrease is
achieved by using 4 excitations. Notably, the errors fall by about
7% when employing 2 excitations on violin, bassoon and clarinet.
The improvement by using more excitations indicates that the in-
strument has a non-smooth spectral envelope. The model works
well on piano, pipe organ, guitar and flute even with one excita-
tion. However, we also observe some noisy results when using
more excitations in harpsichord, pipe organ, saxophone, flute and
male voice.

The SFbeta model is the only model using a log-frequency
scale among these models. The average RRE is 34.1% and the
model is less sensitive to the choice of instrument. The model
performs best on piano, guitar and tenor saxophone with RREs of
about 26%, while the worst results appear on clarinet, vocals, vi-
olin and bassoon. A notable phenomenon is that there are some
inconsistencies of this model appearing on tenor saxophone, bas-
soon and flute, as we find that the other three models provide rel-
atively poor results on tenor saxophone and perform well on flute.
In addition, the best results of the source-filter-decay model and
the NMF-ARMA model appear on bassoon, while the result on
bassoon of the SFbeta model is one of the worst. By compar-
ing the performance of the model on wind instruments, we find
the model performs better on instruments with short and low fre-
quency ranges.

Three out of four models, except the NMF-ARMA model, per-
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Table 2: Relative reconstruction errors (RRE), expressed as percentages. Results of piano and results better than that of piano are shown
in bold. The symbol ‘–’ means the result is not available, see text for details. The average error of the NMF-ARMA model is calculated
using the better results of the two parameter sets.

Instrument MIDI range SFD(110) ARMA(11) ARMA(02) ME(1) ME(2) ME(4) SFbeta NMF
01 Piano 21-108 31.7 7.43 – 11.4 10.7 10.7 26.6 5.34

03 Harpsichord 28-88 52.1 16.4 – 19.7 19.0 22.4 31.2 7.69
06 Pipe Organ 36-91 42.9 13.1 – 15.1 15.5 15.4 36.8 9.19
07 Accordion 53-93 42.6 15.3 14.6 34.0 32.6 30.8 31.5 20.1
08 Harmonica 65-100 76.8 16.8 16.8 49.8 49.3 48.9 34.6 27.7

09 Guitar 40-76 26.8 11.7 – 12.7 10.1 8.05 25.6 4.24
15 Violin 55-101 37.2 40.4 36.4 38.0 31.1 29.9 38.5 15.4

15 Violin2 55-101 36.4 16.8 9.61 37.2 30.8 24.2 33.2 4.92
24 Horn 41-77 31.5 6.10 – 35.0 33.6 30.1 30.1 8.77

27 Tenor Sax 44-75 44.3 17.2 17.2 42.4 42.0 35.1 25.7 16.7
29 Oboe 58-91 44.6 8.23 – 22.8 20.2 19.1 35.2 14.3

30 Bassoon 34-72 23.8 4.99 – 32.3 25.8 23.7 38.5 9.13
31 Clarinet 50-89 48.5 15.6 – 51.7 44.9 42.2 43.7 20.9

33 Flute 60-96 28.7 12.2 – 14.6 14.6 15.3 37.2 9.15
46 Female 53-74 53.4 42.6 41.9 38.2 36.8 36.7 40.5 19.2

47 Male 53-74 64.8 38.4 37.9 45.8 45.2 45.7 37.2 22.1
Average 42.9 16.9 31.3 28.9 27.4 34.1 13.4

String Average 36.8 16.3 23.8 20.3 19.1 31.0 7.52
Wind Average 42.6 12.1 33.1 30.9 28.9 34.8 15.1
Vocal Average 59.1 39.9 42.0 41.0 41.2 38.9 20.7

form better on string instruments than on wind instruments, as
shown in the average RREs of string and wind instruments. We
find that all models work well on piano and guitar, as a convinc-
ing evidence of the fitness of the source-filter model for these two
instruments. On the other hand, all models perform badly on vi-
olin with vibrato and vocals. Two recordings of violin with vi-
brato and without vibrato are compared to find out whether the
poor performance is caused by the vibrato. The RREs of violin
without vibrato (Violin2) are better than that of violin with vibrato
(Violin) for all models. However, by checking the results of Vi-
olin2, a drop of 7.19% on RRE by using the parameter set (0, 2)
in the NMF-ARMA model shows that the violin sounds have a
strong changing spectra distribution, while the improvement by
using more excitations in the multi-excitation model indicates the
non-smooth structure of the spectral envelope. So we could say
that apart from the vibrato, the poor performance on violin is also
caused by a changing spectral shape (as a result of, for instance,
consistent changing pressure on the bow) and a non-smooth spec-
tral envelope (4 strings). The bad results on vocals were not ex-
pected before the experiments, since the vocals have obvious filter
responses as shown in Figure 1(a). And we found that the models
capture the frequency response of the filter quite well in Figure 2.
The frequency response corresponds to the vocal tract shape of the
vowel /a:/ [23]. As no significant improvement is brought by using
the parameter set (0, 2) in the NMF-ARMA model and using more
excitations in the ME model, the error is likely to stem from the
reconstruction of the vibrato. The SFbeta model is least sensitive
to vibrato. That is partly because for the constant-Q transform the
frequency variations keep the same for all the partials, while the
frequency variance gets larger at higher frequencies on the linear
frequency scale. The SFbeta model performs worst on violin, bas-
soon and clarinet. They are exactly the same instruments which the
multi-excitation model gets greatest improvement by using more
excitations. This indicates the non-smooth spectral envelopes of
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Figure 2: Filter response of male vocal generated by the SFbeta
model.

these instruments and the utility of the multi-excitation model.

3.3.2. Parameter Dimensionality

The parameter dimensions of the models are shown in Table 3. F
and T are the numbers of frequency bins and time frames, respec-
tively. The note range of each instrument is denoted by N . H is
the number of the harmonics included in the model. I in the multi-
excitation model indicates the number of excitations. To make it
more intuitive, we list the dimensions for two instruments in Table
4, piano with 88 notes and harmonica with 20 notes.

The source-filter-decay model only has values at harmonic po-
sitions. The harmonic levels are represented by a weighted sum of
CH basis functions. The filter and decay are generated using a
combination of CB overlapped triangular bandpass filters. In this
experiment, we use 15 basis functions and 20 bandpass filters, so
only 55 parameters are used for each instrument in this model.
When without the decay filter, the gains with NT parameters are
also needed for the reconstruction.

The NMF-ARMA model builds each note using a source and
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Table 4: Parameter dimensions for piano and harmonica.

Instrument No. SFD(111) SFD(110) ARMA ME SFbeta NMF
Piano 88 55 7.4× 105 2.3× 106 7.4× 105 5.9× 106 9.2× 105

Harmonica 20 55 3.8× 104 1.4× 105 4.0× 104 3.1× 105 7.9× 104

Table 3: Parameter dimensions.

Algorithm Dimension
SFD (111) CH + 2CB
SFD (110) CH + CB +NT

ARMA NF +NT (Q+ P + 1)
ME I(N +H) + F +NT

SFbeta 2F +NT
NMF NF +NT

a time-varying filter. The filter is represented by an ARMA model
with Q+ P + 1 parameters. So the number of parameters is F +
T (Q+P+1) per note. The parameter dimension increases linearly
according to the note ranges of the instruments.

Both the multi-excitation model and the SFbeta model rep-
resent the spectra by multiplication of the dictionaries built by
the models and the gains (NT ). The source (excitation) of the
multi-excitation model is a weighted sum of I excitation bases,
and each basis is represented by H harmonics. The weights of
each note is different, with NI weights in total. The filter is rep-
resented by F frequency bins. The whole model is represented by
I(N +H) + F +NT parameters.

For SFbeta model, the dictionary is generated by a source
(F parameters) and filter (F parameters). The dimension of this
model’s parameters is 2F +NT . The reason for the high figure of
the model as shown in Table 4 is because the constant-Q transform
has different numbers of frequency bins (F ) and time frames (T ).
Apart from the influence of the TF representation, the parameter
dimension of the SFbeta model is about the same as that of the
multi-excitation model.

3.3.3. Comparison with NMF

With a large set of parameters, the average RRE of the NMF is
smaller than that of all source-filter based models. Models with
larger sets of parameters tend to have better results on the RRE.
The NMF-ARMA model (with the largest set of parameters) out-
performs the NMF on the average RRE of wind instruments. Be-
sides reducing the number of free parameters, the source-filter
models are employed because appropriate training data are not
always available in real-world MIR applications and, as a result,
pre-trained templates may not work [8].

4. CONCLUSIONS

In this paper, four extended source-filter models are evaluated ac-
cording to the relative reconstruction error on sound clips from 15
instruments in the RWC Music Dataset. The results show that the
source-filter-decay model captures the harmonic levels only with a
small set of parameters, resulting in a large relative reconstruction
error. The NMF-ARMA model obtains the smallest reconstruction
result with the largest set of parameters. Performance is improved
by using more excitations in the multi-excitation model, especially

for violin, bassoon and clarinet, and the improvement indicates a
non-smooth spectral envelope of the instrument. The results of
the SFbeta model show low sensitivity to the choice of instrument.
Overall, all the models perform well on piano and guitar, while no
model works well for all the instruments because of differences
between the structures of the instruments. The poor performance
on vibrato indicates that a more flexible and shiftable structure is
needed.

In future, we would like to develop a shiftable source-filter
model for vibrato sounds using a constant-Q transform.
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ABSTRACT

Exponentially damped sinusoids (EDS) model-based analysis of
sound signals often requires a precise estimation of initial ampli-
tudes and phases of the components found in the sound, on top of a
good estimation of their frequencies and damping. This can be of
the utmost importance in many applications such as high-quality
re-synthesis or identification of structural properties of sound gen-
erators (e.g. a physical coupling of vibrating devices). Therefore,
in those specific applications, an accurate estimation of the onset
time is required. In this paper we present a two-step onset time
estimation procedure designed for that purpose. It consists of a
“rough" estimation using an STFT-based method followed by a
time-domain method to “refine" the previous results. Tests car-
ried out on synthetic signals show that it is possible to estimate
onset times with errors as small as 0.2ms. These tests also con-
firm that operating first in the frequency domain and then in the
time domain allows to reach a better resolution vs. speed compro-
mise than using only one frequency-based or one time-based onset
detection method. Finally, experiments on real sounds (plucked
strings and actual percussions) illustrate how well this method per-
forms in more realistic situations.

1. INTRODUCTION

In this paper, the focus is set on percussive sounds that can be
pitched (e.g. guitar, piano or glockenspiel sounds). Such sounds,
and sometimes even non-pitched percussive sounds (see [1]), are
well represented using a signal model of the form:

x[n] =
M∑

m=1

(
Km∑

k=1

am,ke
jφm,kznm,k

)
u[n− nm] + w[n] (1)

where x[n] is the real sound signal; M is the number of transient
events in the sound; u[n] is the unit step function; nm is the sam-
ple marking the start of transient m; Km is the order of the model
for transient m; zm,k = e(δm,k+jωm,k) is its kth pole with radian
frequency ωm,k and damping factor δm,k; am,k and φm,k are the
initial amplitude and phase of zm,k, respectively; and w[n] repre-
sents the stochastic component of the signal.

The estimation of the parameters of this type of model has
been extensively researched [1, 2, 3, 4]. In the scope of this study,
however, it is relevant to note that it is necessary to have a good
estimate of the time parameter nm for those parametric methods
to yield the best possible results. For example, when choosing on
which segment to perform EDS modelling, it is important that the
transient be close to the beginning of the segment to avoid pre-echo

artifacts [1]. Also, one can desire a precise knowledge of the “ini-
tial” amplitudes and phases of the EDS of the model : for example,
in [5], initial amplitudes and phases of the components forming a
partial of a guitar’s string sound are central to the estimation of the
angle at which a guitar string is released.

In this paper we present an onset detection scheme designed
to obtain transients with very fine time resolution in a reasonable
amount of time. To borrow the terminology introduced in [6], this
method makes use of two different detection functions one af-
ter the other.1 More specifically, the detection functions used are
based on frequency- and time-domain energy features rather than
on probabilistic models [6] or a combination of the two [8].

The goal of this paper is to show that the sequential appli-
cation of two simple detection functions leads to significant im-
provements over the results achievable using these two functions
in isolation. Although percussive sounds might be seen as “easy”
sounds to detect onsets on, and despite the fact that methods based
on variations of the energy of the signal to segment audio have
been used for a very long time (e.g. [9]), the valuable contribution
of this paper lies in that the method proposed is of prime interest
in the particular context of the analysis of percussive sounds using
exponentially damped sinusoids. Indeed, it allows to obtain a finer
time resolution than well known methods such as spectral flux [10]
with acceptable computational demands.

The onset detection method is presented in Sec. 2. Experi-
ments on synthetic and real percussive musical sounds are carried
out in Sec. 3 and Sec. 4, respectively. The conclusions drawn from
these experiments, as well as potential extensions are discussed in
Sec. 5.

2. ONSET TIME ESTIMATION PROCEDURE

The onset time estimation procedure studied in this paper is com-
prised of two steps: a first onset determination over the whole du-
ration of the signal based on its STFT with a “rough” time reso-
lution; the second step involves another onset detection with finer
time resolution around each “rough” onset.

The “rough” onset detection starts by computing the STFT of
the signal x[n] as follows:

X[l, b] =

N−1∑

n=0

w[n].x[n+ lH].ej2πnb/Nwith b ∈ [0;N−1] (2)

where w[n] is a Hanning analysis window [11], l is the STFT
frame index, b is the FFT bin index, N is the FFT size, and H

1A similar, though not identical, approach can be found in [7, p. 42].
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is the hop size. The frequency-domain detection function df [l] is
given by:

df [l] =

√√√√
N/2∑

b=0

(
|X[l, b]| − |X[l − 1, b]|

)2 (3)

where |X| is the modulus of the complex number X . In essence,
df [l] measures how different two consecutive STFT frames are
from each other using an L2-norm.2 It is clear that the maximum
time resolution is limited by H and depends on N .

As “rough” onsets are often late (see Sec. 3), the “refining”
stage of onset detection is performed on smaller data segments
starting a few hop sizes before each “rough” onset. Another de-
tection function is put to use at this stage: a time-domain method,
based on the variations of the energy of the signal [1]. More specif-
ically, for a given sample index n, the power of the signal is com-
puted over

[
x[n− J ];x[n− 1]

]
(a “backward” window) and over[

x[n+1];x[n+ J ]
]

(a “forward” window), where J is an integer
number of samples. The detection function dt[n] is then computed
as follows:

dt[n] =
1

J
log

( ∑n+J
m=n+1 x

2[m]
∑n−1
l=n−J x

2[l] + υ

)
.

n+J∑

k=n+1

x2[k]. (4)

The term in the log function is included in order to empha-
size increases in energy. The variable υ is included in Eq. 4 as a
regularization factor (i.e. to prevent divisions by zero).

The time offsets implied by the definitions of X[l, b], df [n]
and dt[n]3 are compensated for in practice in order to be able to
perform proper comparisons.

As suggested in [6], the detection function is first zero-meaned,
normalized and finally smoothed using a normalized derivative fil-
ter:

H(z) = 1− γ
1− γz−1

, (5)

Peaks are identified on the smoothed detection function using
parabolic interpolation and considering an extremum to be a peak
if it is α dB above the neighbouring minima [12, p. 42]. Once
peaks are detected, an adaptive thresholding scheme [6] is used:
only the peaks with amplitude higher than τad are considered to be
onsets. The expression of τad is as follows:

τad = τ + `dmedian,p, (6)

where τ is an absolute threshold, dmedian,p is the normalized and
smoothed detection function passed through a median filter of or-
der p, and ` controls how much the absolute threshold is affected
by dmedian,p.

After both the “rough” and “refined” onset detection steps, a
pruning mechanism is included to remove repeated onsets. That is,
each onset is compared to neighbouring onsets within a given time
interval (notated I in the rest of the paper). Then, in this interval,
only the onset corresponding to the highest value of the detection
function is kept.

2Note that only half of the bins are considered since x[n] ∈ R.
3N/2 in Eq. 2, (N −H)/2 in Eq. 3 and J/2 in Eq. 4

Table 1: Parameters of the onset estimation procedure used in
Sec. 3.1. Their definition is found in Sec. 2. A sampling rate of
44.1kHz is used and the signals analyzed are such that |x[n]| < 1.

Rough onsets Refined onsets
N : 2048 J : 200
H : 1024 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.1 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 6dB α : 6dB
I : 900 I : 900

3. EXPERIMENTS ON SYNTHETIC SOUNDS

In this section, the two-step onset detection procedure presented
in Sec. 2 is evaluated in several experiments on synthetic pitched
percussive sounds. These sounds reproduce the basic signal struc-
ture of sounds generated by a guitar or a piano. In other words,
there are several modes, or poles zm,k, inside a given string partial
due to the coupling of strings through the bridge of the instrument
[13, 5]. In this paper, synthetic signals are composed of EDS com-
ponents grouped in pairs with very similar frequencies and quite
different damping factors: 100 different sounds, lasting 1 s each
(with Fs = 44.1 kHz), are synthesized with parameters randomly
chosen within specific ranges as follows. Onset times are chosen
within the first 0.5 s of sound segments. The number of partials,
K, is such that K ∈ [1; 6]. In order to approach the ideal structure
of guitar sounds, partials are chosen to be strictly harmonic, with a
fundamental frequency between 82 Hz and 900 Hz. Moreover, am-
plitudes of harmonics are weighted with a formula of the type 1/k2

to mimic the expected spectral slope for the displacement of an
ideally plucked string with rigid terminations [14]. Each harmonic
consists of two EDS, with slightly different frequencies, damping
factors, amplitudes and phases. Only the real part of each signal is
kept, so that the phasors in Eq. (1) are replaced by cos functions.
Finally, some noise is added to the signal in such a way that the
ratio of the maximum value of the signal squared to the power of
the noise is 30dB. These sounds, as well as the real sounds used in
Sec. 4 can be downloaded from this paper’s companion webpage.4

3.1. Comparing “rough" and “refined" estimations

The two-step onset detection is applied to these sounds with the
parameters found in Table 1. The choice of N was motivated
by a desire to ensure that spectral components would be separate
enough that a rapid temporal variation would clearly translate in
energy spreading in more bins. The “refined” onset detection is
performed on a portion of the sound starting 5 hop sizes before the
onset detected at the “rough” stage and ending 1 hop size after.

Fig. 1 depicts the distribution of errors between the true on-
set, n0, and its estimate, n̂0 after both “rough” and “refined” onset
estimations, over the 100 sounds of the experiment. From these
plots, it is clear that the refining step improves the performance
of the onset detection: the median of the error (red line in Fig. 1)

4http://www.music.mcgill.ca/~scherrer/dafx14/
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goes from 500 samples after the “rough" onset detection to 0 af-
ter the “refined” onset detection stage. Also, the spread of the
errors for the “refined" estimation is dramatically reduced com-
pared to the “rough" onset stage. In particular, Fig. 2a shows that
75 % of the error lies between 0 and 3 sample of the target (0-
0.06ms at 44.1kHz) for the “refined" onset detection compared to
the [250;700] sample range (6-16ms) for the “rough" estimation.
It also appears that most of the onsets detected at the “rough” stage
were late compared to the actual onset time (en0 < 0). This jus-
tifies the choice to look for “refined” onsets 5 hop sizes before the
estimated onset and 1 hop size after during the refinement stage.

3000 2500 2000 1500 1000 500 0 500

Rough

Refined

en 0 = n0 − n̂0 (samples)

Figure 1: Distribution of errors made on the estimation of the onset
time (n0) for synthetic signals with randomly chosen parameters.
The plot labelled “Rough” corresponds to the distribution of er-
rors made at the “rough” estimation stage, while the plot labelled
“Refined” represents the error distribution after refinement.

3.2. Testing the robustness to “soft” onsets

After closer inspection of Fig. 1, it appears the outliers (red crosses)
in the “refined" stage correspond to signals where the waveform
of the signal has a smoother start form 0 compared to the other
sounds; signals with “soft" onsets. Thus, another experiment is
carried out to better quantify the performance of the method on
such sounds.

To that end, another set of synthetic sounds with the same gen-
eral structure as those studied in Sec.3.1 is generated. The differ-
ence lies in the fact that the phases of the EDS’s are now all set
to π/2. The results of this experiment are presented in Fig. 3.
The advantage of using the two-step method is still clear, judging
from the drastic improvement of the median of the error between
“rough” and “refined” steps. When comparing the “refined” on-
set detection in this experiment and in the previous experiment,
as in Fig. 2b, one can note a very slight degradation of perfor-
mances when all phases are set to π/2. For example, there are
slightly more outliers at the “refined" stage in the case where all
the phases are set to π/2 than when the phases are all random.
Also, as shown in Fig. 2b, when all phases are set to π/2, there is
a small increase in the error: a median of -4 instead of 0 for the
random phases case, and now 75% of the error is within [-3;-5]
samples ([0.07ms-0.11ms] at 44.1kHz). Despite this slight degra-
dation in this adverse scenario, the performance of the method is
still very satisfying in terms of time resolution.

3.3. Computational time vs. onset time error

This last experiment on synthetic sounds aims at characterizing
how the two-pass onset estimation procedure compares to onset
estimations using only df [l] (cf. Eq.3), or only dt[n] (cf. Eq.4).
The sounds analyzed are the same as those used in Sec. 3.1. The

10 8 6 4 2 0 2

Refined

en 0 = n0 − n̂0 (samples)

(a) Random phases

10 8 6 4 2 0 2

Refined

en 0 = no − n̂o (samples)

(b) Phases all set to π/2

Figure 2: Distributions of the errors on the detected onset time
after refinement, a) for the case of partials with random phases, b)
with phases set to π/2.

3000 2500 2000 1500 1000 500 0 500

Rough

Refined

en 0 = no − n̂o (samples)

Figure 3: Distribution of errors made on the estimation of the onset
time, in the case where all partials have a phase of π/2. The labels
"Rough" and "Refined" refer to the first and second pass of the
onset detection.

parameters for the STFT-based method are the same as those in Ta-
ble 1 for the “rough" estimation, except that the hop size has been
varied between 1024 and 256 samples (so between 23ms and 6ms
at 44.1kHz). Hop sizes smaller than 256 samples yield computa-
tion speeds higher than that of the two-pass estimation procedure
so they are not included in the plot. The parameters for the time-
based method are identical to those in Table 1.

Fig.4 depicts the median value of the computational time5,
tcomp, versus the absolute value of the error on the onset,6 |en0 |, for
the different analysis scenarios. The two-pass onset estimation is
represented by a white disk, while the time-based method is sym-
bolized by a black triangle. Finally, the several instances of the
STFT-based analysis are depicted using grey squares (one for each
hop size used).

The ideal method would lie in the leftmost bottom corner of
the plot as it would mean that this method is very quick and has
no error. With this in mind, it is then clear that the two-pass on-
set estimation procedure studied here outperforms the time-based
method in terms of speed, by a factor of 10. It also performs better

5in Matlab R2012b on a MacBook with a 2GHz processor, 4GB of
RAM.

6As en0 can be negative.
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Figure 4: Median value of tcomp the computation time vs. the me-
dian value of |en0 | = |n0− n̂0| for different estimation scenarios:
the two-pass procedure (white disk), the time-based method (black
triangle), the STFT-based method with varying hop sizes, H (grey
squares). Logarithmic scales are used on both axes.

than the STFT-based method only in terms of error on the onset,
since its median is 0 compared to a minimum error of about 50 for
H = 256. The presence of errors smaller than H is due to the
parabolic interpolation performed after smoothing of the detection
function df [l].

This experiment also confirms the importance of choosing H
properly as it seems to significantly reduce the error on the onset
estimation: ifH = 256, the error is about 7 times less than ifH =
1024 while it only takes about 4 times more to compute. Even for
H = 256, however, the error is still several orders of magnitude
greater than using the two-pass onset estimation procedure.

4. EXPERIMENTS ON MUSICAL SOUNDS

In this section the two-pass onset detection scheme is used on
more realistic signals, that do not exactly meet the model of Eq. 1.
Sec. 4.1 presents a qualitative experiment that illustrates how the
method performs on pitched percussive sounds (a monophonic re-
cording of classical guitar) and on non-pitched percussive sounds
(a monophonic recording of castanets). Sec. 4.2 discusses a quan-
titative evaluation of the method introduced in this paper on a small
set of annotated guitar, piano and castanet sounds.

4.1. Qualitative experiment

An example of this two-pass onset detection method applied to a
monophonic guitar recording is depicted in Fig. 5. In Fig. 5a, the
waveform of the whole audio file is represented and includes both
“rough” and “refined” onset times (dashed black lines and solid
red lines, respectively). Fig. 5b and Fig. 5c feature close-ups of the
7th and 12th notes in Fig. 5a, respectively. Theses two examples
were chosen to show the type of refinement on the “rough" onset
detection that this method offers. One may note that, although on
the whole signal the refinement may seem minor, the cases shown
in Fig. 5b and Fig. 5c represent in fact a substantial improvement
especially for analysis tasks requiring precise knowledge of the
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(a) Whole audiofile.
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(b) Close-up of the 7th transient.
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(c) Close-up of the 12th transient.

Figure 5: Whole audiofile with the 7th and 12th transients singled
out. The solid red lines are the “refined” onsets, while the dashed
black lines are the onsets found at the “rough” onset detection
step. Close-ups on transients indicated by arrows in a) are found
in b) and c).

start of the transient. These two examples also indicate that the
two-pass onset detection scheme is relevant for both isolated notes
(Fig. 5b) and notes played closer together (Fig. 5c). The parame-
ters used to obtain these results are listed in Table 2.

In order to demonstrate that the onset time estimation approach
discussed here can also be applied to non-pitched percussive sig-
nals another test was conducted. It uses castanet sounds, often cho-
sen as a test case in audio encoding experiments (e.g. [1]) as they
are quite short with wide energy variations. Fig. 6 depicts both the
rough and refined onsets for a castanet recording analyzed using
the parameters in Table 3. Fig. 6 depicts two different examples of
refinement where the rough onset was late (Fig. 6b) and where the
rough onset was slightly too early (Fig. 6c). This shows that the
method we propose is also well adapted to signals with very short
and sharp transients and could be valuable in audio coding applica-
tions based on EDS modeling or other applications requiring very
accurate estimations of transient times.
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Table 2: Values of the analysis for the guitar recording in Fig. 5a.
The analysis parameters are those presented in Sec. 2 with a sam-
pling rate of 44.1kHz.

Rough onsets Refined onsets
N : 1024 J : 400
H : 512 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.15 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 6dB α : 6dB
I : 2205 I : 900

Table 3: Values of the analysis for the castanet recording in Fig. 6.
The analysis parameters are those presented in Sec. 2.

Rough onsets Refined onsets
N : 1024 J : 400
H : 512 υ : 10−4

γ : 0.3 γ : 0.1
τ : 0.1 τ : 0.5
p : 5 p : 5
` : 0.5 ` : 0.5
α : 3dB α : 6dB
I : 2205 I : 900

4.2. Quantitative experiment

A preliminary quantitative evaluation has also been carried out to
complement the qualitative observations made on the two previous
examples. The goal of this experiment is to evaluate the improve-
ment resulting from adding a refining stage. The two-pass onset
detection method is thus evaluated on a small set of annotated
sounds. This set is comprised of the guitar and castanet sounds
previously studied, as well as two non distorted guitar sounds and
one piano sound from a small database used for the MIREX2005
Onset Detection task7; they are referred to as guitar2, guitar3 and
piano1 in the rest of this paper. The annotation of the guitar and
castanet sounds was done using the software accompanying [15].

The approach outlined in the instructions of the MIREX Audio
Onset Detection task was implemented8 to perform the evaluation.
In particular, the F-measure [16] was used as the main evaluation
metric:

F = 2
P.R

P +R
(7)

with P =
nTP

nTP + nFP

and R =
nTP

nTP + nFN

where P is the precision, R is the recall and nTP , nFP , nFN
are the numbers of true positive, false positive and false negative

7http://www.tsi.telecom-paristech.fr/aao/en/2011/07/13/onset_leveau-
a-database-for-onset-detection/

8http://www.music-ir.org/mirex/wiki/2014:Audio_Onset_Detection
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Figure 6: Onset detection on a castanet signal. Solid red lines
indicate “refined” onsets, while dashed black lines mark onsets
found at the “rough” onset detection step. In a), the results over
the whole file are depicted, while b) and c) illustrate how the initial
onset time was refined in two particular instances.

detections, respectively. In this paper, for each labelled onset, a
true positive detection is counted if at least one detected onset is
within a certain onset time tolerance, en0,max, of that onset. When
there are no false positive or false negative detections, P = 1 and
R = 1, so F = 1 (see Eq. 7). Conversely, when there are no true
positive detections, F = 0. Thus, for a given sound and a given
set of detected onsets, the value of F will change depending on
the chosen en0,max. It is often taken to be equivalent to 50 ms [6]
for musical tasks. Since the goal of the method presented in this
paper is to provide a fine time resolution for the estimation of EDS
parameters, en0,max values ranging between 44 samples ('1 ms
at 44.1 kHz) and 2205 samples (50 ms at 44.1 kHz) were used.

Fig. 7 depicts the evolution of the F-measure versus en0,max,
the onset time tolerance. Analysis parameters were found man-
ually for all sounds so that they ensured most (if not all) onsets
were found at the rough estimation stage. The tuning of analysis
parameters for each sound is appropriate here as this experiment
aims at quantifying the effect of the refinement of the onset detec-
tion, from the best possible rough onset estimation. The complete
list of parameters used can be found on this paper’s companion
website. There are 5 subplots, one for each recording studied. In
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Figure 7: F-measure versus en0,max for various annotated
sounds.

each subplot, the F-measure obtained after rough (crosses) and re-
fined estimation (circles) is represented as a function of en0,max.
As expected, the general trend for both rough and refined estima-
tion is that F increases as the tolerance increases. In all plots of
Fig. 7, it is clear that adding the refinement stage helps increase F
as en0,max becomes smaller. The refinement stage does not seem
to increase F significantly for a en0,max of 882 samples (20 ms) or
2205 samples (50 ms), except for the piano1 recording in Fig. 7e.
For all recordings, however, it appears that one benefits most from
the refinement stage for tolerances between 176 samples (4 ms)
and 441 samples (10 ms).

The results obtained for the castanet recording (Fig. 7a) are
much better for both stages of the estimation than all the other
sounds. This is most likely due to the fact that this sound was
comprised of well defined bursts of energy that do not really over-
lap in time whereas all the other sounds involve a fair amount of
polyphony, where loud notes can overshadow softer new notes.
In Fig. 7c, the refinement stage and the rough detections yield ap-
proximately similarF values, with a slight advantage to the refined
detection. The reason for this is not entirely clear for now but after
inspecting the results of the rough onset time estimations for all 5
sounds, it appears that the results obtained for that particular sound
are the least satisfying of all five.

5. CONCLUSION

This paper presents and evaluates an onset time estimation pro-
cedure specifically designed for applications when a very precise
onset time estimation is required (of the order of a few tenth of a
millisecond). First, a frequency-domain onset estimation is per-
formed. Then around each of those onsets a time-domain onset
estimation is used in order to “refine" the onset time estimation.

Experiments on synthetic signals mimicking the structure of
guitar sounds show that with this two-pass onset estimation proce-
dure it is possible to obtain onset estimates with errors of at most
0.1ms, 75% of the time. It is also demonstrated that using this two-
step method outperforms using either the STFT-based method or
the time-based method in isolation. Indeed, Fig.4 shows that the
two-pass procedure allows very small error with a small computa-
tion time.

Qualitative and quantitative tests on musical recordings help
evaluate the performance of the method in more realistic condi-
tions. It is indeed shown that adding the refining stage after the
rough estimation helps improve the onset time estimation (increase
the F-measure of that detection) when the time tolerance is be-
tween 4 ms and 10 ms. The difference with the synthetic case
(where onsets were found within 0.1 ms) most likely comes from
a combination of factors: real sounds do not conform exactly to
the signal model of the synthetic sounds; onsets were manually
annotated; the sounds used for testing were polyphonic.

As future work, we plan to investigate the nature of the outliers
in the experiment of Sec. 3.2, itself designed to study the outliers
of the study in Sec.3.1. Also, as hinted by the results in Fig.4, the
choice of parameters of the STFT-based method can have impor-
tant consequences on the error on the onset and on the computation
time. A more systematic evaluation of the effect of N and H on
the performances of the STFT-based method would help explain
those observations. Another avenue for future work would be to
try other methods for the "rough" detection that may be more ro-
bust to polyphony. Also, if one were to use this onset detection
method on large datasets, and as with all onset time estimation
methods, the automatic determination of parameters would be an
interesting avenue for improvement.
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ABSTRACT

In this paper we present a novel algorithm for automatic
analysis, transcription, and parameter extraction from isolated
polyphonic guitar recordings. In addition to general score-related
information such as note onset, duration, and pitch, instrument-
specific information such as the plucked string, the applied pluck-
ing and expression styles are retrieved automatically. For this pur-
pose, we adapted several state-of-the-art approaches for onset and
offset detection, multipitch estimation, string estimation, feature
extraction, and multi-class classification. Furthermore we inves-
tigated a robust partial tracking algorithm with respect to inhar-
monicity, an extensive extraction of novel and known audio fea-
tures as well as the exploitation of instrument-based knowledge
in the form of plausability filtering to obtain more reliable pre-
diction. Our system achieved very high accuracy values of 98 %
for onset and offset detection as well as multipitch estimation.
For the instrument-related parameters, the proposed algorithm also
showed very good performance with accuracy values of 82 % for
the string number, 93 % for the plucking style, and 83 % for the
expression style.

Index Terms - playing techniques, plucking style, expression
style, multiple fundamental frequency estimation, string classifi-
cation, fretboard position, fingering, electric guitar, inharmonicity
coefficient, tablature

1. INTRODUCTION

Audio recordings of plucked string instruments can be described
as a sequence of acoustic note events having a characteristic har-
monic structure, which strongly depends on the type of instrument
and the playing techniques are being used. Scores and tablatures
are common notation formats to store the most important parame-
ters to describe each played note. In order to automatically gener-
ate such notations from a recorded audio signal, these parameters
must be estimated beforehand.

As will be detailed in Section 3, various publications in the
field of Music Information Retrieval (MIR) focused on the auto-
matic extraction of either score-related parameters such as onset,
offset, and pitch (a tasks that is commonly referred to as automatic

∗ All correspondance should be adressed to this author.

music transcription), or instrument-related parameters such as the
applied playing techniques and fretboard positions on string in-
struments. This work expands these approaches by fusing single
parameter estimation algorithms to an overall transcription frame-
work, which is tailored towards instrument-specific properties of
the electric guitar.

The proposed automatic transcription algorithm extracts es-
sential information about the recorded music piece that allows com-
parison with a ground truth notation. Hence possible application
scenarios are music education software such as Songs2See1 and
BandFuse2 as well as music games such as RockSmith3. Fur-
thermore, the transcription algorithm can be applied for a detailed
expressive performance analysis that provides information about
artist-specific peculiarities related to micro-timing or to the pre-
ferred playing techniques. In combination with a sound synthesis
algorithm, an efficient parametric audio coding model with very
low bit rates can be realized due to the very compact symbolic
representation of the instrument recording.

The paper is structured as follows. First, Section 2 provides
important basics of the guitar sound generation. After a review of
the related work in Section 3, we explain the proposed transcrip-
tion algorithm in detail in Section 4. Finally, Section 5 describes
all evaluation experiments and Section 6 summarizes this work.

2. GUITAR SPECIFIC BACKGROUND

The most influential parts of an electric guitar are the strings, the
magnetic pick-up, and the passive electrical tone control. Body
resonances only have a minor influence on the resulting tone and
will not be taken into account here. The guitar strings determine
the basic sound since when vibrating, they are the primary sound
source. The sound is mainly affected by the string material, ten-
sion, and stiffness. These features manifest primarily in frequency
shifts of partial vibrations also known as the effect of inharmonic-
ity [1]. The standard arrangement and tuning of a 6-string gui-
tar with corresponding fundamental frequencies and MIDI num-
ber specifications is given in Table 1. Electromagnetic pick-ups

1http://www.songs2see.com/
2http://bandfuse.com/
3http://rocksmith.ubi.com/
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capture the existing vibrations depending on their position on the
instrument neck and the corresponding possible displacement of
partials. Their technical specifications determine the transfer func-
tion which is commonly approximated by a second order low pass
filter with a cut-off frequency in the range from 2 to 5 kHz. The
same applies to the subsequent tone control of the guitar, which
can be represented by a first order low pass filter. Both can be
combined to an overall transfer function.

Table 1: Standard Tuning of Guitar Strings.

String Standard Fundamental MIDI
Number Tuning Frequency Number

1 E2 82.4 Hz 40
2 A2 110.0 Hz 45
3 D3 146.8 Hz 50
4 G3 196.0 Hz 55
5 B3 246.9 Hz 59
6 E4 329.6 Hz 64

Another important means of tone manipulation is the playing
technique applied by the musician. In this work we distinguish
3 different plucking styles—finger style, picked, and muted—as
well as and 5 expression styles—bending, slide, vibrato, harmon-
ics, and dead notes—executed with the fingering hand in addition
to non-decorated, normal expression style 2. See [2] for a detailed
description of the playing techniques.

Table 2: Playing Techniques.

Plucking Style Expression Style
finger style (F) bending (BE)

picked (P) slide (SL)
muted (M) vibrato (VI)

harmonics (HA)
dead notes (DN)

Besides common music notation, a widespread method of no-
tating guitar music is the tablature. By indicating the fret and string
numbers to be used, it provides an alternative and more intuitive
view of the played score. Figure 1 shows an example of a score
and corresponding tablature.

Figure 1: Excerpt of the score and tablature representation of an
interpretation from the Song Layla written by Eric Clapton [3].

In tablature notation every drawn line symbolizes a string of
the instrument, typically the lowest string corresponds to the bot-
tom line. The numbers written on the single lines represent the
used fret, where the fret number 0 corresponds to the open string.

3. PREVIOUS WORK

As will be discussed in Section 4, various Music Information Re-
trieval (MIR) tasks are relevant for our work. In the past, several
authors focussed on monophonic guitar recordings, which contain
isolated notes or simple melodies. The task of onset detection,
i.e. the detection of note start times in audio recordings, was in-
vestigated in many publications. An overview over state-of-the-art
methods can be found for instance in [4]. Multipitch estimation,
i.e., the transcription of multiple simultaneously sounding notes,
is up to this day a very challenging task to be performed in an au-
tomated manner [5]. In our paper, we build upon the method pro-
posed by Fuentes et al. in [6]. For time-frequency-representation
we use a spectral magnitude reassignment based on the instanta-
neous frequency as proposed in [7]. Fiss and Kwasinski proposed
a multipitch estimation algorithm tailored towards the guitar in [8]
by exploiting knowledge about the string tuning and pitch range
of the instrument. Similarly, Yazawa et al. combine multipitch
estimation with three constraints related to the guitar fretboard ge-
ometry to improve the transcription results [9]. In [3], an algorithm
capable of real-time guitar string detection is presented, which is
also the base for our work. Particularly for guitar chords, Barban-
cho et al. automatically classified between 330 different finger-
ing configuration for three-voiced and four-voiced guitar chords
by combining a multipitch estimation algorithm and a statistical
modeling using a Hidden Markov Model (HMM) [10].

In addition to the score-based parametrization and the estima-
tion of the fretboard position, we aim to estimate the playing tech-
nique that was used on the guitar to play each note. We showed
in previous work, that the estimation of playing techniques [2] for
electric bass guitar, which shares similar playing techniques with
the electric guitar, can be performed from isolated note record-
ings with a high accuracy using a combination of audio features
and machine learning techniques. Various publications analyzed
guitar recordings with focus on playing techniques that modulate
the fundamental frequency such as vibrato [11], bending [12], or
slides [13, 12]. Other guitar playing techniques that were inves-
tigated in the literature are slide, hammer-on, and pull-off [13,
12]. A broader overview over state-of-the-art methods for the tran-
scription and instrument-related parameters from string instrument
recordings can be found in [14] and [15].

4. PROPOSED METHOD

4.1. Problem Formulation

The goal of this work is to develop an analysis algorithm, that ex-
tracts all essential parameters necessary for the automatic creation
of guitar scores. Therefore, a robust event separation based on
onset detection methods has to be implemented. Afterwards, the
note duration and pitch must be extracted. In the next step, both the
plucking and expression styles (see Table 2) as well as the string
number must be estimated using feature extraction and subsequent
classification methods. Finally, by using knowledge about the in-
strument string tuning, the fret position can be derived for each
note.

The transcription parameters can be verified and corrected by
exploiting knowledge about the instrument construction and phys-
ical limitations of the guitar player. Hence, a further goal is to
develop adaptive algorithms that satisfy these conditions. The fi-
nal model should be able to store the extracted parameters and
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to generate a guitar tablature and score completely automatically
based on a given polyphonic, monotimbral electric guitar record-
ing. In this work exclusively clean guitar signals without any prior
audio effect processing are considered. According to the diagram
in Figure 2, the following sections will describe each step in detail.

4.2. Onset Detection

The purpose of this onset detection stage is the segmentation into
musical note events. For the case of electric guitar recordings on-
sets corresponds to single plucks. The signal part between two
plucks is interpreted as a note event. First, seven state-of-the-art
onset detection functions (see appendix 8.1) were tested against
a separate development set of guitar note recordings (see Sec-
tion 5.1) using the same default blocksize and hopsize values. In
general, these functions give an estimate of likelihood of a note
onset to appear at each given time frame. Based on their supe-
rior performance, we selected the three best functions Spectral
Flux, Pitchogram Novelty, and Rectified Complex Domain for the
framework. Since all detection functions work in the frequency
domain, we determined the optimal framesize for each function.

For the extraction of the onset positions, a peak picking al-
gorithm proposed by Dixon [4] was used, which was optimized
separately for each method. The results of each onset detection
compared to the manually annotated ground truth are shown in Ta-
ble 3. All detections are considered as true positives within an
absolute tolerance area of 50 ms.

Table 3: Optimal framesize and achieved F-measure for the best
performing onset detection functions.

Onset Detection Function Optimal framesize F-Measure
Spectral Flux 8 ms 0.93

Pitchogram Novelty 5 ms 0.87
Rectified Complex Domain 5 ms 0.95

The obtained onset positions of all detection functions are com-
bined and filtered with an additional peak picking to avoid the de-
tection of crackles, offsets, or duplicates that represent the same
note onsets caused by this combination. Therefore, the mean square
of energies Ē(n) in a variable interval τ before and after each on-
set candidate are analyzed and set into relation as

Ē(n) =

∑τ
i=−τ f(n+ i)2

τ
, (1)

with f(n) corresponding to the nth frame of the summarized onset
function f . With Ēi denoting the mean squared energy of the ith

interval ahead of the current onset, L corresponding to the length
of the signal, fs corresponding to the sampling frequency, and kF
and kT being adjustment variables, the general conditions defining
a detection as a valid onset are the following:

min[Ēi(n− 2τi)]i=1,2,3..I < Ē(n+ τ), (2)

∑L
i=1 f(i)2

L
< kE · Ē(n+ τ) (3)

and
n− nos(n−1) > kT · fs. (4)

I is the maximum of intervals taken into account before the onset
candidate, n is the sample index, and nos is the sample number of
the observed onset candidate.

In this work, the best results were achieved with kE = 100,
kT = 0.12 ms, and τ = 331 corresponding to 1.5 frames of 5
ms hopsize with a sample rate of 44100 Hz. The final method
achieved an F-measure for onset detection of 98.5 %—all results
are summarized in Section 5.3.

4.3. Multipitch Estimation

Next, the note segments of the audio signal are examined with re-
spect to their spectral energy distribution. Large frame-sizes of
N = 4096 and higher are necessary for the conventional Short-
time Fourier Transform (STFT) to get a sufficient frequency res-
olution, which offers enough information for the pitch discrimi-
nation in the fundamental frequency register of the spectrum of a
guitar. At the same time, large frame-sizes significantly reduce the
achievable time resolution, which especially affects short notes.
To avoid such complications, we compute a reassigned magnitude
spectrogram based on the Instantaneous Frequency (IF) [7] repre-
sentation in addition to the conventional time-frequency transform.
By using the phase information for frequency correction, the IF
supplies a high spectral accuracy while working with shorter frame
sizes (here: N = 1024).

We use the IF magnitude spectrogram with a logarithmically-
spaced frequency axis (84 bins per octave) as input for the sub-
sequent Blind Harmonic Adaptive Decomposition (BHAD) algo-
rithm proposed by Fuentes in [6]. It uses a frame overlap of 75 %
and a downsampling by factor 4. The BHAD represents a multip-
itch estimation based on a framewise approach as previously used
by Männchen et al. [3]. Several start frames (default: 5 frames)
of each note event are left out to avoid the influence of noisy at-
tack part transients. Furthermore, we aggregate over the following
five frames in order to achieve more robust results. This way, note
events with a minimum duration of 65 ms can be evaluated. For
shorter events the amount of frames used for aggregation is re-
duced proportional.

We achieved an F-measure of 0.96 for pitch detection using
this parameter setting. For the optimization of the algorithm con-
cerning the number of aggregated frames and the parameters of
the BHAD algorithm, we aimed at maximizing the Recall value
(here: 0.98) in order to detect all possible fundamental frequency
candidates. False positives are less critical since they can be elim-
inated by subsequent energy checks and checks of multiple pitch
occurrences.

4.4. Partial Tracking

Based on the results of the pitch estimation, the fundamental fre-
quency and the first 15 partials of each note event are tracked over
time as follows. First, we apply a simple peak picking to the mag-
nitude spectrum of each frame. The spectral peaks are assigned
to harmonics of the different fundamental frequency candidates
by minimizing the distance between the ideal harmonic frequency
positions and the detected peak positions. We estimate the inhar-
monicity coefficient in each frame based on the detected partial
peaks [3]. Results of the previous frames were used as initial in-
harmonicity values for the current frame and hence for more accu-
rate partial estimation. The first frames were calculated with initial
values based on [1].
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Figure 2: Schematic model of the analysis framework.

In addition, a window function is applied as a weighting func-
tion for variables of the tracking algorithm. These variables de-
termine the frequency range around each partial where peaks are
taken into account as well as the predicted frequency values of
each partial for the following frame. A comparison of common
window functions yields best performance for the use of a Kaiser
function. The window length is fitted to the note duration and
hence has the biggest impact in the middle of each note and al-
most no impact at the start and end position. Using this window,
the considered search area for frequency peaks around each ideal
harmonic frequency position is adjusted frame-wise. It adapts the
extent of the range around each calculated partial which is taken
into account for the performed peak picking to the relative note
position.

Hence, at the temporal center of each note event this range is
the largest and therefore more susceptible for frequency changes.
Furthermore, the window function affects the amount of past frames
taken into account when calculating the predicted harmonic fre-
quencies of the current frame. At the center point of a note event
less frames are considered emphasizing the affinity for frequency
changes. Finally, the weight of magnitudes around each calculated
harmonic frequency position is increased towards the middle of the
note event. So, the comparison in the middle of note events yields
lower dependency of the actual frequency distance but emphasizes
high frequency magnitudes near the theoretical frequency. These
three conditions are needed for an adaptive algorithm which re-
acts sensitive to frequency modulation techniques like bending, vi-
brato, and slide (see Section 2). A typical fundamental frequency
envelope f0(t) for the frequency modulation technique slide is
shown in Figure 3.

Figure 3: Fundamental frequency envelope f0(t) of a slide tone.

The obtained values allow for a correction of octave confu-
sions, which can occur by the presence of weak sub-harmonics
and their multiples, by summing up and comparing the odd and
even harmonics of a note. Unlikely fundamentals are eliminated
when the total energy of even partials falls below a quarter of the
energy of odd partials.

4.5. Offset Detection

The detection of the note offset is performed based on the results of
the partial tracking procedure as explained in the previous section.
We obtain a temporal envelope for each time framem by summing
up the harmonic magnitude values Mh(m) over all harmonics as

fEnv(m) =
H∑

h=1

Mh(m). (5)

Figure 4 illustrates an example of a temporal magnitude envelope
of a guitar note. The offset is obtained by detecting the first frame
after the envelope peak with less than 5 % of the peak magnitude.
Furthermore, an onset correction is performed by searching the
lowest point of inflection before the peak. Therefore, the consid-
ered time area of the note excerpt is expanded in forward direction
by 200 ms as safety margin. We initially smooth the envelope
function by convolving it with a three-element-rectangle window
to avoid the detection of random noise peaks.

Figure 4: Temporal magnitude envelope fEnv(m) of the summed
harmonics of a guitar note.
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4.6. Feature Extraction & Classification

Based on the extracted note parameters onset, offset, and pitch,
various audio features can be extracted that allow to discriminate
high-level parameters such as the played string or the applied play-
ing techniques. We compute features on a frame-by-frame level
and aggregate the features over the duration of each note event
using different statistical measures such as minimum, maximum,
mean, or median. A list of all 774 features can be found in ap-
pendix 8.2. A classification based on this amount of feature di-
mensions leads to high computational load and potential model
overfitting. Therefore, prior to training the classification models,
we first apply the feature selection algorithm Inertia Ratio Maxi-
mization using Feature Space Projection (IRMFSP) [16] for each
classification task in order to reduce the dimensionality of the fea-
ture space. The amount of reduction depends on the performed
classification task and is optimized separately.

For classification, we use a multi-class Support Vector Ma-
chine (SVM) with Radial Basis Function (RBF) kernel. We per-
form three independent classification tasks—classification of the
string number with 6 classes (see Table 1) as well as classifica-
tion of the plucking style and expression style with three and six
classes, respectively (see Table 2).

4.7. Plausability Filter

Depending on the classification task, the results can be aggregated
over multiple notes using majority voting to obtain more robust
classification. Furthermore, knowledge about typical guitar per-
formance can be exploited in order to avoid impossible finger-
ing positioning or improbable usage of playing techniques. In
this section, two approaches to correct the classification results
will be described. First, an intra-note plausibility filter deals with
single notes and notes that are played simultaneously such as in
chords. Second, an inter-note plausibility filter takes into account
sequences of consecutive notes. Both filter aggregate classification
results in dependence of the performed task for higher robustness.
Expression styles are unified over all notes of a note event, pluck-
ing styles are aggregated over entire licks assuming that during one
subsequently played lick no changes in plucking style occur.

4.7.1. Intra-Note Plausability Filter

The first corrections are applied to the estimated expression style.
The most obvious restriction is a duration limit for the dead note
class. Notes that are classified as dead notes and last longer than
0.6 seconds, are re-evaluated and the next probable expression
style class is chosen. Second, we assume that all remaining ex-
pression styles (except the non-decorated normal expression style)
are only plausible if less than three simultaneous pitches are de-
tected by the multi-pitch estimation. Third, frequency modulated
expression styles are compared against psychoacoustical thresh-
olds so that detected bending, slide, or vibrato techniques with not
noticeable frequency differences are set to the normal expression
style. Especially for slide and bending, a check of the start and
end pitch within the note is performed to detect and eliminate mi-
nor frequency changes below one semitone. Finally, the estimated
pitches when marked as class harmonics are compared to possible
harmonic pitches of the known guitar string tuning. Only certain
pitches can occur at certain positions of the fretboard. Hence, har-
monics detections with impossible pitch values are set to expres-
sion style normal.

Figure 5: Fretboard MIDI number references for standard tuning.
The first column refers to empty string pitches.

A second filter is applied to correct the string number. Each
position on the fretboard is connected to a fixed pitch as shown
in Figure 5, depending on the instrument tuning. Most pitch val-
ues within the pitch range of the guitar can be played on different
fretboard position, hence, on different strings.

The first assumption of this filter connects to the expression
style results by setting the probability of empty strings to zero if
a decorating expression style has been classified. In addition, all
probabilities from strings not allowing to play the observed pitch
at any fretboard position are set to zero. Considering polyphonic
fingerings, two or more pitches might collide by being assigned
on the same string. To avoid this interception, our algorithm pro-
vides alternative fingering positions based on the string probabili-
ties. Large spreads of the fingering are likely to occur as a result
of alternative string assignment by using simple replacement to
the most probable neighbour strings. Hence, spreads larger than
four frets are eliminated. Instead, fingerings with smaller spreads
are preferred by weighting their probabilities based on a computed
fretboard centroid. Depending on the contribution of the fingering
around the fretboard centroid the probability of each classification
is lowered respectively to its relative fret and string distance to the
centroid. Highest distances correspond to most intense lowering
by half of the classification probability.

4.7.2. Inter-Note Plausability Filter

The inter-note plausability filter can correct classification results
based on the parameters of preceding and subsequent notes. The
first attempt of this filter is to find similar pitches played on the
same string. Under the condition of comparable magnitudes and
small gaps at the note borders notes are tied. As a consequence, de-
tected expressions styles such as dead note become impossible for
tied notes and are corrected. When comparing consecutive finger-
ings, fast and commonly applied position jumps (fingering changes
with high local distances) are highly improbable if empty strings
are not involved. Again, the fretboard centroid is used to weight
and determine the most likely fingering if such jumps occur. This
depends on the occurrence rate as well as the probability values
of string estimation. The same corrections are performed for har-
monic expression styles. Due to the characteristic of this playing
technique, the fingering hand holds the string at an alternative fret
position to obtain the perceived pitch. Here also the fretboard cen-
troid is used to find the most probable position.

5. EVALUATION

For the evaluation of the proposed transcription algorithm, we use
the common evaluation measures Precision, Recall, F-Measure,
and Accuracy. In this section, a novel dataset of electric guitar
recordings with extensive annotation of note parameters will be in-
troduced. This dataset served as ground-truth in our experiments.
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All results presented in Section 5.3 are based on 10-fold cross val-
idation experiments.

5.1. Dataset

For the evaluation tasks, our novel dataset was recorded and man-
ually annotated with all note parameters discussed in this paper.
Six different guitars in standard tuning (see Table 1) were used
with varying pick-up settings and different string measures to en-
sure a sufficient diversification in the field of electric guitars. The
recording setup consisted of appropriate audio interfaces 4 which
were directly connected to the guitar output. The recordings are
provided in one channel RIFF WAVE format with 44100 Hz sam-
ple rate. The parameter annotations are stored in XML format.

The dataset consists of two sets. The first one created exclu-
sively for this work contains all introduced playing techniques (see
Table 2) and is provided with a bit depth of 24 Bit. It has been
recorded using three different guitars and consists of about 4700
note events with monophonic and polyphonic structure. As a par-
ticularity the recorded files contain realistic guitar licks ranging
from monophonic to polyphonic instrument tracks. In addition, a
second set of data consisting of 400 monophonic and polyphonic
note events with 3 different guitars is provided. No expression
styles were applied here and each note event was recorded and
stored in a separate file with a bit depth of 16 Bit [3]. The com-
bined dataset will be made available as a public benchmark for
guitar transcription research5.

5.2. Experimental Procedure

For the onset detection, a detection within a tolerance of 50 ms to
the annotated ground truth is considered as true positive. Since the
offset detection is a harder task (due to smoothly decreasing note
envelopes), a tolerance of 200 ms is used. Because of the time-
frequency transform the duration of one additional frame (5 ms)
has to be considered to obtain the effective tolerance of each tem-
poral detection. The frequency tolerance adapts to the pitch and
is scored as correct if both annotated and detected frequencies are
rounded to the same MIDI pitch numbers. The three classifica-
tion tasks discussed in Section 4.6 are measured using the mean
normalized class accuracy.

5.3. Results

The performance of the final system for onset detection, offset de-
tection, and pitch estimation are shown in Table 4. Because of
the high specialization towards applications of guitar recordings
the results clearly outperform existing approaches. Previous on-
set detection methods are on average placed around 90 % accu-
racy [4, 17], pitch estimation methods reached values up to 90 %
[8, 5, 6].

The results of classification tasks are given in Table 5 - 7. In
general, the typical decrease of accuracy for a higher number of
classes can be observed. The string estimation still performed with
good discrimination results of 82 % average accuracy including
polyphonic estimation and the use of plausability filtering. The
results differ from previous work [3, 10] where average accura-
cies around 90 % were reached due to different classification and
evaluation methods. Plucking style estimation is performed with a

4Tascam US 1641, M-Audio Fast Track Pro
5http://www.idmt.fraunhofer.de/en/business_units/smt/guitar.html

Table 4: Precision, Recall and F-Measure results of onset detec-
tion, offset detection, and pitch estimation.

Detection Function Precision Recall F-Measure
Onset 0.98 0.99 0.99
Offset 0.98 0.98 0.98

Pitch Estimation 0.95 0.98 0.96

Table 5: Accuracy results of the string estimation in percent dis-
played in a confusion matrix. Average accuracy = 82 %.

st
ri

ng
(c

or
re

ct
) 1 81.3 16.6 2.1 0.0 0.0 0.0

2 5.7 86.0 7.1 1.1 0.0 0.0
3 0.2 9.4 78.8 9.7 1.8 0.2
4 0.0 0.6 6.9 81.8 9.8 0.9
5 0.0 0.8 0.7 13.1 76.7 8.6
6 0.0 0.3 0.5 2.6 12.1 84.5

1 2 3 4 5 6
string (classified)

very good score of 93 % average accuracy comparable to Abeßer
et al. [2]. Here, a plausability filter was applied to combine the
results of one note event. The classification of expression styles
achieved good average accuracy of 83 %. State-of-the-art meth-
ods offer comparable results depending on the number of classes
being distinguished. The plausability filter for expression styles
introduced in Section 4.7 is used for correction and aggregation of
the classification results.

Table 6: Accuracy results of the plucking style estimation in per-
cent displayed in a confusion matrix. Average accuracy = 93 %.
For abbreviations see Table 2.

st
yl

e
(c

or
re

ct
)

F 83.3 16.7 0.0
P 2.5 95.4 2.0
M 1.9 1.9 96.2

F P M
style (classified)

With the automatically extracted transcription, guitar-specific
tablature notation can be generated including information about
the used playing techniques. A sample of the dataset is visualized
in Figure 6. The tablature notation, which was automatically ex-
tracted from the audio recording, is compared against the reference
notation taken from the dataset.

6. CONCLUSIONS

In this paper we introduced a novel algorithm for guitar transcrip-
tion. The algorithm includes different estimation techniques for
score-based and instrument-based parameters from isolated guitar
recordings. By applying different optimization approaches, we re-
ceived excellent detection results for onset, offset and pitch with
an average accuracy of 96 % and higher. Estimations of more
complex instrument-based parameters were performed with good
results of 82 % and higher. Furthermore, a novel dataset was cre-
ated and published to evaluate the proposed methods. We showed
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Figure 6: Polyphonic guitar lick of the dataset.
Top: Manually notated tablature - Legend: FN above each note annotates the Plucking Style ’Finger Style’ and Expression Style ’Normal’.
Bottom: Automatically notated tablature - Legend: Plucking Style is obtained for the entire lick. The letters above each note denote the
Expression Style (NO - normal, HA - Harmonics).

Table 7: Accuracy results of the expression style estimation in per-
cent displayed in a confusion matrix. Average accuracy = 83 %.
For abbreviations see Table 2.

st
ly

e
(c

or
re

ct
) NO 94.8 0.7 0.5 0.9 1.5 1.6

BE 14.0 71.3 12.3 1.2 0.0 1.2
SL 20.7 11.2 50.9 8.6 4.3 4.3
VI 25.3 1.2 3.1 66.7 3.1 0.6
HA 10.5 0.0 0.0 2.0 82.4 5.2
DN 7.7 0.0 0.0 0.8 10.7 80.8

NO BE SL VI HA DN
style (classified)

that an automatic transcription of guitar-based tablature is possible
with a high accuracy.
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8. APPENDIX

8.1. List of Onset Detection Functions

In this work, we compared the onset detection functions Spectral
Flux [4], Rectified Complex Domain [4], Weighted Phase Devia-
tion [4], High Frequency Content [23], Modified Kullback-Leibler
Distance [23], Foote [23], and Pitchogram Novelty [21].

8.2. Audio Features

Table 8: Feature list for classification. If features generate more
than one return-value the amount is written in brackets after the
feature name. Novel features are marked bold.

· Spectral Centroid
· Relative Spectral Centroid
· Spectral Roll Off
· Spectral Slope
· Spectral Spread
· Spectral Decrease
· Spectral Crest
· Spectral Flatness
· Inharmonicity Factor
· Tristimulus 1,2 und 3 (3)
· Spectral Irregularity

· Odd To Even Harmonic Energy Ratio
· Harmonic Spectral Centroid
· Harmonic Magnitude Slope
· Relative Harmonic Magnitude (14)
· Normalized Harmonics Frequency
Deviation (14)
· Frequency Statistics: Maximum,
Minimum, Mean, Median, Variance
(5)
· Frequency Statistics: Maximum,
Minimum, Mean, Median, Variance
(5)

Each frame-based audio feature listed so far is condensed to 14 statistic
values per note. Maximum, Minimum, Mean, Variance, Median, Skew-
ness and Kurtosis are computed for the attack and the decay part of each
note. Both are known durations from Section 4.5 because of the per-
formed temporal refinement. In Addition several novel note-based fea-
tures are appended to the feature vector:

· High Frequency Pre Onset
Arousal
· Magnitude Range
· Envelope Sum
· Temporal Centroid
· Envelope Fluctuation(2)
· Envelope Modulation Fre-
quency and Range

· Envelope Part Length (3)
· Temporal Slope (2)
· Range Attack Time Deviation
· Mean Attack Time Deviation
· Variance Attack Time Deviation
· Subharmonic Attack Energy (21)
· Subharmonic Decay Energy (21)

Concatenation of all features yields a feature vector of 774
elements. The detailed computation steps are explained in [24].
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ABSTRACT
Automatic language identification for singing is a topic that has
not received much attention in the past years. Possible applica-
tion scenarios include searching for musical pieces in a certain lan-
guage, improvement of similarity search algorithms for music, and
improvement of regional music classification and genre classifica-
tion. It could also serve to mitigate the "glass ceiling" effect. Most
existing approaches employ PPRLM processing (Parallel Phone
Recognition followed by Language Modeling).
We present a new approach for singing language identification.
PLP, MFCC, and SDC features are extracted from audio files and
then passed through an i-vector extractor. This algorithm reduces
the training data for each sample to a single 450-dimensional fea-
ture vector. We then train Neural Networks and Support Vector
Machines on these feature vectors. Due to the reduced data, the
training process is very fast. The results are comparable to the state
of the art, reaching accuracies of 83% on a large speech corpus and
78% on acapella singing. In contrast to PPRLM approaches, our
algorithm does not require phoneme-wise annotations and is easier
to implement.

1. INTRODUCTION

Language Identification (LID) describes the task of automatically
detecting the language spoken in an audio document. In speech
recognition, LID has been a topic of interest for more than 30 years
and has been extensively researched. In the Music Information Re-
trieval field, a similar language identification can be performed for
singing (Singing Language Identification, SLID). There have so
far only been a handful of publications on SLID despite a number
of interesting application scenarios, such as:
Direct search of music in a certain language SLID can be use-

ful for private users who are, for example, looking for music
for a holiday video, or for music to help them learn a lan-
guage. Commercial users could use this for advertisement
videos.

Improvement of similarity search Similarity dimensions could
include the sung language.

Improvement of regional classification As mentioned in [1], hu-
man subjects tend to rely on the language to determine the
region of origin of a musical piece. This is not taken into
account by current regional classification systems.

Improvement of genre classification Similar to regional classi-
fication, certain musical genres are closely connected to a
single singing language. Considering the “glass ceiling”
of approximately 80% for most classification tasks[2], new
hybrid approaches are necessary to improve them. SLID
could serve this purpose, too.

Only a few SLID systems have been developed so far. They
mostly use the principle of Parallel Phone Recognition followed
by Language Modeling (PPRLM). In this paper, we present an
approach that does not require the extensive annotations used in
PPRLM. Our approach employs three commonly used audio fea-
tures with Multi-Layer Perceptrons (MLPs) and Support Vector
Machines (SVMs) as backend classifiers. Using the i-vector ex-
traction algorithm as a processing step in between, our approach is
able to surpass the state of the art.
We will give a more detailed overview over the state of the art in
section 2 before presenting the used datasets in section 3. We then
describe our proposed system in section 4 and show experimental
results in section 5. Finally, we draw conclusions in section 6 and
make suggestions for further research in section 7.

2. STATE OF THE ART

2.1. Language identification for speech

Language identification has been extensively researched in the field
of Automatic Speech Recognition since the 1980’s. A number
of successful algorithms have been developed over the years. An
overview over the fundamental techniques is given by Zissman in
[3].
Fundamentally, four properties of languages can be used to dis-
criminate between them:
Phonetics The unique sounds that are used in a given language.
Phonotactics The probabilities of certain phonemes and phoneme

sequences.
Prosody The “melody” of the spoken language.
Vocabulary The possible words made up by the phonemes and

the probabilities of certain combinations of words.
Even modern system mostly focus on phonetics and phonotactics
as the distinguishing factors between languages. Vocabulary is
sometimes exploited in the shape of language models.
Zissman mentions Parallel Phone Recognition followed by Lan-
guage Modeling (PPRLM) as one of the basic techniques. It re-
quires audio data, language annotations, and phoneme annotations
for each utterance. In order to make use of vocabulary character-
istics, full sentence annotations and word-to-phoneme dictionaries
are also necessary.
Using the audio and phoneme data, acoustic models are trained.
They describe the probabilities of certain sound and sound se-
quences occurring. This is done separately for each considered
language. Similarly, language models are generated using the sen-
tence annotations and the dictionary. These models describe the
probabilities of certain words and phrases. Again, this is done for
each language.
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New audio examples are then run through all pairs of acoustic and
language models, and the likelihoods produced by each model are
retained. The highest acoustic likelihood, the highest language
likelihood, or the highest combined likelihood are then considered
to determine the language. This approach achieves up to 79% ac-
curacy for ten languages [4].
Another approach uses the idea to train Gaussian Mixture Mod-
els for each language. This technique can be considered a “bag of
frames” approach, i.e. the single data frames are considered to be
statistically independent of each other. The generated GMMs then
describe probability densities for certain characteristics of each
language. Using these, the language of new audio examples can
be easily determined.
GMM approaches used to perform worse than their PPRLM coun-
terparts, but the development of new features has made the differ-
ence negligible [5]. They are in general easier to implement since
only audio examples and their language annotations are required.
Allen et al. [6] report results of up to 76.4% accuracy for ten
languages. Different backend classifiers, such as Multi-Layer Per-
ceptrons (MLPs) and Support Vector Machines (SVMs) [7] have
also been used succesfully instead of GMMs.

2.2. Special challenges in singing

Singing presents a number of challenges for language identifica-
tion when compared to pure speech. To mention a few examples:
Larger pitch fluctuations A singing voice varies its pitch to a

much higher degree than a speaking voice. It often also
has very different spectral properties.

Higher pronunciation variation Singers are often forced by the
music to pronounce certain sounds and words differently
than if they were speaking them.

Larger time variations In singing, sounds are often prolonged
for a certain amount of time to fit them to the music. Con-
versely, they can also be shortened or left out completely.

Different vocabulary In musical lyrics, words and phrases often
differ from normal conversation texts. Certain words and
phrases have different probabilities (e.g. higher focus on
emotional topics in singing).

Background music adds irrelevant data (for language identifica-
tion) to the signal, which acts as an interfering factor to the
algorithms. It therefore should be removed or suppressed
prior to the language identification, e.g. by source separa-
tion algorithms.
In this paper, we only work with a-capella music to remove
this difficulty.

So far, only a few approaches to perform language identification
on singing have been proposed.
Schwenninger et al. [8] use MFCC features, but do not mention
how they perform their actual model training. They test different
pre-processing techniques, such as vocal/non-vocal segmentation,
distortion reduction, and azimuth discrimination. None of these
techniques seem to improve the over-all results. They achieve an
accuracy of 68% on a-capella music for two languages (English
and German).
The approach of Tsai and Wang [9] follows a traditional PPRLM
flow. After vocal/non-vocal segmentation, they run their data through
acoustic models using vector tokenization. One acoustic model for
each language is used. The results are then processed by bigram
language models, again for each language. The language model
score is used for a maximum likelihood decision to determine the

language. They achieve results of 70% accuracy for two languages
(English and Mandarin).
Mehrabani and Hansen [10] also use a PPRLM system, with the
difference that all combinations of acoustic and language models
are tested. Their scores are combined by a classifier to determine
the final language. This results in a score of 78% for three lan-
guages (English, Hindi, and Mandarin). Combining this technique
with prosodic data improved the result even further.
Chandrasekhar et al.[11] try to determine the language for music
videos using both audio and video features. They achieve accu-
racies of close to 50% for 25 languages. It is interesting to note
that European languages seem to achieve much lower accuracies
than Asian and Arabic ones. English, French, German, Spanish
and Italian rank below 40%, while languages like Nepali, Arabic,
and Pashto achieve accuracies above 60%.
Finally, we previously tested a different system based on Gaus-
sian Mixture Models (GMMs) [12]. This approach does not re-
quire phoneme-wise annotations like the PPRLM approaches and
is easier to implement. We achieved an accuracy of 68% on three
languages (a-capella data).

3. DATASETS

In order to test our system on singing data, we used the data set
previously presented in [12]. It consists of a-capella songs down-
loaded from YouTube1. The songs are performed by amateur singers
in the languages English, German, and Spanish. We call it YTA-
cap.
For comparison, we also tested our algorithm on two well-known
speech data sets: The 2003 NIST Language Recognition Evalu-
ation (NIST2003LRE) corpus [13] and the OGI Multi-language
Telephone Speech Corpus (OGIMultilang)[14], using only the three
previously mentioned languages.
An overview over the amount of data across the three corpora is
given in table 1.

Table 1: Amounts of data in the three used data sets: Sum duration
on top, number of utterances in italics.

hh:mm:ss NIST2003LRE OGIMultilang YTAcap#Utterances

English 00:59:08 05:13:17 08:04:25
240 1912 1975

German 00:59:35 02:52:27 04:18:57
240 1059 1052

Spanish 00:59:44 03:05:45 07:21:55
240 1151 1810

1http://www.youtube.com/
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4. PROPOSED SYSTEM

Figure 1 shows a rough overview over our classification system. In
the following, we will describe the selected features, the i-vector
extraction algorithm, and the selected training backends in more
detail.

Figure 1: Overview of the steps of our classification system.

4.1. Features

We extracted a set of features for each audio file. Table 2 shows an
overview over the various configurations used in training.

Perceptive Linear Predictive features (PLPs) PLP features, first
introduced in [15], are among the most frequently used features in
speech processing. They are based on the idea to use knowledge
about human perception to emphasize important speech informa-
tion in spectra while minimizing the differences between speakers.
We use a model order of 13 in two experiments and one of 32 in
another. Deltas and double deltas between frames are also calcu-
lated. We test PLPs with and without RASTA pre-processing [16].

Mel-Frequency Cepstral Coefficients (MFCCs) Just like PLPs,
MFCCs are frequently used in all disciplines of automatic speech
recognition [3]. We kept 20 cepstral coefficients for model train-
ing. Additionally, we calculated deltas and double deltas.

Shifted Delta Cepstrum (SDCs) Shifted Delta Cepstrum fea-
tures were first described in [17] and have since been successfully
used for speaker verification and language identification tasks on
pure speech data [18] [7] [6]. They are calculated on MFCC vec-
tors and take their temporal evolution into account. Their configu-
ration is described by the four parameterN −d−P −k, whereN
is the number of cepstral coefficients for each frame, d is the time
context (in frames) for the delta calculation, k is the number of
delta blocks to use, and P is the shift between consecutive blocks.
The delta cepstrals are then calculated as:

∆c(t) = c(t+ iP + d) + c(t+ iP − d), 0 <= i <= k (1)

with c ∈ [0, N − 1] as the previously extracted cepstral coeffi-
cients. The resulting k delta cepstrals for each frame are concate-
nated to form a single SDC vector of the length kN . We used the
common parameter combination N = 7, d = 1, P = 3, k = 7.

4.2. I-Vector extraction

I-Vector (identity vector) extraction was first introduced in [19]
and has since become a state-of-the-art technique for various speech
processing tasks, such as speaker verification, speaker recognition,
and language identification [20]. To our knowledge, it has not been
used for any Music Information Retrieval tasks before.
The main idea behind i-vectors is that all training utterances con-
tain some common trends, which effectively add irrelevance to the
data in respect to training. Using i-vector extraction, this irrele-
vance can be filtered out, while only the unique parts of the data
relevant to the task at hand remain. The dimensionality of the train-
ing data is massively reduced, which also makes the training less
computationally expensive. As a side effect, all feature matrices
are transformed to i-vectors of equal length, eliminating problems
that are caused by varying utterance lengths.
Mathematically, this assumption can be expressed as:

M(u) = m+ Tw (2)

In this equation, M(u) is the GMM supervector for utterance u.
The supervector approach was first presented in [21] and has since
been successfully applied to a number of speech recognition prob-
lems. A music example can be found in [22]. m represents the
language- and channel-independent component of u and is esti-
mated using a Universal Background Model (UBM). T is a low-
rank matrix modeling the relevant language- and channel-related
variability, the so-called Total Variability Matrix. Finally, w is a
normally distributed latent variable vector: The i-vector for utter-
ance u.

Step 1: UBM training A Universal Background Model (UBM)
is trained using Gaussian Mixture Models (GMMs) from all utter-
ances. This UBM models the characteristics that are common to
all of them.

Step 2: Statistics extraction 0th and 1st order Baum-Welch
statistics are calculated for each of the utterances from the UBM
according to:

Nc(u) =
L∑

t=1

P (c|yt,Ω) (3)

F̃c(u) =
L∑

t=1

P (c|yt,Ω)(yt −mc) (4)
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Table 2: Feature configurations used in training.

Name Description Dimensions
PLP PLP with RASTA processing, model order 13 with deltas and double deltas 39

PLP36 PLP with RASTA processing, model order 36 with deltas and double deltas 96
PLP_NORASTA PLP without RASTA processing, model order 13 deltas and double deltas 39

MFCC MFCC, 20 coefficients 20
MFCCDELTA MFCC, 20 coefficients, deltas and double deltas 60

SDC SDC with configuration 7− 1− 3− 7 91
MFCCDELTASDC MFCCDELTA+SDC 117

COMB PLP_NORASTA+MFCCDELTA 99

where u = y1, y2, ..., yL denotes an utterance with L frames,
c = 1, ..., C denotes the index of the Gaussian component, Ω de-
notes the UBM, mc is the mean of the UBM mixture component
c, and P (c|yt,Ω) denotes the posterior probability that the frame
yt was generated by mixture component c. As the equation shows,
the 1st order statistics are centered around the mean of each mix-
ture component.

Step 3: T matrix training Using the Baum-Welch statistics for
all utterances, the Total Variability Matrix T is now trained itera-
tively according to:

w = (I + T tΣ−1N(u)T )−1T tΣ−1F̃ (u) (5)

using Expectation Maximization.

Step 4: Actual i-vector extraction Finally, an i-vector w can be
extracted for each utterance using equation 5 again. This can also
be done for unseen utterances, using a previously trained T .

4.3. Classification backend

For classification, we tested Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs).
The MLPs were fixed at three layers, with the middle layer having
a dimension of 256. They were implemented using Quicknet [23].
Additional layers did not seem to improve the result. A larger mid-
dle layer only improved it slightly.
The SVM parameters were determined using a grid-search. In the
full-feature experiments, we additionally employed a previous fea-
ture selection using the ”Inertia Ratio Maximization using Feature
Space Processing” (IRMFSP) [24]. For both IRMFSP and SVMs,
we used our own C++ implementation.

5. EXPERIMENTAL RESULTS

As described above, we performed experiments using both MLP
and SVM classifiers on all three data sets (NIST, OGI, and YTA-
cap). For each of those classifiers and data sets, we test all of the
combinations of features listed in table 2 directly and with i-vector
processing. All results were obtained using five-fold cross valida-
tion.

5.1. MLP results

Figure 2: Results for all feature combinations on the
NIST2003LRE database, using MLP classifiers.

NIST2003LRE As shown in figure 2, our MLP did not produce
good results on the NIST2003LRE database for any of the feature
combinations. NIST2003LRE is the smallest of the data sets by a
large margin. Since we use a relatively high dimensional model,
this is probably a case of overtraining. The i-vector processing
step reduces the training data even further, thus aggravating the
problem.

Figure 3: Results for all feature combinations on the OGIMulti-
lang database, using MLP classifiers.
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OGIMultilang The OGIMultilang data set contains roughly 4
times as much data as the NIST2003LRE set. With enough data,
training an MLP classifier works a lot better. Without i-vector pro-
cessing, we still only reach about 52% accuracy. I-Vector extrac-
tion improves the system massively. The best feature configura-
tions are plain PLP (82%), PLP_NORASTA (80%) and COMB
(80%).

Figure 4: Results for all feature combinations on the YTAcap
database, using MLP classifiers.

YTAcap In section 2.2, we described some factors that increase
the difficulty for language identification on acapella data versus
spoken data. As expected, the results on the YTAcap data set are
somewhat worse than those on OGIMultilang, even though they
contain a similar amount of data. The best result without i-vector
extraction is still obtained using the COMB feature configuration
at 56%. Similar to the OGIMultilang experiment, i-vector extrac-
tion yields a large improvement. COMB remains the best configu-
ration, now at 77%.

5.2. SVM results

Figure 5: Results for all feature combinations on the
NIST2003LRE database, using SVM classifiers.

NIST2003LRE In contrast to the MLP experiment, SVMs pro-
duced very good results on the NIST2003LRE data set for all of

the features. They seem to be able to discriminate almost perfectly
for this small, clean data set. We believe 94% might be an up-
per bound for the classification here, which might be caused by
annotation errors or ambiguous data.

Figure 6: Results for all feature combinations on the OGIMulti-
lang database, using SVM classifiers.

OGIMultilang The OGIMultilang corpus is bigger and more
varied than the NIST2003LRE corpus, which makes it harder to
classify. As shown, the high-dimensional pure features did not
produce good results, with a maximum of 50% for MFCCs. Fea-
ture selection using IRMFSP did nothing to improve this result
either. I-Vector extraction, however, improved the result by a large
margin. Feature-wise, PLP without RASTA processing seems to
work best at a result of 83%. MFCC and SDC features did not
work quite as well, but did not hurt the result either when com-
bined with PLPs (COMB result). It is interesting to see that the i-
vector extraction provided the smallest improvement for MFCCs,
the feature that worked best without it.

Figure 7: Results for all feature combinations on the YTAcap
database, using SVM classifiers.

YTAcap Similar to the OGIMultilang corpus, the YTAcap cor-
pus provides very complex and varied data. We see the same ef-
fects on the direct feature training here, too: MFCCs provide the
best results, but the accuracy is not very high at just 46%. IRMFSP
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still does not seem to be able to reduce the feature complexity in
a salient way. I-Vector extraction, again, serves to improve the re-
sult by a large percentage. The highest result when using i-vector
extraction is 78% when using PLP without RASTA processing or
the COMB configuration.

6. CONCLUSION

In this paper, we presented an approach for automatic language
identification on speech and acapella singing corpora. We used
PLP, MFCC, and SDC features, and ran them through an i-vector
extractor. We used the generated i-vectors as inputs for MLP and
SVM training. To our best knowledge, the i-vector approach is
new to music information retrieval. The basic idea behind it is
the removal of speaker- and channel-dependent components of the
signal. This effectively reduces irrelevance to the language iden-
tification tasks and also reduces the amount of training data mas-
sively.
Our smallest data set was the NIST 2003 Language Recognition
Evaluation (NIST2003LRE) corpus. We did not achieve good re-
sults for any feature configuration when using the MLP backend.
We believe that the small size of the corpus leads to overtraining.
I-Vector processing only amplified this problem by reducing the
amount of data even further. The SVM backend, however, pro-
duced good results of up to 94% for almost all features, with and
without i-vector extraction.
The OGIMultilang corpus is a much bigger speech corpus. Train-
ing without i-vector extraction did not work well for any feature
configuration. The best accuracy for this scenario was 52%. Fea-
ture selection using IRMFSP did not improve this result. I-Vector
extraction, however, improved the results for all feature configura-
tions immensely. We achieved results of up to 83% when i-vector
processing was performed. There does not seem to be a large dif-
ference between SVM and MLP training, with SVM having just a
slight advantage.
We expected language identification for singing to be a harder task
than for speech due to the factors described in section 2.2. The re-
sults on the YTAcap corpus turned out to be somewhat worse than
those for the OGIMultilang corpus, which is of similar size. We
observed the same effect as on OGIMultilang: Fairly bad results
on the raw features that improved by a large percentage through
i-vector extraction. In this case, the accuracy jumped from 56% to
78%.
In general, MLPs seem to work a little better when raw features
are used, while SVMs work better when i-vector processing is ap-
plied, but only by a small percentage.
Concerning the features, both PLPs and MFCCs seemed to be able
to discriminate between languages. PLPs worked best when no
RASTA pre-processing was used. We believe that this is because
the recordings are all relatively high quality and not heavily spec-
trally distorted. A higher model order did not significantly increase
the accuracy either.
MFCCs worked best when combined with deltas and double-deltas.
SDCs by themselves did not work as well as PLP or MFCC fea-
tures, but were able to increase the accuracy somewhat when com-
bined with MFCCs and their deltas. This confirms our observation
mentioned in [12].
The best accuracies were usually achieved when combining MFCCs,
MFCC deltas, and PLP features, both features covering different
relevant components.
When using an MLP backend, i-vector processing seems to in-

crease the accuracy roughly equally for each feature configuration.
Interestingly, this is not true for the SVM backend. In the SVM
experiments, MFCCs usually produced the best results when used
directly for training. I-Vector extraction provided the smallest im-
provement for this configuration, but improved the PLP configura-
tions much more.
Overall, i-vector extraction reduces irrelevance in the training data
and there leads to a more effective training. As additional bene-
fits, the training process itself is much faster and less memory is
used due to its data reduction properties. Using this system, we
achieve results that are comparable to the system described in [10]
and higher than other publications on the topic of singing language
identification. Most of these approaches are based on PPRLM,
which requires phoneme-wise annotations and a highly complex
recognition system, using both acoustic and language models. In
this respect, our system is easier to implement and merely requires
language annotations.

7. FUTURE WORK

Since our algorithm produced good results on acapella data, we
would now like to test it on polyphonic music. For this purpose,
we will integrate additional pre-processing techniques, such as vo-
cal activity detection and source separation.
We will then use the results produced by our language identifi-
cation algorithm to improve other classification solutions. Genre
classification and regional classification are of particular interest
here.
In this context, we will expand the music material to different
styles, such as opera music or especially non-western music.
We showed that the i-vector extraction algorithm improved our
classification accuracy by a large percentage. To our best knowl-
edge, it has not yet been applied to any other Music Information
Retrieval problems, such as genre recognition or emotion detec-
tion. We are going to investigate these applications as well.
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ABSTRACT
In this work we present a new scenario of analyzing and separating
linear mixtures of musical instrument signals. When instruments
are playing in unison, traditional source separation methods are not
performing well. Although the sources share the same pitch, they
often still differ in their modulation frequency caused by vibrato
and/or tremolo effects. In this paper we propose source separation
schemes that exploit AM/FM characteristics to improve the sep-
aration quality of such mixtures. We show a method to process
mixtures based on differences in their amplitude modulation fre-
quency of the sources by using non-negative tensor factorization.
Further, we propose an informed warped time domain approach
for separating mixtures based on variations in the instantaneous
frequencies of the sources.

1. INTRODUCTION

Audio source separation is a very active research field with a large
number of contributions. Applications are dependent on the con-
text of the scenario, ranging from enhancements of speech signals
to musically motivated analysis tasks.

The separation of sound sources from a single channel mixture
is considered as an under-determined case which does not have
a single solution. Knowing the way in which source signals are
mixed together is crucial to the quality of separation systems. In
the context of speech separation even unsupervised methods can
lead to good results. This is due to the fact that mixtures of speech
signals (like in a cocktail party environment) show a high degree
of statistical independence. Mixtures of musical instruments, how-
ever, are highly correlated which is a desired aim of musical per-
formances in general.

The Signal Separation Evaluation Campaign (SiSEC) is a solid
indicator of the progress in research within the field of source sep-
aration [1]. The results from 2013 [2] show that for professionally
produced music it is still difficult to achieve a high quality separa-
tion. One reason is due to the fact that the wide use of non-linear
post-processing techniques (e.g. dynamic compression or effects
like reverb) break assumptions that often are required to enable
good performance of source separation algorithms. Another rea-
son is that non-stationary effects like vibrato introduce additional
problems [3].

In most scenarios for source separation of instrument signals it
is common to assume that the spectral harmonics do only partially
overlap. This enables algorithms like non-negative matrix factor-
ization (NMF) to approximate the mixture from a lower-rank de-
composition in an unsupervised way. Such systems are described

∗ The International Audio Laboratories Erlangen are a joint institu-
tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen (IIS).

in [4] and [5]. Additionally the popularity of the class of NMF al-
gorithms can be explained by the intuitive way in which they work
on time-frequency representations of the mixture signal.

In the context of musical instrument source separation, many
researchers have focused on including prior information about the
sources in their algorithms [6]. The availability and detail of such
a-priori information varies. Often systems learn spectral as well as
temporal cues from training data or parts of the mixture where only
one instrument is active. One example of such informed source
separation systems is described by Ewert and Müller [7]. It incor-
porates the pitch and onset information encoded in a MIDI file to
improve the separation result.

Even the number of sources is a simple but very important
information for source separation algorithms. One of the main
drawbacks of many source separation systems is that they rely on
this information. In some scenarios, like popular western music,
the sources to separate are grouped into Melody + Bass + Drums
and a residual signal. Constraining the system to such a scenario
allows the results to be evaluated even if the set of sources being
separated is incomplete. Constrained systems like these are also
sufficient for real-world applications such as the eminent karaoke
scenario. Limiting the number of desired sources helps not only to
improve the performance of the algorithms but is also related to the
fact that the number of sources humans can perceive is limited, too.
Although a threshold has not been systematically addressed so far,
a variety of experiments have been carried out. David Huron found
[8] that the number of voices humans can correctly identify is up to
three. When Stöter and Schoeffler et. al. [9, 10] asked participants
to identify the number of instruments in a piece of music, the par-
ticipants were only able to identify up to three, similar to Huron’s
voice experiments. There is very little chance that listeners are
able to detect the presence of more than three sources. However in
trials with fewer than three instruments, listeners tended to be very
sensitive: One of the stimuli in the [9, 10] experiments with 1168
participants consisted of a mixture of Violin and Flute played in
unison. The results showed that 76% of the participants correctly
identified two instruments. Only 18% of the participants underes-
timated by one instrument, 6% overestimated by one instrument.

Since humans are able to reliably detect even instruments played
in unison, this is a good motivation to expect the same from an al-
gorithm. In this paper we want to address this scenario which has
not been brought up so far. We believe creating and evaluating new
algorithms for separating sources playing in unison will improve
source separation systems in general.

The remainder of this paper is organized as follows: Section 2
describes the challenges of a unison source separation scenario.
We propose techniques based on the modulation characteristics of
the signal to address the separation scenario in Section 3 and Sec-
tion 4. In Section 5 we introduce a data set for the unison scenario.
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Further we present and discuss the results from our study and a
comparison between the algorithms in Section 5.3. Conclusions
are then presented in Section 6.

2. UNISON SOURCE SEPARATION SCENARIO

Up to date there are very few proposed source separation methods
which perform good on a variety of input signals without making
general assumptions or constraints. Most of the current state-of-
the-art algorithms address specific scenarios like voice or melody
extraction, or harmonic percussive separation. Additionally as-
sumptions about the mixture itself are important, too. In this paper
we consider the linear single channel case:

x(n) =
N∑

s=1

xs(n). (1)

Describing a source separation scenario includes the number of
sourcesN and the number of desired sourcesD which is normally
smaller thanN when the desired sources contain groups of sources
like instrument classes (strings, woodwinds, etc.).

We propose a scenario where instruments play in unison. This
means that they share the same fundamental frequency (regardless
of the octave) so that the sources can overlap both in time and
frequency. In fact unison1 mixtures are meant to be as much over-
lapped as possible, hence they are very difficult to separate. How-
ever, due to masking effects, a relatively good subjective quality
for the separated sources can be obtained, even if the other sources
are not perfectly suppressed. As far as we know, there is no contri-
bution to the source separation scene that focuses on mixtures of
such unison sources.

The decomposition of sources with overlapping partials are
covered in several other publications like [3] and [11] which are
based on non-negative matrix factorization. Lin et. al. [12] address
the problem by defining invariant timbre based features. We pro-
pose to address the problem from a different perspective and focus
on analyzing the non-stationarities of the source signals. For most
musical instruments, the non-stationary features are intentionally
created, for instance with vibrato or tremolo effects, which make
them valuable to track. These non-stationarities can be modeled or
learned from the signals themselves.

In this work we assume that we can separate overlapping par-
tials of the sources based on differences in amplitude and/or fre-
quency modulation, resulting in the following model for a signal
with P commonly modulated partials

x(n) =
P∑

p=1

[(
1 + a(n)

)

· sin
(
2πfp,0

(
n+

1

f1,0

n∑

m=m0

f(m)
)
+ φp,0

)]
,

(2)

where effectively the amplitude modulation is a(n) and the fre-
quency modulation of the first partial is f(n).
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Figure 1: Example of separating a mixture of two amplitude mod-
ulated signals by NMF and Modulation-NTF.
(a) Mixture of two sinusoids at 440 Hz with AM of 4.7 Hz and
12.6 Hz (fs=8 kHz), (b) STFT (FFT length = 256), (c) Slice of
Modulation Tensor (FFT length = 256), (d) W×H Result of Non-
Negative Matrix Factorization (β = 1) after 100 iterations, (e)
G×A×S Result of Non-Negative Tensor Factorization (β = 1)
after 100 iterations,
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3. SEPARATING BY AMPLITUDE MODULATION

Amplitude modulation is normally not present, isolated in acousti-
cal instruments. However electric pianos like Rhodes or Wurlitzers
can generate a tremolo effect. Using the amplitude modulation to
separate mixtures has already been done in [13] which makes use
of the concept of Common Amplitude Modulation.

CAM is effectively the property of harmonics that share the
same amplitude modulation across the bins. One way of analyz-
ing it is a modulation spectrogram which is a frequency-frequency
representation of a time domain input signal. There are also other
ways to generate a modulation spectrum. A complete signal rep-
resentation can be archived by a modulation tensor which holds
the modulation spectrograms for each time frame. Barker and Vir-
tanen [14] found a way to utilize the modulation tensor for single
channel source separation. Standard NMF models the spectrogram
by the sum of K components which are each factored into fre-
quency/basis and time/activations components:

Xn,m ≈
K∑

k=1

Wn,k ×Hk,m. (3)

Non-negative Tensor factorization approximates a modulation ten-
sor by a product of three matrices containing the frequency/basis,
time/activation signals, and the modulation gain for each compo-
nent. Compared to [14] we choose to generate the modulation
tensor in way that is simpler and easier to invert. Barker and Vir-
tanen use a Gammatone filter bank and rectification to model the
characteristics of the human auditory system. We used a two-stage
DFT filter bank where the modulation domain is based on magni-
tude spectrograms. Although this can give perceptually less opti-
mal results, each step can be directly inverted by using the com-
plex representation. Barker already showed that the NTF based
approach gives better results on speech signals. We found that this
approach can be used to separate two instrument mixtures by their
amplitude modulation characteristics and is therefore ideal for the
unison scenario.

In Figure 1 we show the factorization of a simple amplitude
modulated input signal for comparison. The signal consists of two
sinusoids which are linearly mixed. Both share the same carrier
frequency but have different amplitude modulation frequencies.
We choose a factorization into K = 2 components. From the
activation components one can see that NMF is not able to sepa-
rate the two signals sufficiently. NTF gives a smoother activation
matrix and is able to generate the output with the separated am-
plitude modulations on each sinusoid. The modulation frequency
gain matrix shows the two modulation frequency templates and the
DC-component.

4. SEPARATING BY FREQUENCY MODULATION

Frequency modulation caused by vibrato is a very common
playing style for string instruments but also for woodwind and
brass instruments. Vibrato is an effect that is well studied espe-
cially in musicology. Performers tend to perform a vibrato in the
same way when repeating a performance. This can be exploited in
source separation scenarios. Typically, vibratos have modulation
frequencies (rates) which vary between 4 and 8 Hz. Additionally
vibrato rates vary across different instruments. In [15] the vibrato
width (frequency deviation) was found to be significantly different
between violinists and violists performers.

As with the amplitude modulated case NMF lacks the abil-
ity to model time varying frequencies since the W matrix is sta-
tionary. Several extensions for NMF have been proposed to im-
prove the decomposition quality. [16] proposes frequency depen-
dent activations matrices, [11] has developed a system which can
be described as shift invariant NMF. Another approach is to model
the spectral pattern changes by Markov chains [3]. All these ap-
proaches attempt to model the non-stationary effects within the
decomposition model. In this paper we propose a method that in-
creases the stationarity of the signal in preprocessing step and then
use the standard NMF for the decomposition.

We make use of time-warping which refers to a mapping of
the linear time scale t to a warped time scale τ via a mapping
function τ = w(t). To ensure a unique mapping, the mapping
function needs to be strictly increasing. For the discrete time case
the mapping can be achieved by a time-varying re-sampling of
the linear (i.e. regularly sampled) time signal under considera-
tion. The instantaneous sampling frequency then corresponds to
the first derivative of the mapping function. Although the mapping
can be done from any time-span I on the linear time scale to any
time span J on the warped time scale, in the discrete time case it
is advantageous to have the same number of samples in the linear
and warped time domain. This ensures that the average sampling
frequency is the same in both domains. Such time-warping ap-
proaches have already been proposed for different purposes such
as transform-based audio coding [17]. As in these applications,
we derive the mapping function from the varying instantaneous
fundamental frequency in such a manner that the variation of the
frequency is reduced or removed. To be more precise the actual
information needed is not the absolute instantaneous fundamental
frequency but only its change over time. The discrete time warp
map w[n] is then simply the scaled sum of the relative frequencies
f [n]:

w[n] = N

∑n
l=0 f [l]∑N
k=0 f [k]

0 ≤ n < N, (4)

where N being the number of samples of the signal under consid-
eration. From the requirements for the mapping function it follows
that the relative frequency f [n] has to be positive at all instants and
preferably should not exhibit large jumps. For the mapping from
linear to warped time now the linear domain sample points s[ν] for
the regularly spaced samples x[ν] in the warped domain are found
by inverting w[n]. These sample points are then used to re-sample
the linear time domain samples x[n] to the warped time domain
samples x[ν], in our case by employing an 128 times oversampled
FIR low-pass filter. This processing leads to a sampling rate con-
tour which is proportional to the pitch contour. Or in other words,
a fixed number of samples are obtained in each period of the sig-
nal with the varying fundamental frequency. Mutatis mutandis the
sample points s[ν] can be used for the re-sampling from warped
time domain to linear time domain.

In this paper the time-warping was done globally over the full
lengths of the signals under consideration. The globally time-
warped sample sequence was then used in the further processing
steps. In Figure 2 we show the results of the warping process in
the time domain.

A similar approach using frequency modulation to separate a
harmonic source from a mixture was proposed in [18]. Here the
individual lines are demodulated to the base band using a com-
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Figure 2: Example of applying warping to an input signal by using
a frequency variation contour.

bined frequency tracking/demodulation approach. The difference
to our approach is that first the absolute instantaneous frequency
for every harmonic line has to be known instead of a relative fre-
quency that is common to all harmonic lines of a single source.
This relative frequency might be obtained easier than its absolute
value for a mixed signal. Secondly every harmonic line has to be
individually frequency demodulated while in our approach the full
signal is frequency demodulated in one algorithmic step.

4.1. Pitch Variation Informed Source Separation

With the ability to remove the frequency modulation from a signal
we can then include this system in a source separation system to
address the non-stationarity issues of NMF based approaches. Fig-
ure 4 shows how this system works on a harmonic FM signal mix-
ture. Plots (a) and (b) show the two input signals which are linearly
mixed (c). For each source the warp contour needs to be calcu-
lated. The mixture is then warped with pitch variation estimates of
source 1 (d) and source 2 (e). The actual separation/filtering of the
sources is then done by using NMF which is not shown here. To
separate the components from the warped mixture we used NMF
on a spectrogram computed with a very long DFT (about 0.5 s).
NMF can work unsupervised by detecting the more tonal W com-
ponent by using a spectral flatness measure. The separated signals
(f) and (g) then need to be warped back into the original time do-
main resulting in (h) and (i).

It is important to clarify that this approach would not be able
to separate two modulating instruments playing in unison without
having prior knowledge about the individual modulation functions.
Although a pitch variation estimate might be difficult to achieve in
a mixture our approach shows that such a system can make sense.

5. EXPERIMENTS

We wanted to evaluate the methods proposed in Sections 3 and
4 so that they show the fundamental differences in their separa-
tion quality. Like in [14] we choose not to address the problem of
clustering the components after the matrix factorization operation.
Instead of processing mixtures in a A−B−AB or A−AB−B
paradigm we went for a supervised learning phase where we had
access to the original source individually. In this oracle super-
vised approach for each of the sources we then learned the spectral,
temporal (for NMF), and modulation gain components (for MOD-
NTF) and concatenated them. The learned coefficients were then
used to initialize the final factorization process. This way we can
achieve the maximum possible quality.

Instrument Vibrato General MIDI #
Violin yes 40
Viola yes 41
Violon Cello yes 42
Trumpet no 56
Trombone no 57
Horn no 60
Bariton Sax yes 67
Oboe no 68
Clarinet no 71
Flute yes 73

Table 1: Instrument item test set

5.1. Test set

To build a test set we selected 10 instrumental items noted in Ta-
ble 1. The items have each been generated by rendering C4 notes
in a state of the art software sampler. All test have a duration of
about three seconds. Items were equalized in loudness by using an
iterative calculation of the loudness algorithm of the time varying
Zwicker model. The implementation [19] was used. The 10 instru-
ment items then generated 45 unique mixtures of two instruments
each. The processing was done in 44.1 kHz / 16 bit.

5.2. Algorithms

The test set was processed by three algorithms: standard NMF,
pitch variation informed NMF (PVI-NMF) (Section 4.1) and the
non-negative tensor factorization based on modulation spectra (MOD-
NTF) as described in Section 3). All factorizations for NMF and
NTF were computed by minimizing the β = 1 divergence (Kullback-
Leibler divergence). The Pitch Variation Informed-NMF (PVI-
NMF) has been set up in the same way as the other algorithms.
We choose to calculate results with K = 2 and K = 4. The
pitch variation estimator is based on a method that was proposed
by Bäckström in 2009 [20] with a subsequent post-processing to
ensure the smoothness of the mapping.

Each of the algorithms did perform on the same filter bank
and with the same sample rate. NMF approach did use a 2048
STFT with 512 samples hop size. For the MOD-NTF a second
STFT based filter bank was used with 256 sample DFT size and
64 sample hop size. All methods use soft masking / wiener filtering
for the actual synthesis.

5.3. Results

The results were evaluated by using commonly used evaluation
measures provided by the PEASS Toolbox [21]. The evaluation
measure are:

• Overall Perceptual Score (OPS)

• Target-related Perceptual Score (TPS)

• Interference-related Perceptual Score (IPS)

• Artifacts-related Perceptual Score (APS)

• Signal to Distortion Ratio (SDRi)

• Source to Interference Ratio (SIRi)
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• Sources to Artifacts Ratio (SARi) 2

The mean values of the PEASS evaluation are provided in Ta-
ble 2. It can be seen that the SDR values give a different ten-
dency than the OPS score, showing that the differences between
both measures are substantial. Since unison mixtures are even
very challening for humans to segregate we chose to focus on the
psycho-acoustically weighted performance measures only. The re-
sults show a slightly better overall performance for the PVI-NMF.
A more fine grained overview from the OPS results experiment is
presented in Figure 3. It can be seen that results vary a lot be-
tween the mixtures. The modulation tensor factorization (MOD-
NTF) performs good on mixtures like Clarinet-Viola (71-41) or
Clarinet-Cello (71-42) where one source has vibrato and the other
does not (see plots (e,f)). Although it performs well on average,
MOD-NTF shows a high variance in the OPS results. The results
have also been evaluated and confirmed subjectively by informal
listening. Additionally we provide selected stimuli online on an
acompanying webpage 3. In general the PEASS scores give a good
indication of quality. However the artifacts that are introduced by
the standard NMF synthesis seem to be not well reflected. One
possible reason is that PEASS toolbox has not been tested on arti-
facts from unison mixtures.
Future work could include a robust multi pitch variation estima-
tor for musical instruments. Salamon and Gomez [22] describe
the current state of the art of f0 estimation. Some approaches
use source separation to estimate multiple f0 pitch tracks. There-
fore our approach shows that a robust multi pitch f0 estimate can
also help to improve source separation. In the future an iterative
multi-step procedure could lead to better results in both problem
domains.

6. CONCLUSIONS

This paper proposes a new source separation scenario for instru-
ments played in unison. It highlights the time-varying aspects of
the signal sources like amplitude or frequency modulations. By ad-
dressing these aspects, the separation quality for non-unison mix-
tures can generally be improved, too. Furthermore we present two
methods to decompose those mixtures based on differences in the
amplitude or frequency modulation of the sources. One is using a
method already published based on a modulation tensor factoriza-
tion. The other is a novel method that uses an estimate of the pitch
variation of the two input sources to warp the mixture. Within the
warped domain the frequency modulation of the desired source is
removed so that the sources can be separated more easily from the
mixture. The results of 45 mixtures have been evaluated by us-
ing the PEASS toolbox. The scores indicate an improvement of
about 2 OPS points in favor of the pitch variation informed NMF
compared to the standard NMF.

2The i indicates that these scores have been calculated by decomposi-
tion with PEASS [21] instead of BSS EVAL.

3http://www.audiolabs-erlangen.de/resources/
2014-DAFx-Unison/

Algorithm NMF PVI-NMF MOD-NTF
OPS 15.76 17.64 17.35
TPS 30.17 32.80 34.03
IPS 26.07 27.03 22.73

APS 46.14 54.74 46.06
SDRi 2.96 2.54 2.20
SIRi 2.31 1.80 3.13

SARi 22.87 23.35 26.09

Table 2: Results from Evaluation with PEASS 2.0 Toolbox [21].
Best performing algorithm is marked bold.

(a) NMF K = 2 (b) NMF K = 4

(c) PVI-NMF K = 2 (d) PVI-NMF K = 4

(e) MOD-NTF K = 2 (f) MOD-NTF K = 4

Figure 3: Results of Overall Perceptual Score. Each matrix rep-
resents the mean OPS values for each individual mixture of two
sources. The x and y axis represent the instrument IDs in General
MIDI notation (See Table 1).
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(a) Source 1 (b) Source 2

(c) Mixture

(d) Mix. warped by Pitch 1 (e) Mix. warped by Pitch 2

(f) Target 1 warped (g) Target 2 warped

(h) Target 1 unwarped (i) Target 2 unwarped

Figure 4: Example of pitch variation informed NMF in the warped
domain. Time is shown on horizontal axes. Frequency is shown on
vertical axes.

7. REFERENCES

[1] Emmanuel Vincent, Shoko Araki, Fabian Theis, Guido
Nolte, Pau Bofill, Hiroshi Sawada, Alexey Ozerov, Vikrham
Gowreesunker, Dominik Lutter, and Ngoc Q. K. Duong,
“The signal separation evaluation campaign (2007–2010):
Achievements and remaining challenges,” Signal Process-
ing, vol. 92, no. 8, pp. 1928–1936, 2012.

[2] Nobutaka Ono, Zbynek Koldovsky, Shigeki Miyabe, and

Nobutaka Ito, “The 2013 signal separation evaluation cam-
paign,” in Proceedings of the IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), 2013,
pp. 1–6.

[3] Masahiro Nakano, Jonathan Le Roux, Hirokazu Kameoka,
Yu Kitano, Nobutaka Ono, and Shigeki Sagayama, “Non-
negative matrix factorization with markov-chained bases for
modeling time-varying patterns in music spectrograms,” in
Latent Variable Analysis and Signal Separation, pp. 149–
156. Springer, 2010.

[4] Paris Smaragdis and Judith C Brown, “Non-negative ma-
trix factorization for polyphonic music transcription,” in
Proceedings of the IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA), 2003, pp.
177–180.

[5] Tuomas Virtanen, “Monaural sound source separation by
nonnegative matrix factorization with temporal continuity
and sparseness criteria,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 15, no. 3, pp. 1066–
1074, 2007.

[6] Alexey Ozerov, Emmanuel Vincent, and Frédéric Bimbot, “A
general flexible framework for the handling of prior infor-
mation in audio source separation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 20, no. 4, pp.
1118–1133, 2012.

[7] Sebastian Ewert and Meinard Müller, “Using score-informed
constraints for NMF-based source separation,” in Proceed-
ings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2012, pp. 129–
132.

[8] D. Huron, “Voice denumerability in polyphonic music of ho-
mogeneous timbres,” Music Perception, pp. 361–382, 1989.

[9] Fabian-Robert Stöter, Michael Schoeffler, Bernd Edler, and
Jürgen Herre, “Human ability of counting the number of in-
struments in polyphonic music,” in Proceedings of Meetings
on Acoustics. Acoustical Society of America, 2013, vol. 19.

[10] Michael Schoeffler, Fabian-Robert Stöter, Harald Bayerlein,
Bernd Edler, and Jürgen Herre, “An experiment about es-
timating the number of instruments in polyphonic music: a
comparison between internet and laboratory results,” in Pro-
ceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 2013.

[11] Paris Smaragdis, Bhiksha Raj, and Madhusudana VS
Shashanka, “Sparse and shift-invariant feature extraction
from non-negative data.,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2008, pp. 2069–2072.

[12] Yiju Lin, Wei-Chen Chang, Tien-Ming Wang, Alvin WY Su,
and Wei-Hsiang Liao, “Timbre-constrained recursive time-
varying analysis for musical note separation,” in Proceedings
of the 16th International Conference on Digital Audio Effects
(DAFx), 2013, pp. 2–6.

[13] Yipeng Li, John Woodruff, and DeLiang Wang, “Monaural
musical sound separation based on pitch and common ampli-
tude modulation,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 17, no. 7, pp. 1361–1371, 2009.

DAFX-6

DAFx-240



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

[14] Tom Barker and Tuomas Virtanen, “Non-negative tensor fac-
torisation of modulation spectrograms for monaural sound
source separation,” in Proceedings of INTERSPEECH, 2013.

[15] Rebecca Bowman MacLeod, “Influences of dynamic level
and pitch height on the vibrato rates and widths of violin and
viola players,” 2006.

[16] Romain Hennequin, Roland Badeau, and Bertrand David,
“NMF with time–frequency activations to model nonstation-
ary audio events,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 4, pp. 744–753, 2011.

[17] Bernd Edler, Sascha Disch, Stefan Bayer, Fuchs Guillaume,
and Ralf Geiger, “A Time-Warped MDCT Approach to
Speech Transform Coding,” in 126th AES Convention, Mu-
nich, Germany, May 2009, Preprint 7710.

[18] Avery Wang, “Instantaneous and frequency-warped tech-
niques for source separation and signal parametrization,” in
Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (ASSP), 1995, pp. 47–50.

[19] “GENESIS S.A.: Loudness toolbox (version 1.2),” 2012.

[20] Tom Bäckström, Stefan Bayer, and Sascha Disch, “Pitch
variation estimation,” in Proceedings of INTERSPEECH,
2009, pp. 2595–2598.

[21] Valentin Emiya, Emmanuel Vincent, Niklas Harlander, and
Volker Hohmann, “Subjective and objective quality assess-
ment of audio source separation,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 19, no. 7, pp.
2046–2057, 2011.

[22] Justin Salamon and Emilia Gómez, “Melody extraction from
polyphonic music signals using pitch contour characteris-
tics,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 6, pp. 1759–1770, 2012.

[23] Romain Hennequin, Roland Badeau, and Bertrand David,
“Time-dependent parametric and harmonic templates in non-
negative matrix factorization,” in Proceedings of the Interna-
tional Conference on Digital Audio Effects (DAFx), 2010, pp.
246–253.

[24] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte,
“Performance measurement in blind audio source separa-
tion,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[25] Estefanía Cano, Christian Dittmar, and Gerald Schuller, “Re-
thinking sound separation: Prior information and additivity
constraint in separation algorithms,” in Proceedings of the
16th Int. Conference on Digital Audio Effects (DAFx), 2013.

[26] Alexey Ozerov, Ngoc Q. K. Duong, and Louis Chevallier,
“Weighted nonnegative tensor factorization: on monotonic-
ity of multiplicative update rules and application to user-
guided audio source separation,” Tech. Rep., 2013.

[27] Kazuyoshi Yoshii, Ryota Tomioka, Daichi Mochihashi, and
Masataka Goto, “Beyond NMF: Time-domain audio source
separation without phase reconstruction,” in Proceedings
of the International Society for Music Information Retrieval
Conference (ISMIR), 2013.

DAFX-7

DAFx-241



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

DAFx-242



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

A VERY LOW LATENCY PITCH TRACKER FOR AUDIO TO MIDI CONVERSION

Olivier Derrien,

Université de Toulon & CNRS LMA
Laboratoire de Mechanique et d’Acoustique

31 chemin Joseph-Aiguier, 13402 Marseille Cedex 20
derrien@lma.cnrs-mrs.fr

ABSTRACT
An algorithm for estimating the fundamental frequency of a single-
pitch audio signal is described, for application to audio-to-MIDI
conversion. In order to minimize latency, this method is based on
the ESPRIT algorithm, together with a statistical model for partials
frequencies. It is tested on real guitar recordings and compared to
the YIN estimator. We show that, in this particular context, both
methods exhibit a similar accuracy but the periodicity measure,
used for note segmentation, is much more stable with the ESPRIT-
based algorithm. This allows to significantly reduce ghost notes.
This method is also able to get very close to the theoretical mini-
mum latency, i.e. the fundamental period of the lowest observable
pitch. Furthermore, it appears that fast implementations can reach
a reasonable complexity and could be compatible with real-time,
although this is not tested is this study.

1. INTRODUCTION

MIDI (Musical Interface for Digital Instruments) is the most widely
used standard for connecting digital instruments. It specifies both
the hardware interface and the data transmission protocol. It allows
for instance to encode a melody as a collection of notes (note start-
ing points, durations, pitches...) and to control a compatible syn-
thesizer with an external interface, for instance a digital keyboard
or a "wind controller" which mimics a wind instrument. However,
for some instruments like guitars, designing an appropriate digital
controller is difficult. Then, the original acoustic instrument can
be used as a MIDI controller by adding an audio-to-MIDI con-
verter. Such a device basically consists of a microphone that cap-
tures the acoustic signal produced by the instrument and a pitch-
tracker which estimates the evolution of pitch during time. For gui-
tars, one usually uses an under-saddle pickup for each string, con-
nected to a series of monophonic pitch trackers, one for each string
[1]. Such MIDI converters have been marketed for a few decades,
but suffer from many flaws: latency, ghost notes, octave errors...
The performance constantly improve, but latency still remains an
issue: With an up-to-date Roland GR55 (built-in audio-to-MIDI
converter and synthesizer) connected to a compatible acoustic gui-
tar (Godin Multiac), we measured an average latency of 50 ms
between the output of the under-saddle pickups and the audio out-
put of the synthesizer (constant over the guitar frequency-range).
Thus, playing a guitar synth is not easy and requires to develop
specific skills.

In this study, we focus on the issue of latency for monophonic
pitch tracking. We assume that pitch estimation is similar to fun-
damental frequency detection (noted f0), and that the observed
signal is harmonic. It appears that latency has several sources
that add up. First, the "algorithmic delay", which is inherent to

the pitch-detection algorithm. It corresponds to the length of the
time-interval that is required for the algorithm to give an accurate
estimation. This delay has a fundamental lower bound which re-
lated to the minimum f0 value than can be detected. For a "Span-
ish" guitar1, the minimum f0 value is approximately 80 Hz, which
corresponds to a minimum delay of 12.5 ms. Then, the "com-
putational delay", which is the time required by the digital signal
processor (DSP) to perform the pitch estimation. This delay can
be reduced by increasing the speed of the DSP.

The issue of pitch detection is a classical problem and many
algorithms have been proposed in the past decades. These meth-
ods can be roughly classified in two categories: time-domain and
frequency-domain. Time-domain methods usually consist of find-
ing a maximum of the auto-correlation function (or another simi-
lar function), while frequency-domain methods rely on a spectral
analysis stage followed by a peak-picking stage. It was proved
that time-domain methods are usually more efficient for real-time
estimation of single-pitch [2]. Especially, the YIN algorithm, pro-
posed by de Cheveigné et al. [3], can be considered as a reference
f0 estimator. It is based on the observation of a "cumulative mean
normalized difference function", which is characterized by dips at
the time-lags corresponding to the periodicity. This method is ac-
curate, has a moderate complexity and a relatively low algorithmic
delay. In [2], the delay of the full method was estimated around
30 ms for a "Spanish" guitar. However, this value is still approxi-
mately twice the theoretical minimum delay.

In this paper, we consider a new approach to reduce the al-
gorithmic delay. Most f0 estimators are non-parametric methods
in the sense that they do not use a priori information about the
signal. In contrast, parametric methods, which rely on a signal
model, are known to be more precise when the observed signal
correctly fits the model, but usually fail in the opposite case. For
that reason, non-parametric methods are often considered more ro-
bust. However, audio signals coming from an under-saddle guitar
pickup usually produce a quasi-harmonic sound with a very low
noise, which justifies the use of a parametric method based on a si-
nusoidal signal model. In this study, we choose the Exponentially
Damped Sinusoidal (EDS) model. The model parameters are esti-
mated with a method derived from the ESPRIT algorithm [4]. This
phase is similar to a spectral analysis and a peak-picking stage. To
fulfill the pitch estimation, we use a spectral f0 estimator inspired
by the one proposed by Doval et al. [5]. Algorithms derived from
ESPRIT are known for their good frequency resolution, but also
have the reputation to require high computation time. However,
fast algorithms have been proposed in the last decade [6, Chapter

1A "Spanish" guitar means a 6 string instrument tuned to the standard
scale E-A-D-G-B-E. Thus, the lowest note is E2, corresponding to a fun-
damental frequency of 82.41 Hz.
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V] which exhibit a complexity not much higher than a FFT. Thus,
this method is theoretically suitable for real-time implementation,
although this is not tested is this study.

This paper is organized as follows: In a first part, we consider
more precisely the issue of algorithmic delay in a f0 estimator. In
a second part, we describe the proposed method. In a third part, we
give results obtained from real guitar sounds both for our algorithm
and for the YIN estimator, concerning pitch accuracy and delay. In
the last part, we draw conclusions.

2. THE ISSUE OF ALGORITHMIC DELAY

Most f0 estimators are frame-based methods. An input buffer of
N samples is used, and the estimation of f0 is made every a sam-
ples (a ∈ N r {0}). In other words, a sliding analysis window
of N samples is used, with a hop-size a. The f0 estimator should
ideally be associated to the estimation of a "periodicity measure",
i.e. whether the signal is pitched or not. A common periodicity
measure is obtained by computing the energy of the periodic com-
ponents in the signal, called "voiced" components in the case of a
speech signal [7]. Such a periodicity measure influences the ac-
curacy of the note segmentation process: A simple way to detect
notes is to threshold the periodicity measure.

It is often believed that the algorithmic delay is equal to the
window length, but this more complex. As exemplified on figure
1, the algorithmic delay corresponds to the time-interval between
the beginning of a note and the last sample of the first window
for which f0 estimate is accurate (and eventually the periodicity
measure is higher than the threshold). Sometimes, the algorithm
returns the accurate f0 even if the pitched signal does not "fill"
the window (plotted case). Then, the delay can be shorter that N
samples. Sometimes, the estimator takes some time to return the
accurate f0 and the delay can be longer that N samples.

Figure 1: Measurement of the algorithmic delay.

As explained in [3], performing a correct f0 estimation re-
quires that the window length is no shorter than the largest ex-
pected period. But, according to the well known rule of thumb, a
correct estimation requires enough signal to cover twice the largest
period. Thus, the minimum delay is equal to 1/fmin

0 , fmin
0 being

the lowest f0 value than can be detected. As explained previously,
this corresponds to approximately 12.5 ms for a "Spanish" gui-
tar. As a consequence, the window length N must be higher that
fs/f

min
0 where fs is the sampling frequency. But practically, we

expect a minimum delay of 25 ms.

3. THE PROPOSED METHOD

This method is divided in two stages: in the first one, the most sig-
nificant sinusoidal components are extracted according to a signal
model. Then, in the second stage, the most probable fundamental
frequency is estimated using a statistical model.

3.1. Sinusoidal modeling

In this part, we describe the signal model and the estimation algo-
rithm. Both have been extensively discussed in the literature. We
choose to reproduce this description from a previous work [8] in
order to render the paper self-contained.

In the EDS model, the signal to be analyzed is written:

x[n] = s[n] + w[n], (1)

where the deterministic part s[n] is a sum of K damped sinusoids:

s[n] =

K−1∑

k=0

αkz
n
k . (2)

Complex amplitudes are defined as αk = ak e
iφk (containing ini-

tial amplitude ak and phase φk), and poles are defined as zk =
e−dk+2iπνk (containing damping dk and normalized frequency
νk). The stochastic part w[n] is a gaussian white noise.

The estimation algorithm consists in finding the best values of
K, αk and zk for a given signal in the least square sense. In this
study, an estimation algorithm proposed by Badeau et al. [4] is
used, which is derived from the ESPRIT algorithm. The principle
consists of performing an SVD on an estimate of the signal cor-
relation matrix. The eigenvectors corresponding to the K highest
eigenvalues correspond to the so-called signal space, while the re-
maining vectors correspond to the so-called noise space. The shift
invariance property of the signal space allows a simple solution for
the optimal poles values zk. Then, the amplitudes αk can be re-
covered by solving a standard least square problem. The algorithm
can be described as follows:

We define the signal vector:

x =
[
x[0] x[1] . . . x[N − 1]

]T
, (3)

where N is the length of the analysis window. We assume that N
is even. The Hankel signal matrix is defined as:

X =




x[0] x[1] . . . x[Q− 1]
x[1] x[2] . . . x[Q]

...
...

...
x[R− 1] x[R] . . . x[N − 1],


 , (4)

where Q,R > K and Q+R− 1 = N . Q ≈ R was proved to be
an efficient solution, thus we chooseQ = N/2 andR = N/2+1.
We also define the amplitude vector:

α =
[
α0 α1 . . . αK−1

]T
, (5)

and the Vandermonde matrix of the poles:

ZN =




1 1 . . . 1
z0 z1 . . . zK−1

...
...

...
...

zN−1
0 zN−1

1 . . . zN−1
K−1


 . (6)
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Performing a SVD onX leads to:

X = [U1U2]

[
Σ1 0
0 Σ2

] [
V1

V2

]
, (7)

where Σ1 and Σ2 are diagonal matrices containing respectively
the K largest singular values and the remaining singular values.
[U1U2] and [V1V2] are respectively the corresponding left and
right singular vectors. The shift-invariance property of the signal
space yields to:

U↓1Φ1 = U↑1 , V ↓1 Φ2 = V ↑1 , (8)

where the poles are eigenvalues of matrix Φ1 and Φ2. (.)↑ and
(.)↓ respectively stand for the operators that discard the first line
and the last line of a matrix. Here, we estimate:

Φ1 = (U↓1 )
† U↑1 , (9)

where (.)† denotes the pseudoinverse operator. The estimates of
zk are obtained by diagonalization of Φ1. The associated Vander-
monde matrix ZN is computed. Finally, the estimates of ampli-
tudes with respect to the least square criterion are obtained by:

α = (ZN )†x. (10)

Badeau et al. also proposed a criterion (ESTER) which mea-
sures the adequacy between the signal and the model [9]. It is
based on the fact that equations (8) are strictly verified only when
the signal exactly follows the EDS model defined by equation (2)
without noise. In the general case, a distance between U↑1 and
U↓1Φ1 can be used to measure the model error. Is was observed
that the original ESTER criterion naturally favors low values for
the model order K. In order to minimize this effect, we propose a
modified version of this criterion:

J =
(K − 1)2

‖U↑1 −U↓1Φ1‖2
. (11)

The numerator simply performs a normalization of the denomina-
tor by the size of the matrix inside the norm. A high value for J
means a good match between the signal and the model. This crite-
rion can be used to automatically determine the best model order
K, or in our case, to derive a periodicity measure.

3.2. Fundamental frequency estimation

It is assumed that each damped sinusoid in the EDS decomposi-
tion corresponds to a partial. Its frequency is related to the pole
estimate by fk = fsνk = fs

2π
arg(zk). Doval et al. proposed a

statistical method that allows estimating the most probable funda-
mental frequency of a harmonic signal given a set of partials [5].
The main idea is to compute a likelihood function of the funda-
mental frequency based on a probabilistic model of the observed
partials. The best estimate for the fundamental frequency is the
global maximum of this function. In the original method, the sta-
tistical model is elaborated and has many parameters. Estimating
these parameters requires a learning database of recorded notes.
Furthermore, the computation of the likelihood function can be
time-consuming.

With our application, a low-complexity algorithm is desirable.
We also wish that our method does not depend on a learning data-
base. Thus, we modify the model in order to reduce the complexity

Figure 2: Classification of partials for a given f0.

and to minimize the number of parameters. In particular, the dis-
tribution of energy between partials is not modeled. This probably
degrades the efficiency of the f0 estimation compared to the orig-
inal method, but it happens to be sufficient for this application.

For a given value of f0, we define a set of frequency intervals
Im centered on mf0:

Im =

[(
m− 1

2

)
f0,

(
m+

1

2

)
f0

]
, m ∈ N r {0}, (12)

which define a partition of the frequency scale. The partials are
dispatched in these intervals according to their frequency fk. Some
intervals can contain several partials, and some others can be empty.
In each non-empty interval, we define the most probable "har-
monic partial" as the one which frequency is closer to mf0, noted
fhm. The others are called "supplementary partials" (see figure 2).
The likelihood function is written as:

L(f0) =

[ ∏

m∈M
g

(
fhm
f0
−m

)]
PS(f0) PE(f0), (13)

whereM is the set of indices m corresponding to non-empty in-
tervals Im. The first term is the a posteriori probability to observe
the set of harmonic partials. The second and third terms, PS(f0)
and PE(f0), are respectively the a posteriori probability to ob-
serve the set of supplementary partials and empty intervals. g is a
probability function that models the frequencies of harmonic par-
tials, which is assumed to be gaussian:

g

(
fhm
f0
−m

)
∝ e−

1
σ2

(
fhm
f0
−m

)2

. (14)

σ2 represents the variance of the reduced frequencies fhm/f0 around
the mean value m. PS(f0) and PE(f0) are estimated by:

Ps(f0) = 1−
(
NS
K

)αS
, PE(f0) = 1−

(
NE
M

)αE
, (15)

where NS is the number of supplementary partials, NE the num-
ber of empty intervals and M the total number of intervals. αS
and αE are constants that allow adjusting the influence of NS and
NE on the likelihood function.

Thus, when the frequencies of the harmonic-partials are close
to mf0, the likelihood increases. When the number of supplemen-
tary partials or empty intervals increases, the likelihood decreases.
This method naturally avoids octave errors: A lower (resp. higher)
octave generates supplementary partials (resp. empty intervals),
which lowers the probability PS(f0) (resp. PE(f0)) and finally
lowers the likelihood. However, this requires a fine tuning on αS
and αE .
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Figure 3: Outputs of the estimation process for a short sequence of notes, ESPRIT (left column) and YIN (right column). First row: Signal
waveform. Second row: MIDI note returned by the algorithm. Third row: Periodicity measure (blue) and threshold (red), log scale. Fourth
row: Final MIDI note after thresholding the periodicity measure.

3.3. Implementation details

The EDS estimation algorithm is applied on analysis segments
without weighting function (also called "rectangular analysis win-
dow" in the literature). The model orderK can be set to a constant,
or one can define maximum and minimum values and use the ES-
TER criterion to select the optimal order. From our experiments
on isolated guitar notes, it appears that K = 6 is good choice for
a constant. Otherwise, K may vary between 4 and 12. Choosing a
constantK saves execution time but this is sub-optimal. More pre-
cisely, bass notes usually have more harmonics than treble notes.
Observing a larger set of harmonics on bass notes is desirable be-
cause these notes are more difficult to detect (there are fewer fun-
damental periods in the analysis window), and a larger set of har-
monics gives a more robust estimation of f0.

A periodicity measure ideally measures the energy of the peri-
odic component in the signal. The criterion J defined in equation
(11) is simply a ratio (without dimension) that measures the signal-
to-model adequation. Thus, we derive our periodicity measure by
multiplying J by the energy of the signal in the analysis window.

The estimation of f0 implies computing the likelihood for all
possible values of f0. This can be accelerated by testing only dis-
crete values, for instance on the tempered scale. If a finer esti-
mation is required, a refinement stage can be added [5]. We set
σ = 1/8, αS = 8 and αE = 4. This set of parameters appears to
give a robust estimation over all the guitar frequency range. How-
ever, it is possible to choose a different set of parameters for each
f0 which could improve the detection accuracy.

Concerning complexity, ESPRIT is obviously the most crit-
ical part. A non-optimized version of ESPRIT has a complex-
ity in O(N3) which is hardly suitable for real-time implementa-
tion. But a fast implementation of ESPRIT [6] has a complex-

ity in O(KN(K + log(N))). When K is small, this reduces to
O(KN log(N)), which is not much more than a FFT. When the
overlap between adjacent analysis windows is high, using adaptive
algorithms allow to reduce again the complexity [6].

4. RESULTS AND DISCUSSION

In this section, we report test results for our algorithm and the
YIN estimator on the same audio excerpts. The signal is the out-
put of an under-saddle piezo-pickup on a solid-body acoustic gui-
tar. The original signal is sampled at 44.1 kHz, downsampled at
11.025 kHz to reduce complexity. This appears to be sufficient for
estimating the highest pitch on a Spanish guitar (between 930 and
1200 Hz). The implementation is in Matlab, and thus the estima-
tion is an offline process. According to the results given in section
2, the minimum buffer length is N = 138 for fmin

0 = 80 Hz.
We choose for both methods a hop-size of a = 8 samples, which
corresponds to 0.72 ms.

For the YIN estimator, the author’s implementation [10] is
used. For the proposed method, the implementation of the ESPRIT-
based estimator relies on the DESAM Toolbox [11], which is non-
optimized. The minimum f0 is set to 80 Hz for both methods.
Buffer length was adjusted so that a correct estimation of f0 is
obtained for the whole guitar range. N = 300 is the minimal
value for the YIN estimator, and N = 260 is the minimal value
for the ESPRIT-based method. The YIN estimator gives a con-
tinuous frequency estimation that we round to the tempered scale.
The new method is implemented only for discrete f0 values cor-
responding to the tempered scale. Frequencies are then converted
into MIDI note index for both methods. The periodicity measure
in the case of YIN is the inverse of the so-called "aperiodicity mea-
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Figure 4: Outputs of the estimation process for E2 note, ESPRIT (left column) and YIN (right column). First row: Signal waveform. Second
row: MIDI note returned by the algorithm (blue) and theoretical value (red). Third row: Periodicity measure (blue) and threshold (red),
log scale. Fourth row: Final MIDI note after thresholding the periodicity measure (blue) and reference value (red). Time origin is manually
aligned with the onset.

sure" returned by the algorithm [10]. For both methods, the note
segmentation is obtained by thresholding the periodicity measure.
The thresholds were adjusted empirically in order to get accurate
segmentation on several test recordings. The threshold was set to
100 for ESPRIT and to 60 for YIN. Although, in a finely tuned
application, a different threshold could be set for each string.

On figure 3, we plot the results for both algorithms on a se-
quence of high-pitched notes played on the same string, with a
pitch-bend during the third note. The estimated MIDI note is accu-
rate and stable for both methods when the signal is stationary. As
expected, both return insignificant pitch values between the notes.
The case of the periodicity measure is more contrasted: With the
YIN algorithm, the periodicity evolves sharply in time, but is not
very stable. One can not define a threshold on the periodicity mea-
sure that avoids ghost notes. With ESPRIT, the periodicity is more
stable and an accurate thresholding can avoid most ghost notes, but
it evolves more slowly in time.

On figure 4, we plot the results for a low-pitch single note (E2),
which is the lowest note on a Spanish guitar, and zoom around the
onset. With both methods, the estimated MIDI note is accurate
and stable after a transition phase. As regards the algorithmic de-
lay (we do not consider the computational delay in this section),
the ESPRIT-based method returns the correct raw MIDI note af-
ter 12 ms, which is approximately one period of the signal (i.e.
the theoretical minimum value), whereas YIN returns the correct
raw MIDI note after 20 ms. However, one must take into account
the periodicity measure to evaluate the actual delay. Both methods
exhibit a raising front on the periodicity which allows a precise
thresholding, approximately 12 ms after the onset for the ESPRIT-
based method and 35 ms after the onset for the YIN algorithm.
This is close to the value obtained by Knesebeck et al. in [2].

On figure 5, the results for a high-pitch single note (E4) are
plotted. As expected, the results are globally similar to the previ-
ous case because the analysis parameters (especially the window
size) did not change. However, one can see that the periodicity
measure is less sharp with ESPRIT: there is a shelf between 12 and
24 ms that could extend the delay, or even generate ghost notes, de-
pending on the threshold value. This can be explained by the fact
that the signal exhibits a pseudo-periodicity before the onset that
might come from the interaction between the string and the pick.
The periodicity onset is sharper with YIN.

5. CONCLUSION

In this paper, an algorithm for estimating the fundamental fre-
quency of single-pitch notes was described. The application to
audio-to-MIDI conversion for guitar was especially considered.
This application requires very-low algorithmic delay, which is still
an issue with state-of-the-art pitch trackers. In order to minimize
this delay, a new method was proposed. The first stage, equiva-
lent to a spectral peak-picking algorithm, uses an algorithm from
the literature derived form the ESPRIT method. The second stage
is a fundamental frequency estimator inspired by the method pro-
posed by Doval et al., which consists in maximizing a likelihood
function. The new method was tested on real guitar recordings and
was compared to the YIN estimator proposed by de Cheveigné et
al. which can be considered as a reference method. It was showed
that, on this test material, both methods exhibit a similar accu-
racy, but it is important to notice that only the closest MIDI note
was considered, and not the continuous fundamental frequency es-
timation. Concerning the periodicity measure which is used for
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Figure 5: Outputs of the estimation process for E4 note, ESPRIT (left column) and YIN (right column). First row: Signal waveform. Second
row: MIDI note returned by the algorithm (blue) and theoretical value (red). Third row: Periodicity measure (blue) and threshold (red),
log scale. Fourth row: Final MIDI note after thresholding the periodicity measure (blue) and reference value (red). Time origin is manually
aligned with the onset.

note segmentation, the new method was found more stable than
the YIN estimator. This allows to significantly reduce ghost notes
that are commonly observed in audio-to-MIDI conversion. It was
also showed that the ESPRIT-based method is able to provide note
tracking with an algorithmic delay that is very close to the theo-
retical limit, i.e. the fundamental period of the lowest observable
pitch, which is not the case with the YIN method. For that reason,
this new estimator may allow to significantly reduce the latency of
audio-to-MIDI conversion. However, the issue of computational
cost is crucial. The YIN estimator is a fast method, well suited for
real-time implementation. In this preliminary study, our method
was only tested off-line using a non-optimized implementation in
Matlab. But theoretical studies have showed that fast implemen-
tations of the ESPRIT algorithm can reach a reasonable complex-
ity in O(KN log(N)) where K is the number of partials to be
observed (typically 6) and N is the length of the analysis win-
dow (here less than 300 points). This is not much more than a
FFT, which means that an optimized version would be theoreti-
cally compatible with real-time. This point will be investigated in
the future.
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ABSTRACT

Time-scale modification (TSM) algorithms have the pur-
pose of stretching or compressing the time-scale of an in-
put audio signal without altering its pitch. Such tools are
frequently used in scenarios like music production or music
remixing. There exists a large variety of different algorith-
mic approaches to TSM, all of them having their very own
advantages and drawbacks. In this paper, we present the
TSM toolbox, which contains MATLAB implementations
of several conceptually different TSM algorithms. In partic-
ular, our toolbox provides the code for a recently proposed
TSM approach, which integrates different classical TSM al-
gorithms in combination with harmonic-percussive source
separation (HPSS). Furthermore, our toolbox contains sev-
eral demo applications and additional code examples. Pro-
viding MATLAB code on a well-documented website under
a GNU-GPL license and including illustrative examples, our
aim is to foster research and education in the field of audio
processing.

1. INTRODUCTION

Time-scale modification (TSM) is the task of manipulat-
ing an audio signal such that it sounds as if its content was
performed at a different tempo. TSM finds application for
example in music remixing where it is used to adjust the
playback speed of existing recordings such that they can be
played simultaneously at the same tempo [1, 2]. Another
field of application is the adjustment of the audio streams in
video clips. For example, when generating a slow motion
video, TSM can be used to synchronize the audio material
with the visual content [3].

There exists a large variety of different TSM algorithms
which all have their respective advantages and drawbacks.
Some of the TSM procedures yield results of high percep-
tual quality only when applied to a certain class of audio sig-
nals. For example, ‘classical’ well-known TSM algorithms
like WSOLA [4] or the phase vocoder [5, 6] are capable of

∗ The International Audio Laboratories Erlangen are a joint institu-
tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS.

Figure 1: General processing pipeline of TSM procedures.

preserving the perceptual quality of harmonic signals to a
high degree, but introduce noticeable artifacts when modi-
fying percussive signals. However, it has been shown that
it is possible to substantially reduce artifacts by combining
different TSM procedures. For example, in [7], a given au-
dio signal is first decomposed into a harmonic and a per-
cussive component. Afterwards, the two components are
processed with different classical TSM algorithms, and fi-
nal output signal is obtained by superimposing the two TSM
results.

To foster research and to obtain a better understanding
of TSM algorithms, we present in this paper the TSM tool-
box. Published under a GNU-GPL license at [8], this self-
contained toolbox serves various purposes. First, it delivers
basic tools to work in the field of TSM. The toolbox in-
cludes well-documented reference implementations of the
most important classical TSM algorithms within a unified
framework. This not only allows users and researchers to
get a better feeling for TSM results by experimenting with
the algorithms, but also gives insights into implementation
details and potential pitfalls. Second, to give an exam-
ple of how those classical algorithms can be combined to
improve TSM results, the toolbox also supplies the code
of a recently proposed TSM approach based on harmonic-
percussive source separation (HPSS), also including the
code of the HPSS procedure itself. Third, the toolbox pro-
vides a MATLAB wrapper function for a commercial, pro-
prietary, and widely used TSM algorithm. Because of its
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‘state-of-the-art’ character, this is particularly interesting
when conducting listening experiments which are the most
common way of judging the perceptual quality of TSM re-
sults. Finally, the toolbox provides additional code for var-
ious example applications. Such applications include the
automated generation of interfaces for comparing TSM re-
sults, the non-linear synchronization of audio recordings,
and the pitch-shifting of audio signals. Although there al-
ready exist MATLAB implementations of individual TSM
algorithms (for example [9, 10]), we believe that supplying
an entire collection of different TSM approaches along with
example applications within a unifying framework can be
highly beneficial for both researchers as well as educators
in the field of audio processing.

The remainder of this paper is structured as follows. In
Section 2, we briefly review the basics of TSM in general as
well as the TSM algorithms included in the TSM toolbox.
Then, in Section 3, we describe the MATLAB functions
contained in the toolbox. Some of the demo applications
included in the toolbox are discussed in Section 4. Finally,
in Section 5, we conclude this paper with some general re-
marks.

2. TIME-SCALE MODIFICATION

Most TSM procedures follow a common basic strategy
which is sketched in Figure 1. Given an original audio sig-
nal x as an input, the first step of most TSM algorithms
is to split up the waveform into short overlapping analysis
frames which are spaced apart by an analysis hopsize Ha.
In a second step, these frames are relocated on the time-
axis to have a synthesis hopsizeHs and furthermore suitably
adapted. While the relocation accounts for the actual mod-
ification of the time-scale of the audio signal, the objective
of the adaption is to reduce possible artifacts introduced by
the frame relocation. The modified frames, also known as
synthesis frames, are then superimposed to form the output
of the algorithm. The output signal is a time-scale modified
version of the input signal x, altered in length by a constant
stretching factor of α = Hs/Ha.

The main differences between most procedures are
therefore the strategies of how the analysis frames are cho-
sen and how they are modified to form the synthesis frames.
In the following, we review some of these strategies.

2.1. Overlap-Add (OLA)

One of the most basic TSM algorithms is known as
Overlap-Add (OLA). In OLA, the synthesis frames are
computed by just windowing the analysis frames with a
window function w and not processing them any further.
Although OLA is very efficient, adding up the unmodi-
fied synthesis frames usually introduces phase discontinu-

Figure 2: The principle of OLA TSM. (a): Input signal x
(solid line). The analysis frames are indicated by the win-
dow functions (dotted lines). (b): One synthesis frame. (c):
Output signal as sum of all synthesis frames.

ities into the output signal. Periodic, and therefore har-
monic structures in the input signal are not preserved (see
Figure 2). Perceptually, this manifests itself as strong har-
monic artifacts in the output signal. However, especially
when choosing the length of the analysis frames to be very
short, OLA is particularly successful in preserving percus-
sive sounds. This can be seen for example in Figure 3. Note
that the sharp peak-like onsets which are visible in the orig-
inal waveform (see Figure 3a) are preserved well by OLA
(see Figure 3b).

2.2. Waveform Similarity Overlap-Add (WSOLA)

One way of avoiding phase discontinuities as introduced
by OLA is to choose the analysis frames such that suc-
cessive synthesis frames better fit together when adding
them up. The Waveform Similarity Overlap-Add algo-
rithm (WSOLA) [4] achieves this by introducing an anal-
ysis frame position tolerance ∆max. The position of each
analysis frame in the input signal may be shifted on the
time-axis by some ∆∈[−∆max:∆max] such that the wave-
forms of two overlapping synthesis frames are as similar as
possible in the overlapping regions. Afterwards, the frames
are windowed as in OLA and added up to form the out-
put signal. Note that WSOLA reduces to OLA when us-
ing ∆max = 0. The introduced tolerance for the analysis
frames strongly reduces artifacts resulting from phase dis-
continuities. However, especially at transients in the input
signal, the algorithm introduces noticeable stuttering arti-
facts in the output signal. These artifacts originate from
shifted frame positions which tend to cluster around tran-
sients in the input signal. In the output signal, the transients
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Figure 3: TSM results of different algorithms for an audio
recording of a violin and castanets. (a): Original waveform.
(b): OLA. (c): WSOLA. (d): Phase vocoder. (e): Phase
vocoder with identity phase locking. (f): TSM based on
HPSS. (g): TSM based on the commercial élastique algo-
rithm.

are therefore duplicated several times which results in the
stuttering sound. For example, in Figure 3c, the first tran-
sient is repeated three times with different amplitudes.

2.3. Phase Vocoder

While WSOLA approaches the problem of phase discon-
tinuities in the time-domain, the problem can also be tar-
geted in the frequency-domain. The core idea of the phase

vocoder [5, 6] is to see each analysis frame as a weighted
sum of sinusoids with known frequency and phase. The
synthesis frames are then computed by adapting the phases
of these sinusoids such that no phase discontinuities are in-
troduced when adding up the relocated synthesis frames.

In the first step of the procedure the Fourier transform
is applied to every analysis frame resulting in a sequence of
frequency spectra. Each frequency bin of a spectrum repre-
sents a sinusoid that contributes to the original signal. Af-
terwards, the instantaneous frequencies of the spectrum’s
frequency bins are computed from the phase differences of
successive spectra, see [11]. Knowing the instantaneous fre-
quencies and the synthesis hopsize Hs, the phases of the
spectra can be adapted accordingly. Finally, all spectra are
brought back to the time-domain by applying the inverse
Fourier transform with the resulting waveforms constituting
the synthesis frames. Note that the term “phase vocoder”
generally describes the technique to estimate the instanta-
neous frequencies in an audio signal. However, the term is
also frequently used to name the TSM algorithm.

By design, the phase vocoder guarantees phase continu-
ity of all sinusoidals contributing to the output signal, which
is also known as horizontal phase coherence. However, the
vertical phase coherence, meaning the phase relationships
of sinusoidals within one frame, is usually destroyed in the
phase adaption process. Transients, which are highly de-
pendent on preserving the vertical phase coherence of the
signal, are therefore often smeared in phase vocoder TSM
results, see Figure 3d for an example. The loss of vertical
phase coherence also causes a very distinct sound coloration
of phase vocoder TSM results known as phasiness [12].

2.4. Phase Vocoder with Identity Phase Locking

To reduce the loss of vertical phase coherence in the phase
vocoder, Laroche and Dolson proposed a modification to
the standard phase vocoder TSM algorithm [13]. Their core
idea is to not adapt the phases of all frequency bins in the
short-time Fourier spectra independently of each other. In-
stead, bins which contribute to the same partial of the audio
signal are grouped. A peak in the magnitude spectrum is as-
sumed to represent one partial of the audio signal, while the
bins surrounding the peak are assumed to contribute to this
partial as well. In the phase adaption process, only the fre-
quency bins which contain spectral peaks are updated in the
usual phase vocoder fashion. The phases of the remaining
frequency bins are then locked to the phase of the closest
spectral peak and the vertical phase coherence is therefore
locally preserved. This technique, also known as identity
phase locking leads to reduced phasiness artifacts and also
to less transient smearing, see Figure 3e for an example.
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Figure 4: Overview of TSM based on HPSS. (a): Input au-
dio signal. (b): Separation in harmonic component (left)
and percussive component (right). (c): TSM results for the
harmonic component using the phase vocoder (left) and for
the percussive component using OLA (right). (d): Superpo-
sition of the TSM results from (c).

2.5. Combined TSM based on HPSS

TSM algorithms like the phase vocoder work particularly
well for audio signals with harmonic content, while other
algorithms like OLA are well suited for percussive sig-
nals. The authors of [7] therefore proposed a combined
TSM approach using harmonic-percussive source separa-
tion (HPSS) techniques.

In HPSS, the goal is to decompose a given audio signal
into a signal consisting of all harmonic sound components
and a signal consisting of all percussive sounds. Fitzgerald
[14] proposed a simple and effective HPSS procedure. This
method exploits the fact that in a spectral representation of
a signal, harmonic sounds form structures in time direction,
while percussive sounds yield structures in frequency direc-
tion. By applying a median filter of length `h in time direc-
tion and a median filter of length `p in frequency direction to
the magnitude spectrogram of the input signal, the respec-
tive structures are enhanced. Afterwards, by comparing the
two filtered spectra element wise, each time-frequency in-
stance of the signals spectrum can be assigned to either the
harmonic or the percussive portion of the signal. This yields
in the end the desired components.

After having decomposed the input signal using this
HPSS method, the authors of [7] apply the phase vocoder
with identity phase locking to the harmonic component and
OLA to the percussive component. By treating the two
components separately, both the characteristics of the har-
monic sounds as well as the percussive sounds of the input
signal can be preserved. The superimposed TSM results
of both procedures finally form the output of the algorithm

(see Figure 4). Note that there also exist other approaches
to preserve both characteristics. For example, algorithms
employing transient preservation aim for explicitly identi-
fying the time positions of percussive events in the audio
signal and giving them a special treatment in the TSM pro-
cess [15, 16]. Such a strategy can also easily be integrated
into the MATLAB code provided in the TSM toolbox.

2.6. TSM based on élastique

Besides these publically known TSM algorithms, there also
exists a number of proprietary commercial products. One of
these commercially available TSM algorithms, called élas-
tique, has been developed by zPlane [17]. This algorithm,
which is integrated in a wide range of music software like
Steinberg Cubase1 or Ableton Live2, can be considered the
state-of-the-art in the field of commercial TSM algorithms.
An example of an audio signal stretched with élastique is
shown in Figure 3g. In addition to the usual licensing model
for their algorithm, the developers also offer a web-based
interface called sonicAPI3, which allows users to compute
the TSM results for élastique over the internet. At least for
the time being, this service is free of charge for personal us-
age. A MATLAB wrapper function for this webservice is
included in the TSM toolbox.

3. TOOLBOX

The TSM algorithms as described in Section 2 form the core
of our TSM toolbox, which is freely available at the website
[8] under a GNU-GPL license. Table 1 gives an overview of
the main MATLAB functions along with the most important
parameters. Note that there are many more parameters and
additional functions not discussed in this paper. However,
for all parameters there are default settings such that none
of the parameters need to be specified by the user.

To demonstrate how the TSM algorithms contained in
our toolbox can be applied, we now discuss the code exam-
ple shown in Table 2, which is also contained in the toolbox
as script demoTSMtoolbox.m. Our example starts in lines
1-4 with specifying an audio signal as well as a time-stretch
factor α. Furthermore, the audio signal is loaded from the
hard disk using the MATLAB function wavread and stored
in the variable x while its sampling rate is stored in sr.

The first TSM algorithm which is applied to the loaded
signal is OLA in lines 6-10. Since OLA is a special case of
WSOLA, this is done by calling the wsolaTSM.m function
with a specialized set of parameters. In line 6, the analysis
frame position tolerance ∆max of WSOLA is set to 0, turn-
ing WSOLA into OLA. Afterwards, the synthesis hopsize

1http://www.steinberg.net
2https://www.ableton.com
3http://www.sonicapi.com/

DAFX-4

DAFx-252



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Filename Main parameters Optional parameters Description
wsolaTSM.m x, α synHop=̂Hs, win=̂w, tolerance=̂∆max Application of OLA & WSOLA.
pvTSM.m x, α synHop=̂Hs, win=̂w, phaseLocking Application of the phase vocoder (with or with-

out identity phase locking).
hpTSM.m x, α hpsFilLenHarm=̂`h, hpsFilLenPerc=̂`p,

pvSynHop, pvWin, olaSynHop, olaWin
Application of TSM based on HPSS.

elastiqueTSM.m x, α – MATLAB wrapper for the élastique algorithm.
win.m `, β – Generates a sinβ window function of length `.
stft.m x anaHop, win Short-time Fourier transform of x.
istft.m spec synHop, win Inversion of a short-time Fourier transform,

see [18].
hpSep.m x filLenHarm=̂`h, filLenPerc=̂`p Harmonic-percussive source separation.
pitchShiftViaTSM.m x, n algTSM Pitch-shifting the signal x by n cents.
visualizeWav.m x fsAudio, timeRange Visualization of TSM results.
visualizeSpec.m spec fAxis, tAxis, logComp Visualization of a short-time Fourier transform.
visualizeAP.m anchorpoints fsAudio Visualization of a set of anchorpoints.

Table 1: Overview of the main MATLAB functions contained in the TSM toolbox [8] and the most important parameters.

Hs is set to 128 samples in line 7. In lines 8 and 9, a sinβ-
window of length ` = 256 samples and β = 2 is generated
by calling win.m. The size of the generated window spec-
ifies at the same time the size of the analysis and synthesis
frames. Together with the synthesis hopsize of 128 sam-
ples this means that in the output of the TSM algorithm the
synthesis frames will have a half-overlap of 128 samples.
Finally the actual TSM algorithm is applied to the input sig-
nal x with the stretching factor α and the specified set of
parameters in line 10. The resulting waveform is stored in
the variable yOLA.

Next, in lines 12-16, the WSOLA algorithm is applied.
We first set the analysis frame position tolerance ∆max to
512 in line 12. Since WSOLA works optimally for medium
sized frames which are half-overlapped, we set the synthesis
hopsize Hs to 512 in line 13 and chose a sinβ-window of
length ` = 1024 samples and β = 2 in lines 14 and 15.
Finally, the function wsolaTSM.m is called in line 16.

In lines 18-22 the standard phase vocoder is applied by a
call of pvTSM.m. To this end, we first specify that no phase
locking should be applied (line 18). Being a frequency-
domain TSM algorithm, the phase vocoder is dependent on
a high frequency resolution of the used Fourier transform
and therefore on a large frame size. Furthermore, also a
large overlap of the synthesis frames is beneficial for the
quality of the output signal as well as a sin-window func-
tion. We therefore set the synthesis hopsize Hs to 512 (line
19) and chose a sinβ-window of length ` = 2048 samples
and β = 1 (lines 20 and 21), resulting in a 75% frame
overlap. The actual function call is then executed in line
22. For the application of the phase vocoder with iden-
tity phase locking in lines 24-28, the only difference is the
phaseLocking parameter set to one (line 24).

The TSM algorithm based on HPSS, which is applied in
lines 30-38, is a combination of multiple techniques. First,
we set the length of the median filters `h and `p used in

the HPSS procedure both to 10 (lines 30 and 31). Then,
the synthesis hopsizes and windows, which are used in the
two TSM algorithms OLA and phase vocoder with identity
phase locking, are set separately in lines 32-37. In line 38
the algorithm is then executed by a call of hpTSM.m.

The last TSM algorithm is the MATLAB wrapper for
élastique. Since this function requires a sonicAPI access id
as well as the additional tool curl, the function call in line
44 is commented out by default. However, when supply-
ing the additional sources the algorithm can be applied by a
call to elastiqueTSM.m. Since élastique is a proprietary
procedure it is not possible to tweak the algorithm with ad-
ditional parameters.

In lines 46 and 47, the visualization of the original in-
put signal takes place. First, the segment of the input au-
dio signal to be visualized is set to the section of the wave-
form between second 5.1 and 5.3 (line 46). Afterwards the
visualization function visualizeWav.m is applied to x in
line 47. To visualize the corresponding stretched audio seg-
ment, the segments boundaries are just multiplied with the
stretching factor α in line 48. Afterwards, the visualization
function is called again exemplarily for OLA’s TSM result
in line 49. Finally, in line 50, the TSM result of OLA is
also written to the hard disk using the MATLAB function
wavwrite.

4. APPLICATIONS

In this section, we discuss some additional functionalities of
the TSM toolbox, including some demo applications.

4.1. Interface Generation

The most common way of comparing the quality of differ-
ent TSM algorithms is by performing listening experiments.
To this end, one usually generates time-stretched versions
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1 filename = ’CastanetsViolin.wav’;
2 alpha = 1.8;
3
4 [x,sr] = wavread(filename);
5
6 paramOLA.tolerance = 0;
7 paramOLA.synHop = 128;
8 len = 256; beta = 2;
9 paramOLA.win = win(len,beta);

10 yOLA = wsolaTSM(x,alpha,paramOLA);
11
12 paramWSOLA.tolerance = 512;
13 paramWSOLA.synHop = 512;
14 len = 1024; beta = 2;
15 paramWSOLA.win = win(len,beta);
16 yWSOLA = wsolaTSM(x,alpha,paramWSOLA);
17
18 paramPV.phaseLocking = 0;
19 paramPV.synHop = 512;
20 len = 2048; beta = 1;
21 paramPV.win = win(len,beta);
22 yPV = pvTSM(x,alpha,paramPV);
23
24 paramPVpl.phaseLocking = 1;
25 paramPVpl.synHop = 512;
26 len = 2048; beta = 1;
27 paramPVpl.win = win(len,beta);
28 yPVpl = pvTSM(x,alpha,paramPVpl);
29
30 paramHP.hpsFilLenHarm = 10;
31 paramHP.hpsFilLenPerc = 10;
32 paramHP.pvSynHop = 512;
33 len = 2048; beta = 1;
34 paramHP.pvWin = win(len,beta);
35 paramHP.olaSynHop = 128;
36 len = 128; beta = 2;
37 paramHP.olaWin = win(len,beta);
38 yHP = hpTSM(x,alpha,paramHP);
39
40 % To execute elastique, you will need
41 % an access id from http://www.sonicapi.com.
42 % Furthermore, you need to download ’curl’
43 % from http://curl.haxx.se/download.html.
44 % yELAST = elastiqueTSM(x,alpha);
45
46 paramVis.timeRange = [5.1 5.3];
47 visualizeWav(x,paramVis);
48 paramVis.timeRange = [5.1 5.3] * alpha;
49 visualizeWav(yOLA,paramVis);
50 wavwrite(yOLA,sr,’Output_OLA.wav’

Table 2: Code example for computing TSM results of various
TSM algorithms, generating the visualizations, and writing the
TSM results to the hard disk.

of several audio items using different TSM algorithms and
stretching factors. This results in large amounts of audio
data. To be able to compare the generated TSM results,
interfaces which allow a user to order and access the au-
dio signals in a convenient way are of great help. With the
script demoGenerateTSMwebsite.m, which is contained
in the TSM toolbox, we provide the code for generating
such a HTML-based interface automatically (see Figure5).
The toolbox also includes the set of audio items listed in Ta-
ble 3, which has been already used for evaluation purposes
in the context of TSM in [7, 19].

Figure 5: Screenshot of the interface generated using the
function demoGenerateTSMwebsite.m of the TSM tool-
box.

Item name Description
Bongo Regular beat played on bongos.
CastanetsViolin Solo violin overlayed with castanets.
DrumSolo A solo performed on a drum set.
Glockenspiel Monophonic melody played on a glockenspiel.
Jazz Synthetic polyphonic sound mixture of a trumpet, a piano, a

bass and drums.
Pop Synthetic polyphonic sound mixture of several synthesizers,

a guitar and drums.
SingingVoice Solo male singing voice.
Stepdad Excerpt from My Leather, My Fur, My Nails by the band Step-

dad.
SynthMono Monophonic synthesizer with a very noisy and distorted

sound.
SynthPoly Sound mixture of several polyphonic synthesizers.

Table 3: List of audio items included in the TSM toolbox.

4.2. Non-linear Time-Scale Modification

In addition to stretching audio signals in a linear fashion
by a constant stretching factor α, the implementations con-
tained in the TSM toolbox (except for élastique) are also
capable of stretching input signals in a non-linear way. To
this end, one needs to define a time-stretch function which
defines the mapping between time-positions in the input sig-
nal and the output signal of the TSM algorithm. A very con-
venient way of defining such a time-stretch function is by
specifying a set of anchorpoints. An anchorpoint is a pair of
time positions where the first entry specifies a time-position
in the input signal and the second entry a time-position
in the output signal. The actual time-stretch function is
then obtained by a linear interpolation between the anchor-
points. In Figure 6, one can see an example of such a non-
linear modification. In Figure 6b, we see the waveforms
of two recorded performances of the first five measures of
Beethoven’s Symphony No. 5. The corresponding time-
positions of the note onsets are indicated by red arrows. Ob-
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Figure 6: (a): Score of the first five measures of Beethoven’s
Symphony No. 5. (b): Waveforms of two performances.
Corresponding onset positions are indicated by the red ar-
rows. (c): Set of anchorpoints. (d): Onset-synchronized
waveforms of the two performances, where the second per-
formance was modified.

viously, the two performances differ strongly in their length.
However, the tempo of the two performances does not dif-
fer by some constant factor. In fact, the tempo of the eighth
notes in the first and third measure are played at almost the
same tempo in both performances. Contrary, the durations
of the half notes with fermata in measures two and five differ
strongly in the two recordings. The mapping between the
note onsets of the two performances is therefore non-linear.
We define eight anchorpoints, which map the onset posi-
tions of the second performance to the onset positions of the
first performance (plus two additional anchorpoints, which
align the beginning and the end of the waveforms). Based
on these anchorpoints, we then apply one of the TSM algo-
rithms in the TSM toolbox to the second performance to ob-
tain a version of the recording which is onset-synchronized
with the first performance, see Figure 6d. The MATLAB
code for this example, which also generates sonifications
of the synchronization result, is also contained in the TSM
toolbox in the file demoNonlinearTSM.m. In this example,
the anchorpoints were chosen manually. However, one can
also compute alignments between two recordings automat-
ically and derive anchorpoints from them, see for example
[20]. This functionality can, for example, be used in scenar-
ios like automated soundtrack generation [21] or automated
DJing [1, 2].

Figure 7: Pitch-shifting via resampling and TSM. (a): Spec-
trogram of an input audio signal. (b): Spectrogram of the
resampled signal. (c): Spectrogram after TSM application.

4.3. Pitch-Shifting

Pitch-shifting is the task of changing the pitch of an audio
recording without altering its length. It can therefore be
seen as the dual problem to TSM. While there exist spe-
cialized pitch-shifting algorithms [22, 23], it is also pos-
sible to approach the problem by combining TSM algo-
rithms with resampling. Here, the core observation is, that
stretching or compressing the whole waveform of an au-
dio signal changes the length and the pitch of the signal at
the same time. With vinyl records, this can for example
be simulated by changing the rotation speed of the record
player. In the world of digital audio signals, the same ef-
fect can be achieved by resampling a given signal. To
this end, a given audio signal, sampled at a frequency of
fin, is resampled to have a new sampling frequency fout.
When playing back the resampled signal at the old sam-
pling frequency fin, this changes the pitch of the signal
by log(fin/fout)/log( 12

√
2) semitones, as well as its length

by a factor of fout/fin. To demonstrate this, we show an
example in Figure 7. Here, the goal is to apply a pitch-
shift of 8 semitones to the input audio signal. The origi-
nal signal has a sampling frequency of fin=44100 Hz (Fig-
ure 7a). To achieve a pitch-shift of 8 semitones, the sig-
nal is resampled to fout=27781 Hz (Figure 7b). One can
see, that the resampling changed the pitch of the signal as
well as its length. While the change in pitch is desired, the
change in length needs to be compensated. This can be
done using a TSM algorithm at hand (Figure 7c). How-
ever, the quality of the pitch-shifting result crucially de-
pends on the quality of the TSM algorithm. The MATLAB
function pitchShiftViaTSM.m, which employs the above
described strategy for pitch-shifting, is contained in the
TSM toolbox. Furthermore, the script demoPitchShift.m
gives an example of how this function can be applied.

5. CONCLUSIONS

In this paper, we have introduced the TSM toolbox, a unify-
ing MATLAB framework which contains several TSM al-

DAFX-7

DAFx-255



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

gorithms, various code examples for demo applications, as
well as audio material that has already been used for evalu-
ating TSM algorithms. We hope that this toolbox not only
provides a solid code basis to work in the field of TSM, but
also helps to raise the awareness for potential problems of
classical TSM algorithms, to foster the development of new
TSM techniques, and to ease the design of listening experi-
ments. Finally, we would like to encourage developers and
researchers in the field of audio processing and music infor-
mation retrieval to use the toolbox to realize their ideas of
applications involving TSM of audio signals.
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ABSTRACT 

In this paper, the development and application of a universal au-
dio-DSP (digital signal processor) board will be described. It is 
called freeDSP. Our goal was to provide an affordable real-time 
signal processing solution for researchers and the do-it-yourself 
community. Easy assembling and simple programmability were 
the main focus. A solution based on Analog Devices’ 
ADAU1701 DSP chip together with the free graphical develop-
ment environment SigmaStudio is proposed. The applications 
range from active loudspeaker compensation over steerable mi-
crophone arrays to advanced audio effect processors. The 
freeDSP board is published under a creative commons license, 
which allows the unrestricted use and modification of the mod-
ule. 

1. INTRODUCTION 

The development and application of DSP boards has been associ-
ated with high cost, difficult soldering and low-level program-
ming in the past. The current project investigated if this is still 
the case. Therefore, the different steps from the selection of a 
suitable DSP chip to final application examples will be presented 
in the following. Before describing the design of the DSP mod-
ule, basic demands and commercial alternatives will be dis-
cussed. 

1.1. Requirements 

It was decided that the board should have at least two audio in-
puts (stereo) and more than two outputs (e.g., to implement ac-
tive cross-over networks for multi-way loudspeakers). A scalable 
number of input and output channels would be preferable. Addi-
tionally, the board shouldn't be too difficult to solder with as 
many through-hole components as possible. The overall cost 
should be as low as possible. An easy to learn programming lan-
guage would be beneficial to allow quick experimentation and a 
short familiarization time. Finally, the overall processing power 
and functionality should allow for easy adaptation to different 
application scenarios. 

1.2. Available DSP solutions 

Few commercial solutions exist on the market. E.g., the company 
MiniDSP offers several easy to use DSP boards, mainly for audio 
filtering applications [1]. In order to configure the hardware, spe-
cial software plugins have to be purchased separately - which 
increases the overall price. Another option is the use of evalua-
tion boards from semiconductor companies. They are usually ex-
pensive and contain only the minimal support logic needed to 

learn programming the DSP or microcontroller. Several other 
companies provide costly audio amplifiers or loudspeakers with 
build-in DSPs. In those cases, configuration of the signal pro-
cessing is quite limited. Many more DSP products exist which 
are specialized on one specific purpose like room compensation, 
audio effects or feedback suppression in a public address system.   
A low-cost open-source DSP solution provides much more flexi-
bility. It enables the curious student to experiment with digital 
signal processing. Hobbyists can implement and share various 
projects using the same platform. Additionally, such a board 
could be easily adapted for professional prototyping or research 
projects. 

2. DESIGN 

First of all, a suitable DSP or microcontroller had to be selected. 

2.1. Selection of the DSP 

The requirements listed above are met by the SigmaDSP series 
from Analog Devices. E.g., the ADAU1701 has two integrated 
AD converters (inputs) with a sampling rate of 48 kHz and a bit 
depth of 24 bit. Four extra bits are added internally for better sig-
nal processing (28 bit total). Before outputting of the signal these 
extra bits are removed again. Four build in output DA converters 
can be used for various application scenarios. Additionally, it is 
possible to connect external AD/DA converters via the I2S inter-
face. Therefore, a maximum of 10 inputs and 12 outputs is real-
izable. A functional block diagram of the ADAU1701 is shown 
in Figure 1. Although the ADAU1701 comes in an SMD package 
(48-Lead LQFP), it can still be soldered by hand. 
 

 

Figure 1: Functional block diagram of the ADAU1701 
from Analog Devices [2]. 
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2.2. Board Layout  

The design fits on a two-layer board that has a width of 100 mm 
and a length of 80 mm. The components used on the board are 
mainly through-hole components, which are easier to solder. On-
ly two SMD parts appear on the board, the ADAU1701 and 
AD8608, which is the amplifier used within the active output 
filter. Figure 2 shows the schematic of the audio-DSP board. The 
freeDSP supports a wide range of input voltages from 5 V up to 
24 V. A voltage regulator supplies the 3.3V needed for all cir-
cuitry on the board. Additionally, the board might be powered 
over the USBi connector, which can be used for programming 
the processor and the EEPROM. Two integrated audio inputs and 

four audio outputs of the DSP can be accessed via RCA-
connectors. The connectors are located on one side of the board 
for easier access. Figure 3 shows a photo of the assembled 
freeDSP in the current version. Jumpers allow fast and easy con-
figuration of the input voltage range. One out of three user-
defined configurations can be chosen individually for each input. 
This allows for easy adaptation to different signal levels. Active 
output filters are used to provide better audio performance. GPIO 
(general purpose input/output) pins, I²S and I²C interfaces are 
accessible via the GPIO header. Additional boards can be easily 
stacked on top of the freeDSP to add more functionality. This 
includes buttons, potentiometers, additional inputs and outputs or 
any other peripherals. 

 

Figure 2: Schematic of the freeDSP board version 0.3. 
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Figure 3: Completely assembled freeDSP module (V 0.4).  

2.3. Programming 

To get started with a SigmaDSP no advanced programming skills 
are necessary. A free development environment called Sig-
maStudio is available for Windows. It can be downloaded from 
the Analog Devices website [3] with no charge (account needed). 
The programming model is function-block based – comparable to 
other graphical programming languages like PureData [4] or 
Max/MSP [5]. Many prebuilt blocks (e.g., filters, compressors, 
effects, or logic) can be placed in the signal path via drag and 
drop. If the included libraries do not have the functions needed, 
low-level blocks, such as multipliers and delays, can be wired 
together to create custom algorithms. Figure 4 shows a simple 
example patch with two input channels. The incoming signals are 
filtered using an equalizer with adjustable frequencies and filter 
characteristics (band pass, low shelf, …). Finally, the summed up 
signal is played back via two outputs.  
 

 

Figure 4: A simple example patch in SigmaStudio. 

 
The final program needs to be compiled and transferred to the 
DSP. Therefore, an USBi programming adapter is available from 
Analog Devices. With this adapter the board can be controlled in 
real-time from the PC using SigmaStudio. Alternatively, the pro-
gram can be written to the onboard EEPROM (electrically erasa-
ble programmable read-only memory) and booted in stand-alone 
mode. This offline programming can be done using a microcon-
troller, e.g. an Arduino or Raspberry Pi. Alternatively, a dedicat-
ed I2C EEPROM programmer can be used, which supports the 
EEPROM mounted on the board.  

2.4. Cost Calculation 

The overall cost of the freeDSP depends on the number of boards 
build at the same time. Lets assume a total of five boards in the 
following. The exemplary calculation in Table 1 provides an 
overview of the expected costs per module. 

Table 1: Component overview with price examples. 

Components Price / 
Module 

Board 5 $ 
DSP ADAU1701 9 $ 

Resistors 3 $ 
Capacitors 4 $ 

Semiconductors 8 $ 
Miscellaneous 10 $ 

Total 39 $ 
 
 
Additionally, a suitable programmer is needed once. To offer re-
al-time programmability the USBi adapter from Analog Devices 
is recommended, which is currently sold for approximately 80 $. 
If the application is intended to run the board only in self-boot 
mode, a cheaper programmer can be used. 
 

3. APPLICATION EXAMPLES 

The board was extensively tested and has been used successfully 
in several applications so far. Two exemplary projects will be 
described in the following. 

3.1. Active Loudspeaker Concept 

Active loudspeakers are speakers with build in amplifiers. Typi-
cal examples are subwoofers or studio monitors. For educational 
purposes, a desktop loudspeaker was designed and built in our 
audio lab. It was decided to implement a two-way system and to 
reduce the internal volume of the cabinet because of aesthetical 
reasons. A picture of the speaker is shown in Figure 5.  
 
 
 

 

Figure 5: Small active loudspeaker prototypes with digi-
tal crossover, loudspeaker protection and bass enhance-
ment algorithms. An early version of the freeDSP can be 
seen in the foreground. 
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An active crossover was built into the speakers using the 
freeDSP. This enabled fast and simple parameter modifications 
(like corner frequency or filter type) during the testing phase. A 
screenshot of one of the prebuild crossover blocks is shown in 
Figure 6. 

 

 

Figure 6: Adjustable crossover settings in SigmaStudio. 

 
Further, the freeDSP was used to equalize the frequency response 
of the system. Therefore, impulse responses have been measured. 
Matlab was used to create inverse filters with different algo-
rithms. The resulting IIR coefficients have been applied using a 
biquad filter bank in SigmaStudio. Alternatively, free software 
could be used for measurement and filter creation, e.g., the Room 
EQ Wizard (REW) by John Mulcahy [6]. However, there is also 
an easy to use auto-EQ filter designer available in SigmaStudio. 
Additionally, the bass output was improved and the drivers were 
protected from overload. Experiments were carried out with dy-
namic bass boost, which provides variable gain for low frequen-
cies dependent on input signal level.  
If the general purpose input and output pins are taken into ac-
count, many more examples are imaginable.  E.g., the GPIO pins 
of the module could be used to power down the loudspeaker am-
plifiers when no signal is present. Another useful option would 
be to connect configurable dip switches and a volume control 
potentiometer to the board.  
The application of the freeDSP in this active loudspeaker exam-
ple was intuitive and successful. However, also more complex 
projects can be realized. 

3.2. Vibrotactile Feedback for an Electric Violin 

When playing a violin, the musician communicates with his in-
strument not only through his ears but also his fingers, cheek, 
shoulder and eyes. While playing he uses multiple sensory chan-
nels, which are provided by different modalities, such as audito-
ry, tactile, kinesthetic, and visual. In a research project, the influ-
ence of violin vibrations on the perceived quality of the instru-
ment was investigated. Therefore, it was necessary to separately 
control the sound radiation and the vibrotactile feedback of the 
instrument. A Harley Benton electric violin was selected because 
of its non-resonant body. A vibration reproduction system was 
added using small electro-dynamic shakers mounted at the back 
of the instrument. Figure 7 shows the violin with one of the ex-
citers mounted below the chin rest.  

 

Figure 7: Vibrotactile feedback for an electric violin us-
ing a small eletrodynamic on the backside of the chin 
rest. The freeDSP was integrated in the free space below. 

The freeDSP board was applied to generate audio-driven vibra-
tions from the sound in real-time. First, the natural vibrations of a 
classical violin were simulated using the system. Additionally, 
different algorithms to modify the vibration signal were imple-
mented and investigated, e.g., frequency shifting or dynamic 
compression. In Figure 8 an exemplary program patch can be 
seen. The results showed the importance of vibrations on the 
overall perception of the instrument and provide information on 
useful vibration features for the player-instrument interaction [7].  
 

 

Figure 8: Simplified program patch in SigmaStudio, 
showing one approach for vibration generation by fre-
quency shifting the violin sound (bottom path). Addition-
ally, the vibration crosstalk in the audio output is can-
celed actively using an inverter and a fractional delay 
(top path). 

In the area of vibrotactile feedback, many more innovative appli-
cation scenarios for the freeDSP module exist. E.g., it can be 
used to process vibrations for a touch screen based audio mixer 
or a groove box [8]. It was found that different music instruments 
could be distinguished if vibrotactile feedback is rendered from 
the audio signal in an appropriate way. This helps to improve 
recognition of an audio source that is assigned e.g. to a specific 
mixing channel. Another example is the improvement of the con-
cert experience in a music reproduction system. This is possible 
by generating seat vibrations in real-time from the audio signal 
using various signal processing algorithms [9]. 
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4. SUMMARY 

In this paper, the development and application of a universal low-
budget audio-DSP board called freeDSP was described. The 
main features are summarized below: 
 

• 2 integrated AD and 4 DA converters, 
• Sampling rate 44.1 / 48 kHz (max. 96 kHz), 
• Bit depth 24 bit (28 bit internal), 
• Upgradeable up to 10 inputs and 12 outputs, 
• Graphic oriented programming software available, 
• Input voltage 5 to 24 V, 
• 8 GPIO (general purpose input/output) pins, 
• 4 AUX 8 bit ADC inputs (e.g. for potentiometers) 
• Variable input range configurable via jumpers, 
• Active filtered outputs. 

 
The different application examples show that the freeDSP is a 
versatile tool that can be applied in various scenarios. The au-
thors hope that it can be of use for others too. Therefore, the 
board layout is published under a creative commons license (CC 
BY-SA). Everyone is free to use the module as it is or to modify 
it as required. A complete list with all necessary components and 
the latest circuit board design will be published on our website 
[10]. A forum for discussions and the possibility for centralized 
buying are planned.  
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ABSTRACT

WaveCore is a coarse-grained reconfigurable processor architec-
ture, based on data-flow principles. The processor architecture
consists of a scalable and interconnected cluster of Processing Units
(PU), where each PU embodies a small floating-point RISC pro-
cessor. The processor has been designed in technology-independent
VHDL and mapped on a commercially available FPGA devel-
opment platform. The programming methodology is declarative,
and optimized to the application domain of audio and acoustical
modeling. A benchmark demonstrator algorithm (guitar-model,
comprehensive effects-gear box, and distortion/cabinet model) has
been developed and applied to the WaveCore development plat-
form. The demonstrator algorithm proved that WaveCore is very
well suited for efficient modeling of complex audio/acoustical al-
gorithms with negligible latency and virtually zero jitter. An ex-
perimental Faust-to-WaveCore compiler has shown the feasibility
of automated compilation of Faust code to the WaveCore proces-
sor target.

Keywords: ultra-low latency, zero-jitter, coarse-grained recon-
figurable computing, declarative programming, automated many-
core compilation, Faust-compatible, massively-parallel

1. INTRODUCTION

Modeling of physical/acoustical phenomena as a methodology to
build electronic musical instruments has become increasingly pop-
ular since digital electronics became sufficiently powerful and cost-
effective. Nowadays these models are often the mathematical core
of products like synthesizers or sound effects gear (e.g. guitar-
effects). Moreover, such physical models are increasingly being
used during the development of acoustical music instruments [1],
or used within hybrid musical instruments (like the hybrid piano).
The General-Purpose Processor (GPP) in stand-alone computer
systems, or in its embedded form in tablet computers or smart-
phones, has steadilly gained processing capacity during the past
years. This has resulted in the fact that the GPP is often used as
audio processing device. Consequently, audio/acoustical models
are usually developed with a C-based approach. A few disadvan-
tages of the application of the GPP are varying/unpredictable/long
latency in the processing chain, the high power consumption and a
limited processing capacity which limits the applicability of a GPP
for complex physical modeling. Other processor technologies, like
Field-Programmable Gate Arrays (FPGA), are an alternative for
these types of complex modeling problems.

2. SCOPE OF THE WORK AND RELATED PROBLEMS

The scope of our work is to develop scalable (i.e. parallel com-
puting) and low-latency processor technologies within the domain
of physical modeling. State-of-the art GPP processor architec-
tures are multi-core based. It is however a difficult task to ex-
ploit full parallelism, because it is not trivial to compile a conven-
tional C-based program to a multi-core platform. Likewise, the
usually shared and cached memory hierarchy adds another com-
plexity level (data coherency among parallel processes, variable
latencies and performance penalty when moving data between pro-
cessors through a unified cached memory hierarchy). FPGAs are
often used when low-latency and high-performance are crucial re-
quirements. FPGAs offer flexibility and can be designed such that
they offer the exactly required performance. However, creating an
FPGA design is a specialistic task and differs from software design
in many aspects. Moreover, FPGAs are not by definition flexible
in the sense that the functionality can be changed easily/rapidly.
As a result, an FPGA design is usually heavily optimized towards
a specific task. In the field of physical modeling an example is a
physical/acoustical model of a banjo instrument, based on Finite
Difference Modeling [1]. Coarse-grained reconfigurable architec-
tures (CGRA) aim to address the programmability problem of the
bit-level configurable FPGA. CGRAs are usually based on regular
matrices of configurable Processing Units (PUs). Usually a data-
flow graph is mapped on a CGRA where the arithmetic functions
map on the PUs and the communication on the interconnect net-
work of such an architecture.

3. MAIN CONTRIBUTIONS

We have developed a CGRA, called WaveCore [2]. The WaveCore
architecture is declaratively programmable through an explicit de-
scription of an algorithm in the form of a data-flow network. This
data-flow network is automatically partitioned and mapped on the
WaveCore architecture. The semantics of a WaveCore data-flow
graph are conceptually close to properties of functional program-
ming languages, like Faust [3]. Therefore, compilation of an al-
gorithm which is described in a functional language towards a
WaveCore data-flow graph is feasible. The WaveCore architec-
ture is implemented as a softcore, which can be either mapped on
FPGA or ASIC (Application Specific Integrated Circuit) technol-
ogy. The scalability of the regular architecture, combined with the
declarative and scalable programming methodology, results in the
ability of automated partitioning and mapping of a data-flow graph
on the architecture. A mapped algorithm behaves fully predictable,
which means that stream buffering can be kept to a minimum. This
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results in ultra-low processing latency. The WaveCore processor
technology is optimized to characteristics which are dominant in
physical modeling of audio systems (e.g. delay-lines). In this pa-
per we will first focus on the WaveCore architecture, related to the
programming methodology. Then we will explain how two exam-
ple audio effects (flanger and auto-wah) are described and mapped
on the WaveCore processor architecture, and how a reverberation
effect which is described in Faust [3] can be automatically com-
piled to WaveCore. Next we will present a benchmark modeling
algorithm, and highlight the efficiency. Finally we draw some con-
clusions and we give some directions to future work.

4. WAVECORE PROCESSOR TECHNOLOGY

Like we mentioned, WaveCore is a CGRA. This architecture con-
sists of a cluster of interconnected Processing Units (PU). These
PUs are small RISC (Reduced Instruction Set Computer) proces-
sors with a dedicated instruction-set which is specifically opti-
mized towards audio/acoustical modeling. The WaveCore pro-
gramming methodology is based on a native WaveCore program-
ming language, and based on a declarative description of a hier-
archical network of processing primitives. Despite the fact that
the WaveCore language is native, the structure of the language
matches closely with existing functional languages, like Faust [3].
The WaveCore processor architecture is implemented as a technol-
ogy independent and configurable soft-core (VHDL), which as a
prototype has been targeted to a commercially available FPGA de-
velopment platform (Digilent Atlys, [4]). A WaveCore cluster and
associated mapping tool can be automatically generated. In the fol-
lowing sections we will first outline the WaveCore programming
methodology, followed by the associated WaveCore PU cluster ar-
chitecture.

4.1. Programming model

The WaveCore programming model is based on explicit descrip-
tion of a data-flow-graph in a declarative manner. An example of
such a graph is depicted in fig. 1. At top-level the graph consists
of one or more ’actors’ (i.e. processes) which are interconnected
by means of ’edges’. An actor can have multiple inbound (i.e. in-
put) and outbound (i.e. output) edges. Data is carried across the
edges, where a data-packet is called a token. Each edge is asso-
ciated with a predefined token-type. For example: an edge might
represent a stereo audio channel, carrying tokens which consist of
two floating-point numbers at a token rate of 48kHz. Each edge
in the graph has a programmable token buffering capability. The
example graph in fig. 1 represents an audio processing application.
This application is controlled by an actor called "run-time control
actor". This actor might run on a host processor and communi-
cates with a WaveCore actor (which we call a WaveCore Process
(WP)) through control edge E2. This edge E2 carries control to-
kens which represent for instance audio effects settings, like phas-
ing depth. The "audio interface actor" within the example appli-
cation graph represents an intermediate process between an audio
codec (e.g. AC97 device) and the WP. This audio interface actor
communicates with the WP through two edges: E1 which carries
the input tokens(s) to the WP and E2 which carries the processed
WP output tokens. The actual signal processing algorithm runs on
two example WPs, called WP1 and WP2. WP1 on its turn consists
of two WP-partitions WP1.a and WP1.b. Ultimately the WP, or
WP-partition is composed of "primitive actors" (PA). As such, the

Figure 1: Data-flow graph

PA is the algorithmic primitive within the declarative WaveCore
programming methodology. The PA is defined in the next subsec-
tion. Each actor in the graph is executed (i.e. fired) periodically,
where each actor might be fired with a different (through coher-
ently related) frequency. Within WaveCore, we chose to apply a
centralized scheduler which orchestrates the firing of all the actors
in the graph. The reason that we chose for this scheduling princi-
ple, rather than a purely data-flow driven schedule which is more
common in data-flow architectures, is that a centralized schedul-
ing principle yields a fully predictable and jitter-free execution of
the overall graph. As a result, large closed-loop graphs with a rel-
ative large number of actors still yield a fully predictable overall
execution when applying this centralized scheduler principle.

4.1.1. Primitive Actor

Like explained, the Primitive Actor (PA) is the basic processing
element in the WaveCore programming methodology. The PA
is depicted in fig. 2. The definition of the PA is based on fun-
damental discrete-time audio processing characteristics. Besides
the common basic mathematical operations like addition, subtrac-
tion, multiplication, etc. a dominant property is the delay function.
Delay-lines are dominantly present in many audio and acoustical
modeling algorithms [5], like reverberation, string modeling etc.
Furthermore, dynamic delay-line length variation is an additional
basic property which is also present in many modeling phenom-
ena (like Doppler shifting, or multi-path interference with time-
modulated path-length such as "flanging"). The WaveCore PA is
depicted in fig. 2. The PA has at most two inbound edges x1[n] and

Figure 2: WaveCore Primitive Actor (PA)

x2[n] and one outbound edge y[n + λ]. There are different types
of PAs which are indicated with the function identifier f (see ta-
ble 1) A number of PAs (like the MUL-type PA) need a parameter
p. Each PA is associated with an optional delay-line which is au-
tomatically inferred when the delay-line length Λ is greater than
zero. The effective length λ of the delay-line can be run-time var-
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ied with the inbound edge τ [n] according to the following relation:

1 < λ[n] < Λ (1)

According to:
λ[n + 1] = ⌊Λ.(τ [n]− 1)⌋ (2)

With:
1 < τ [n] < 2 (3)

The programmer should take care that τ [n] is bounded within the
specified range. Hence, the behavior is not specified outside the
specified range.

Table 1: PA types

PA type Mnem Function
Adder ADD y[n + λ] = x1[n] + x2[n]
Comparator CMP y[n + λ] == (x1[n] > x2[n])
Divider DIV y[n + λ] = x1[n]/x2[n]
Logic funct. LGF y[n + λ] = LogFunc(x1[n], x2[n], p)
Look-up LUT y[n + λ] = Lookup[⌊Scale(x1[n])⌋]
Multiplier MUL y[n + λ] = x1[n].x2[n]
Mul/Add MAD y[n + λ] = p.x1[n].x2[n]
Amplifier AMP y[n + λ] = p.x1[n]
Noise Gen RND y[n]=p.rnd < 0 : 1 >

4.2. Processor architecture

The block diagram of an embedded WaveCore PU cluster instance
is depicted in fig. 3. The cluster in fig. 3 consists of 5 inter-
connected PUs, and a shared local memory. Each PU represents
a small IEEE754 compliant single-precision floating-point based
RISC processor. The PU is optimized to sequentially fire all PAs
in a WP-partition. If a WP is partitioned into two or more WP-
partitions, then the data which is associated to the graph-cut(s) is
streamed over the PU interconnect network which is called the
GPN (Graph Partition Network). The memory hierarchy spans
three levels and does not contain any caching. Level1 implies
PU-proprietary tightly coupled memory within each PU instance.
Level1 memory is used for in-place execution of WPs or WP-
partitions (scratch memory and storage of state-variables) Level2
embodies a shared PU cluster memory. Level3 memory is located
outside the PU cluster and is usually an off-chip bulk memory like
DDR. WP token data buffer space is either allocated in Level2 (for
spatially close WPs), or Level3 memory. Delay-line buffer space is
also mapped onto Level2 or Level3 memory. The memory hierar-
chy has been designed in such a way that the locality of reference
principle is maximally utilized. This implies that the data-traffic
between the levels is kept to a minimum. The instruction set of the
PU is optimized in such a way that it is enabled to fire a PA within a
single instruction, including all the necessary memory references,
pointer updates, arithmetic operations etc. Moreover, special mea-
sures have been taken to hide Level2/Level3 memory latency for
the PU.

Like we mentioned in the introduction, all the actors in the data-
flow graph are fired by means of a centralized scheduler. This
means that all the PUs in the cluster are triggered by this central-
ized scheduler. The overall PU cluster architecture has been de-
signed in such a way that the real-time constraints are always met.

The cluster can be initialized through the "Host Processor Inter-
face" (HPI), which provides access to instruction memory, data
memory and registers for all the embedded PUs. Similarly, the
HPI is used for run-time control of the WaveCore application.
Run-time application control can either be performed by direct PU
level1 memory write-access, or via control tokens through Level3
memory.

4.3. WaveCore FPGA development platform

We have generated an optimized WaveCore PU cluster for a com-
mercially available Digilent Atlys FPGA platform. The heart of
this platform is a Xilinx Spartan6 LX45 FPGA. The platform con-
tains a rich variety of interfaces (USB, audio, HDMI, etc.) and
memory. The WaveCore/Atlys architecture is depicted in fig. 3.
This architecture uses the on-board AC97 codec, obviously the
FPGA, the USB interface and DDR2 memory. The generated
WaveCore PU cluster consists of 5 PUs and 16kByte Level2 mem-
ory.

The feasible clock frequency for the PUs is largely dependent on
the target technology, in this case the Spartan6 LX45 FPGA. For
this typical device we obtained a PU clock frequency of 86MHz
(which equals 1792 times the programmed AC97 audio rate of
48kHz). Given the fact that a PU can execute a PA within a single
instruction and it is a fully pipelined RISC processor architecture,
this yields a processing capacity of 1792 PAs per audio sampling
period per PU at 48kHz audio rate. Hence, the PU cluster on the
Atlys board has a total processing capacity of 8960 PAs. This is
equivalent to 860 MFLOPs sustained performance.

The PU cluster is embedded in a FPGA SoC (System on Chip)
topology, as can be seen in fig. 3. The cluster has its own dedicated
port to the embedded DDR2 controller, which provides access to
the 128MByte DDR2 memory (level3 memory). The AC97 codec
chip on the Atlys board streams directly into the DDR2 memory
through the "Stream Actor" within the "Digital Audio Interface"
on the FPGA. The system is controlled through the USB interface.
Hence the host processor is supposed to be an external device like
a notebook, smartphone (through BT), etc. The host processor is
enabled to initialize/reconfigure the PU cluster and to control the
application at run-time (e.g. virtual knobs).

Mapping of the example data-flow graph in fig. 1 onto the WaveCore
PU-cluster in fig. 3 is straightforward. The "Run-time Control
Actor" runs on the host computer (e.g. notebook). This control
process can either pass control tokens into a dedicated buffer in
DDR2 memory (represented by E2, see fig. 1), or directly write
into PU level1 memories. The "Audio Interface Actor" runs on the
FPGA as a hardwired process. This actor is basically a DMA con-
troller which moves audio samples from the AC97 ADC (Analog
to Digital Converter) to a dedicated token buffer in DDR2 mem-
ory, and audio samples from token buffer in DDR2 memory to the
AC97 DAC (Digital to Analog Converter). The AC97 codec can
be initialized by the host processor through USB. The actual pro-
cessing is performed by the example WP1 and WP2 actors which
are mapped on the WaveCore PU cluster. The number of occu-
pied PUs within the cluster depends on the complexity of the WPs
(number of PAs). It might be the case that WP1.a, WP1.b and
WP2 run on three PUs, but these three WP(partitions) might also
be mapped on a single PU if these are sufficiently small. The token
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Figure 3: WaveCore development platform architecture

buffering for E3 is mapped on the locally embedded level2 mem-
ory within the cluster. Scheduling/firing of the actors is driven by
the AC97 codec, which dictates the token frequency. The sched-
uler is embedded in the "Audio Interface Actor" and periodically
fires the "Streaming Actor" and mapped WPs on the PU cluster
through the HPI interface. Note that the "Run-time Control Actor"
typically fires only incidentally, or at least at a rate which is far
lower than the audio token rate of 48kHz.

4.4. FPGA mapping

The WaveCore SoC design (PU-cluster and infrastructure) in fig. 3
is mapped on the Xilinx LX45 FPGA on the Atlys board. The
WaveCore PU cluster contains 5 PUs, where each PU is dimen-
sioned to execute WP-partitions with up to 2048 PAs. The PU
clock frequency is derived from the AC97 audio clock by an on-
chip PLL (Phase Locked Loop). Each PU uses 120kByte level1
memory. The level2 memory is configured to 16kByte. This WaveCore
configuration requires 21% of the slice registers, 68% of the slice
LUTs, 75% of the block-RAMs, and 51% of the DSP48 units on
the FPGA. The mapping floorplan is displayed in fig. 4. Each color
in the floorplan represents a WaveCore PU.

4.5. Latency, jitter and buffering

Latency, jitter and sample buffering are closely related. Jitter is
usually caused by unpredictable execution behavior. This unpre-
dictability can be caused by several factors like cache-misses, in-
terrupts, unpredictable round-trip delay times for shared memory
read transactions or other process stalls due to shared resource
conflicts. For an audio application it is unacceptable to stall the
production of output samples, or to skip output samples in case
of a stalled process. To prevent this, buffering is usually applied.
The required buffering depth is directly related to the worst-case
stall time of the processing device. Buffering however has the dis-
advantage that it introduces processing latency. This latency is

Figure 4: Xilinx LX45 FPGA floorplan for WaveCore PU cluster

critical in systems where part of the application runs on the pro-
cessing system, and the other part communicates with the system
in a closed-loop (e.g. the hybrid piano, or real-time guitar effects
processing).
The processing latency within the WaveCore architecture can be as
short as a few audio sampling periods (below 100 µsec @ 48kHz
sampling rate). The actual processing latency depends on the to-
ken buffer sizes (number of tokens within an edge channel) and the
nature of the processing algorithm which runs on the PU cluster.
This latency can be that short because of the real-time guaranteed,
fully predictable and jitter free execution of the overall WaveCore
processing chain. Jitter-free execution is a direct result of the strict
process-firing mechanism on the one hand, and guaranteed execu-
tion of WP (or WP-partitions) on the other hand. Moreover, the
carefully designed memory hierarchy results in a modest load on
the externally shared level2 and level3 memory resources. Finally,
the static and fully predictable processing schedule prevents the
need for extensive buffering.
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5. AUDIO EFFECTS IN WAVECORE TECHNOLOGY

Like we explained, a WP (or WP-partition) consists of a network
of interconnected PA instances. Furthermore, the available PA
types enable both arithmetic as well as logical/control functional-
ity. The abstraction level of a WaveCore WP matches closely with
the level at which DSP functions at block diagram level are often
specified. We will demonstrate this with two example audio effects
algorithms, described in WaveCore: the ’Flanger’ and ’Auto-Wah’
sound effect algorithms. Additionally, we will show the results of
an experimental compilation from the functional audio description
language Faust to a WaveCore WP through an example algorithm:
the ’Zita-Rev1’ reverberator.

5.1. Flanger

The flanger audio effect is widely used within several musical in-
struments. The effect is based on the principle of varying multi-
path acoustical wave interference. In this subsection we will focus
on a WaveCore model of a flanger [5]. The core of the flanger
algorithm is a delay-line which length is modulated by a Low-
Frequency Oscillator (LFO). The acoustical input signal is split:
one path goes through the modulated-length delay-line (path1) and
the other travels without delay (path2). Subsequently, the path1
and path2 signals are added, yielding the output signal y[n]. The
mentioned interference when varying delay-length(s) are applied
yields the typical flanger effect.

The block diagram of the flanger is depicted in fig. 5. The

Figure 5: Flanger WaveCore process

flanger implementation consists of two WaveCore WP-partitions.
The right WP-partition of the block diagram represents the core of
the flanger. Those parts of the block diagram which are bounded
by the round-edge boxes represent PAs (e.g. the adder and associ-
ated delay-line with input x[n] is one PA). The primary input sig-
nal x[n] is added to a delayed and scaled copy of the input signal
α.x[n− λ], while a fraction β of the delay-line output is fed-back
to the input of the delay-line. The actual multi-path interference
takes place at the output adder where x[n] is added to the delay-
line output. The feedback-path, where a fraction of the delay-line
output is fed back into the input of the delay-line, intensifies the
effect.

In our next analysis, where we will show that the flanger core is
a variant of a comb-filter, we assume λ to be constant. The dif-
ference equations for the upper-part of the flanger-core (within the
ellipse) are given in equations 4 and 5 .

p[n] = x[n] + β.p[n− λ] (4)

And
y[n] = x[n] + α.p[n− λ] (5)

With:
λ[n + 1] = ⌊M.(τ [n]− 1)⌋ (6)

After applying the z-transformation to the difference equations
and merging the transformed equations, we find the transfer func-
tion in the z domain which is defined in equation 7

H(z) =
Y (z)

X(z)
=

1 + (α− β)z−λ

1− β.z−λ
(7)

In order to analyze the magnitude response of the flanger-core, we
replace z by ejθ , and subsequently derive the magnitude response
which is defined in equation 8.

|H(ejθ)| =
√

1 + (α− β)2 + 2(α− β)cos(λθ)

1 + β2 − 2βcos(λθ)
(8)

The magnitude response of the comb filter reveals a number of
equidistant peaks and notches. The location of the peaks in the
magnitude response of the comb-filter follows from equation 8,
and is as defined in equation 9.

θ
(p)
k = k

2π

λ
, k = 0, 1, 2, · · · , λ− 1 (9)

So, the number of equidistant notches and peaks in the magnitude
response of the comb-filter is equal to λ and is proportional to τ [n].
The effect of the feedback path with the res amplifier is that the
peaks in the magnitude response get smaller and intenser for high
res values, which also follows from equation 8.

The delay-line length λ is modulated by the left-part of the block
diagram in fig. 5: the LFO WP-partition. This LFO generates an
approximated sine-wave with a sub-Hz frequency, which is deter-
mined by the rate parameter. The core of the LFO is an inte-
grator with a hysteresis-PA in its feedback path, as is depicted in
fig. 5. The hysteresis-PA switches symmetrically between -1 and
1 (the output of the hysteresis-PA toggles between 0 and 1), which
equals the amplitude of the generated triangular wave ytr[n]. The
multipliers and adder with input ytr[n] implement a third-order
polynomial, as in equation 10

ysn[n] = 1.5ytr[n]− 0.5ytr[n]3 (10)

This polynomial shapes the triangular waveform into an approx-
imated sine-wave ysn[n]. The amplitude of ysn[n] is attenuated
with the parameter excursion, and an offset tau is added. Finally,
the resulting signal (which oscillates within range 1 < τ < 2) is
used to modulate the delay-line length, according to equation 2.
Note that we did not take fractional delay-line length interpolation
into account (to suppress "zipper-noise" due to the discrete-length
model of the delay-line).

The overall behavior of the flanger is represented by the spectro-
gram in fig. 6. This spectrogram is a representation of the WaveCore
simulation of the flanger model, with an impulse-train as input sig-
nal.

The WaveCore implementation of the flanger is a netlist represen-
tation of the block diagram in fig. 5. The applied PAs in this figure
are indicated by the round-edge rectangular boxes. The parameter
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Figure 6: Magnitude response spectrogram of flanger algorithm

inputs (rate, res, excursion, manual and depth) are run-time
controllable, similar to the control knobs on a physical flanger de-
vice. As can be seen in fig. 5 the flanger implementation requires
16 WaveCore PAs, which implies less than 1% of the processing
capacity of a single PU. The required minimum clock frequency
for this application is 2.4 MHz. The PU memory requirement is
176 bytes. The processing latency of the flanger is zero, since the
shortest path from x[n] to y[n] does not contain delay-elements.
This implies that the overall flanger latency equals the latency in
the AC97 codec, plus one additional sampling period for token
buffering.

5.2. Auto-Wah

Similar to the flanger, the ’WahWah’ audio effect is also widely
used in several electronic musical instruments. The name reveals
its sound effect. This sound effect is based on a bandpass filter
with center frequency ω0 and quality-factor Q, where the center
frequency marks the middle of the pass-band and quality-factor
determines the bandwidth of the pass-band. The center-frequency
is dynamically varied within the WahWah effect. This can be done
in various ways (e.g. expression pedal or controlled by input sig-
nal properties like envelope). In our example we chose an enve-
lope controlled WahWah, which is sometimes referred to as ’Auto-
Wah’. The continuous-time transfer function for a second order
bandpass filter with ω0 and Q parameters is defined in equation
11.

H(s) =
( 1

Q.ω0
).s2

( 1
ω2
0
).s2 + ( 1

Q.ω0
).s + 1

(11)

We need to translate the continuous-time transfer function to its
discrete-time counterpart. For this purpose we use the bilinear
transformation, which substitutes s with z, according to the sub-
stitution rule in equation 12.

s← 2

Ts
.
z − 1

z + 1
(12)

With Ts the sampling period. Application of the bilinear trans-
formation yields the discrete-time transfer function H(z) in equa-
tion 13, which embodies the required bandpass filter behavior with
ω0 and Q parameters.

H(z) =
a(1− z−2)

(a + b + 1) + 2(1− b)z−1 + (1− a + b)z−2
(13)

With:
a =

2

Q.ω0.Ts
and b =

4

T 2
s .ω2

0

(14)

The final step is to correlate the coefficients in the derived transfer
function H(z) with the coefficients in the general second order
discrete-time transfer function, which is defined in equation 15.

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(15)

The relation between the system parameters in transfer function in
equation 13 and the parameters in the generic second order transfer
function in equation 15 is defined in equations 16,17 and 18.

b0 =
a

d
, b1 = 0 , b2 =

−a

d
(16)

And:

a1 =
2(1− b)

d
, a2 =

1− a + b

d
, (17)

With:
d = a + b + 1 (18)

We map the generic transfer function in equation 15 on a direct-
form II structure. This structure is depicted in the "DF2-IIR" WP-
partition in fig. 7. The transfer function in equation 15, and associ-
ated parameters in equations 16, 17 and 18 apply to this DF2-IIR
structure (note that the parameter b1 equals zero, and therefore
is left out). The recipe for computing the coefficients b0, b2, a1

Figure 7: AutoWah WaveCore process

and a2 from equations 16,17 and 18 is implemented in the WP-
partition called "Coefficient Computation" (obviously with inputs
ω0 and Q). The "Env-Follower" WP-partition in fig. 7 detects the
envelope of the input signal x[n] and uses this envelope to com-
pute the center frequency ω0. Envelope detection is implemented
by squaring the input signal, followed by lowpass filtering. The en-
velope signal is scaled and subsequently determines the frequency
of the LFO (same LFO as used in the flanger in fig. 5). The sine
wave shaped output of the LFO is scaled with the swing parame-
ter and added to the offset freq, and finally fed to the "Coefficient
Computation" WP-partition.

The AutoWah WP requires 46 WaveCore PAs. This implies 2.2%
of the processing capacity of a single PU. The AutoWah applica-
tion requires a minimum clock frequency of 2.5 MHz. The PU
memory requirement for the AutoWah is 368 bytes. The process-
ing latency of the AutoWah algorithm is zero, since the shortest
path from x[n] to y[n] does not contain delay-elements.
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5.3. Automated compilation from Faust to WaveCore

In the third mapping example we focus on the WaveCore pro-
gramming language compatibility with Faust [3]. Faust stands
for Functional AUdio STream, and is a functional language de-
signed for audio processing. The Faust compiler produces C++
code, specifically targeted to a C++ signal processor class. The
Faust compiler can also produce a graph representation of the data-
flow network which is extracted from the Faust language descrip-
tion. Typically an algorithm which is described in Faust consists
of a data-flow process which is intended to run at real-time audio
rate, and a control part which intends to implement the run-time
control (e.g. sliders, knobs, etc.). We have developed an experi-
mental compiler which maps the Faust graph representation onto a
WaveCore process. This compiler writes a WP netlist description
which subsequently can be compiled to WaveCore object code by
the WaveCore mapping tool. We used the Faust implementation of
a stereo variant of the Zita-Rev1 [6] reverberator to show the fea-
sibility of WaveCore code generation from Faust. The Zita-Rev1
algorithm has been converted to WaveCore in a fully automated
way.

The compiled Zita-Rev1 WP requires 284 WaveCore PAs, where
30 of these PAs infer delay-lines. This implies 12% of the process-
ing capacity of a single PU. The Zita-Rev1 application requires a
minimum clock frequency of 22 MHz. The PU memory require-
ment for Zita-Rev1 is 2608 bytes. The processing latency of the
compiled Zita-rev1 Faust algorithm is zero since the shortest path
from input x[n] to output y[n] does not contain delay-elements.

6. EVALUATION

We have developed a benchmark WaveCore algorithm set, which
implements a combination of guitar effects processing and digital
wave synthesis. This benchmark represents a guitar model (con-
trolled by a console), a guitar-effects gear box and a model of dis-
tortion and speaker cabinet. The block diagram of this benchmark
is depicted in fig. 8. The complete model is encoded in one com-
posed WaveCore process which breaks down into four hierarchi-
cally built WP-partitions.

The first WP-partition in the chain instantiates 6 guitar string mod-
els. For a guitar string model we use a DWG (Digital Wave Guide)
model, based on the Karplus-Strong algorithm [7]. Each string in
the 6-string model can be tuned at run-time by a process which
runs at the host computer. Moreover, plucking each individual
string as well as adding damping characteristics (controlling the
timbre of each individual string) can be controlled at run-time.
Hence, a high level of "player" control is enabled by the model:
like string bending, playing chords, artificial finger-picking etc.

The second WP-partition in the chain implements an acoustical
model of a guitar body. The implementation of this model is based
on a 1700-taps FIR filter. The six-string model, added with the
acoustical guitar body model forms a digital model of a guitar: the
"digitar".

The third WP-partition implements the effects gear-box. This is
a model of a multi-effects rack. The digitized AC97 input sig-
nal is added to the "digitar" at the input of the gear model, and
subsequently fed to the effects models in the rack. This enables

to plug-in a real guitar into the analog input of the FPGA board.
The effects in the rack are a 12-stage envelope Phaser, the "Zita-
Rev1" reverberator 1 [6], the Auto-Wah, the Tremolo effect, and
the flanger. The outputs of the individual effects are scaled and
mixed with the unprocessed (i.e. "dry") signal which is fed through
the "Bypass" unit. The effects in the gear-box, as well as the scal-
ing/mixing is controlled at run-time by a process which runs on
the host computer.

The fourth WP-partition implements a distortion model which is
based an the BOSS DS1 distortion pedal [8], a speaker cabinet
model and stereo rendering. The signal which is fed through the
DS1 model is scaled and added with a scaled "dry" signal (through
the "Bypass" unit). The output of the added signal is fed through
a 1700-taps FIR filter which represents an acoustical model of a
speaker cabinet. Finally, the output of the cabinet model is routed
to the "left" channel output of the AC97 codec, and a delayed
copy of this signal ("right") is routed to the "right" channel of the
AC97 codec. The parameters for the DS1, the dry/wet mixing and
the length of the stereo rendering delay can be varied at run-time
by the host-computer. Table 2 shows the mapping results of the

Table 2: Mapping results of Digitar benchmark algorithm set

WP-partition #PAs
6-String 184
GuitarBody 1712
GearBoxModel 551
Distortion/Cabinet-model 1774

PU #Mapped PAs Utilization #Mapped DelayLines
1 738 41% 48
2 1714 95% 0
3 1775 99% 1
4 0 0% 0
5 0 0% 0

benchmark algorithm on the WaveCore/Atlys platform. The algo-
rithm requires 365 MFLOPS and the overall processor utilization
is 47% (2 idle PUs and the other ones not entirely loaded). Further-
more, the processing latency in the entire processing chain equals
only two sampling periods (shortest path in the chain). The ex-
ternal memory bandwidth for this algorithm equals 9.6 MBytes/s,
which is very modest. Hence, the real-time execution requirements
of the overall algorithm are easily fulfilled with zero processing jit-
ter.
Next to the described benchmark, we also applied another exper-
iment to fully load the WaveCore cluster with interconnected bi-
quad chains. We found that it is possible to compile 1710 biquad
filter instances, divided over 30 WP-partitions within a single WP.

7. CONCLUSIONS AND FUTURE WORK

We have developed a scalable coarse-grained reconfigurable data-
flow architecture, called WaveCore. WaveCore is optimized to the

1The Zita-Rev1 reverberator model has been generated from a Faust
source by an experimental Faust2WaveCore compiler

DAFX-7

DAFx-269



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Figure 8: Digitar benchmark setup.

application domain of audio and acoustical processing. The pro-
gramming model is declarative and based on explicit description of
hierarchical data-flow networks. We found that the programming
methodology is to a large extend compatible with Faust, which has
been demonstrated with an experimentally compiled ’Zita-Rev1’
reverberation algorithm. We have configured a WaveCore PU clus-
ter for the Digilent Atlys, and applied this flashed WaveCore/Atlys
board as a demonstrator platform.

We have developed a comprehensive digital effects processor for
this platform which serves as a combination of guitar-effects pro-
cessor and synthesizer with a DWG-based guitar model. The pro-
cessing latency is negligible (few audio sampling periods) with
zero processing jitter. The processing capacity of the demonstra-
tor WaveCore/Atlys board proves that the architecture is very effi-
cient.

Interesting target applications for the WaveCore technology range
from cost effective audio effects solutions (e.g. multi-effects gear),
to complex audio/acoustical modeling. The ultra low latency and
real-time guaranteed execution makes it possible to apply the tech-
nology to hybrid instruments. The declarative programming method-
ology enables efficient interfacing of the technology to a class of
functional languages with data-flow characteristics. Faust is an
obvious example of this, but other existing data-flow program-
ming methodologies are also interesting candidates. Functional
language interfacing is an interesting topic for future work. Fur-
ther benchmarking of the processor technology is also an interest-
ing topic for future work.
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ABSTRACT

In this paper, a polyphonic pitch detection approach is presented,
which is based on the iterative analysis of the autocorrelation func-
tion. The idea of a two-channel front-end with periodicity estima-
tion by using the autocorrelation is inspired by an algorithm from
Tolonen and Karjalainen. However, the analysis of the periodicity
in the summary autocorrelation function is enhanced with a more
advanced iterative peak picking and pruning procedure. The pro-
posed algorithm is compared to other systems in an evaluation with
common data sets and yields good results in the range of state of
the art systems.

1. INTRODUCTION

Polyphonic and multipitch detection is still an unresolved problem
in the field of music analysis. A lot of research has been conducted
in this area in the last two or three decades and many quite dif-
ferent approaches were developed and published. While the best
of these algorithms generally achieve detection accuracies above
60 % in objective evaluations on identical data sets, none of them
ever reached values above 70 % [1]. Regarding the multitude of
publications in this field it is difficult to give a complete overview.
Therefore, the authors would like to point the interested reader to
[1, 2, 3] for an extensive survey of state of the art algorithms and
only mention the most important ones that served as a basis for
this publication in the following paragraphs.

A subgroup of pitch detection algorithms utilises an auditory
model as a front-end to mimic the human hearing system, where
the unitary pitch perception model from Meddis and O’Mard [4]
is the most prominent one. All these models usually include an
input filter bank to imitate the frequency resolution capability of
the human cochlea. The individual filter channel outputs are then
half-wave rectified and lowpass filtered which corresponds to the
mechanical to neural transduction of the inner hair cells. Periodic-
ity information per channel is extracted (e.g. using the autocorrela-
tion) and finally summarised or jointly evaluated over all channels.

The basic idea from Meddis’ model was used by Tolonen and
Karjalainen in their pitch detection algorithm [5], but they drasti-
cally reduced the amount of filters in the auditory filter bank and
only chose two channels for a maximally efficient implementation.
The redundancy in the resulting overall summary autocorrelation
function (SACF) was then removed by simply stretching the SACF
by integer factors and subtracting it from itself. The analysis pro-
cedure is computationally efficient and straight-forward to imple-
ment but the detection accuracy can not compete against recently
developed methods.

Periodicity
Estimation

Pre-
Processing

Pitch
Analysis

x(n)

Pre-whitening

Bandpass
2250 . . . 8000 Hz

Bandpass
60 . . . 2250 Hz

HWR
Lowpass
2250 Hz

ACF rhi
xx(m)ACF rlo

xx(m)

+ SACF S(m)

Periodicity-Analysis

Post-Processing

Pitches f1, f2, ...

Figure 1: Block diagram of the presented pitch detection algo-
rithm.

When it comes to the detection of multiple pitches with an au-
ditory motivated front-end, one also has to consider the extensive
research done by Klapuri [6, 7]. He uses an auditory model to split
the input signal into several channels and periodicity information
is retrieved from the sum of the individual channel spectra. The
subsequent analysis process is looking for peaks with a strong cor-
responding harmonic series and iteratively removes the strongest
series from the spectrum while selecting its base peak as a pitch
candidate. The big filter bank (around 70 channels) and complex
analysis induce high computational costs but the detection accura-
cies are good.

In this paper, a two channel auditory front-end like the one
from Tolonen is used but the analysis of the periodicity informa-
tion is replaced by a more advanced iterative peak picking and
pruning procedure comparable to the one from Klapuri. Local
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maxima in the SACF are detected and periodicity saliencies are
calculated by summing the amplitudes at all integer multiples of a
peak. High salience values will indicate a strong periodicity and
the relating base period of the series can be assumed to be a good
pitch candidate. A similar method has already been published by
the same authors in [8] but the retrieved pitches were solely used
as input for a chord detection and the whole algorithm was never
optimised and evaluated in the context of multipitch analysis. Al-
though it still shares the same basic idea, the implementation de-
tails and parameters changed a lot while the focus was shifted to-
wards a pure polyphonic pitch detector.

In the following Section 2, the new algorithm will be described
in detail followed by an evaluation with three well known data
sets in Section 3, including a comparison with the state of the art
approach from Benetos [9]. Section 4 will complete the paper with
a summary and outlook to future developments.

2. PITCH DETECTION ALGORITHM

The block diagram of the presented pitch detector is depicted in
Fig. 1 and in its underlying structure it is identical to the system of
Tolonen [5]. Regarding the Pre-Processing and Periodicity Esti-
mation stages, the main modification is a different parametrisation
of the auditory front-end. However, the subsequent Pitch-Analysis
block has been completely replaced by an iterative method. All
signal processing is performed in overlapped blocks x(n) of length
N and the hop size between successive blocks Nh is set to N/4.

2.1. Pre-processing

The incoming signal block x(n) is first of all processed by a pre-
whitening filter. A signal model is estimated by linear predic-
tion and inverse filtering with the model coefficients yields the
pre-whitened input block with an equalised spectral envelope. To
achieve a higher resolution in low frequency regions, the filter co-
efficients are determined by warped linear prediction (WLP) [10].
The WLP model was chosen to be of order 8 with a warping coeffi-
cient of 0.72 and the loss of signal energy by the filtering operation
was compensated by comparing the overall power per block before
and after the filter.

Afterwards the signal is split in two bands. The low chan-
nel bandpass filtering is realised by the sequential application of
a lowpass and highpass at 2250 Hz and 60 Hz, respectively. The
high channel bandpass is formed by a highpass at 2250 Hz fol-
lowed by a lowpass at 8000 Hz. After half-wave rectification of
the high channel signal, another lowpass at 2250 Hz is applied. All
filters are second order IIR butterworth types [11] and the filtering
is done per block in forward and backward directions to compen-
sate for group delay but also to achieve steeper slopes. Finally, an
individual periodicity estimation is performed in both channels.

2.2. Periodicity estimation

The autocorrelation function (ACF) is a common way to deter-
mine the periodicity of a signal and it has been frequently used
to retrieve pitch information in the past. By using the Wiener-
Khintchine theorem it can be efficiently calculated in the frequency
domain as the inverse Fourier transform of the power spectrum.
To avoid cyclic convolution from the DFT and to respect that the
length of an autocorrelation sequence is Nr = 2N − 1, the in-
put block has to be zero-padded to Nr before applying the DFT.

In this case Nr is chosen to be Nr = 2N (nearest power of two
for an efficient FFT implementation). The input block x(n) is first
weighted by a Tukey (tapered cosine) window with a control pa-
rameter α = 0.4 and after appending N zeros the resulting vector

xp =

Nr×1


x(1)
x(2)

...
x(N)

0
...
0




, Nr = 2N (1)

can be used to calculate the autocorrelation

rxx = IDFT
(
|DFT(xp)|2

)
. (2)

By replacing the square in (2) with a parameter γ

rxx = IDFT (|DFT(xp)|γ) (3)

the ACF is non-linearly distorted and the amount of distortion can
be easily adjusted. In the presented algorithm γ = 0.6 was used.
The ACF is calculated individually in the high and low channel
and the summary autocorrelation function (SACF)

S(m) = rlo
xx(m) + rup

xx(m), m ∈ [0, . . . , Nr], (4)

with the time lag index m, is further analysed in the next step to
extract the pitch information.

One interesting feature of the ACF in general, and also of the
SACF as used in this paper, is the fact that its shape is approxi-
mately independent from the spectral envelope of the input signal.
In Fig. 2 the SACFs of four harmonic signals with an identical
fundamental frequency of 440 Hz but different spectral envelopes
are shown. Although some of the signals have quite different par-
tial amplitudes or even missing partials in the spectrum, the main
period is clearly visible in all SACF plots and the corresponding
peaks have an identical amplitude gradient. This is particularly
beneficial for iterative detection approaches. Detected peaks have
to be removed before the next iteration starts and the wrong es-
timation of peak amplitudes in the case of overlapping peaks is
a common difficulty for algorithms that perform this kind of pro-
cessing in the spectrum. In the SACF, the envelope is highly pre-
dictable and can be simply determined by fitting a smooth curve
through the peak amplitudes.

2.3. Periodicity analysis

The SACF contains all the periodicity information from the in-
put signal emphasised by the various pre-processing steps. The
challenge is to analyse the SACF and to transfer this periodicity
information to distinctive pitches. In [5] the SACF was iteratively
stretched and subtracted from itself to remove redundant informa-
tion. The remaining peaks above a final threshold eventually mark
the most prominent fundamental periods in the signal. While be-
ing computationally efficient and easy to implement, the repeated
reductions are not very specific as with increasing stretch factors
the widening and subtraction of the SACF increasingly deforms
the relevant peaks. Therefore, we propose to replace this analysis
step with an iterative peak picking and pruning approach.
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Figure 2: Outputs of the summary autocorrelation function (SACF) for input signals with different spectral envelopes. Fundamental
frequency of all signals is 440 Hz which corresponds to a period of 2.27 ms.

2.3.1. Periodicity salience

Initially, a set of all local maxima (or peaks)

M = [m1,m2, . . . ,mi, . . . ,mM ], mlo < mi < mhi (5)

above a threshold δ1 in the SACF is identified, where mlo and mhi

are the minimum and maximum lag values to take into account as
fundamental frequencies and i ∈ [1, . . . ,M ] is the index of the
maximum in the list. For every maximum a corresponding period-
icity salience will be calculated by summing the SACF values at
all integer multiples. A high salience will indicate that the inves-
tigated maximum is the base peak of a strong series in the SACF
and hence, is a good candidate for a fundamental period.

The whole process is shown as pseudo code in Algorithm 1
and described in detail in the following paragraphs. The outer loop
iterates over all detected maxima in M. A tolerance value ∆m =
4+mi/25 is calculated for the maximummi and the corresponding
salience si is initialised with the SACF amplitude S(mi) of the
base peak. The peak counter ki is set to one and the exact position
of the first maximum m̂i,1 is initialised with mi.

The inner loop iterates over all integer multiples k of the base
peak, whereas k is bound to the nearest integer [mmax/mi] andmmax

denotes the maximum lag that is considered being a multiple. The
k-th multiple of mi in the series is estimated to appear at

mi,k = m̂i,k−1 +mi, k = 1, 2, 3, . . . , [
mmax

mi
] (6)

and the exact location

m̂i,k = argmax
mi,k±∆m

[S(m)] (7)

is retrieved as the local maximum of S(m) in a range of ± ∆m

around the approximate position. If the periodicity error

∆m̂i,k = |mi,k − m̂i,k| (8)

is smaller than the tolerance ∆m, a valid peak in the current se-
ries is detected. Its amplitude S(m̂i,k) is added to the periodicity
salience

si = si + S(m̂i,k) (9)

and the counter of detected peaks in the current series

ki = ki + 1 (10)

is incremented by one.
After the border mmax is reached and mi,k > mmax for the

current k, a refined base peak position

m̂i =
1

ki

∑

k∈K

m̂i,k

k
(11)

can be calculated by taking the mean value of all peak positions
in the series, where K is the set of all k where the maxima sat-
isfy Eq. (8). This even allows sub-sample accuracy in the period
measurement and therefore, an increased frequency resolution in
particular for high frequencies. Otherwise, the precision would be
limited by the sample time Ts = 1/fs. Furthermore, the saliencies

si = si ·
(

ki
mmax
m̂i

)2

(12)
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// iterate over all maxima mi in M
for i← 1 to M do

∆m ← 4 + mi/25

si ← S(mi)
ki ← 1
m̂i,1 ← mi

// iterate over all multiples mi,k

for k ← 2 to [mmax/mi] do
mi,k ← m̂i,k−1 +mi

m̂i,k ← argmaxmi,k±∆m
[S(m)]

∆m̂i,k ← |mi,k − m̂i,k|

// if peak error is smaller than tolerance
if ∆m̂i,k < ∆m then

si ← si + SACF(m̂i,k)
ki ← ki + 1

end
end
m̂i ← 1

ki

∑
k∈K

m̂i,k

k

si ← si ·
(

ki
mmax/m̂i

)2

end
Algorithm 1: Calculation of periodicity saliencies si for a set of
detected maxima M.

are weighted by the number of detected peaks over the number of
potentially available peaks below mmax. This factor can be inter-
preted as a measure of how complete a series is and it goes down
to zero if only a few random or even no multiples were found.

The maximumm?
i with the strongest salience si is then finally

chosen as the first pitch candidate and the corresponding funda-
mental frequency

f1 =
fs
m̂?
i

(13)

is calculated with the help of the sampling frequency fs.

2.3.2. Peak pruning

After selecting the strongest maximum, the corresponding peak
series (base peak and multiples) has to be removed from the SACF
before proceeding to the next iteration. The pruning procedure is
shown in pseudo code in Algorithm 2. The detection of multiples
in a series is identical to the one in Algorithm 1 and its detailed
description is found in the previous section.

In Sec. 2.2 it was already mentioned that the envelope of a
peak series is well predictable and in this case it is assumed to
follow an exponential curve

Ŝ(m) = a · eb·m, (14)

where the parameters a and b are estimated by a curve fitting al-
gorithm. After erasing the base peak, all exact positions of the
multiples are identified and removed. The removal of a peak with
the removePeak() function in the pseudo code works as follows:

1. Find the inflection points left and right ofm?
i,k to determine

the width of the peak.

2. Retrieve the estimated peak amplitude.

∆m ← 4 + m?
i/25

m̂?
i,1 ← m?

i

// remove base peak m?
i

removePeak(m?
i )

// remove all multiples of m?
i

for k ← 2 to [mmax/m?
i ] do

m?
i,k ← m̂?

i,k−1 +m?
i

m̂?
i,k ← argmaxm?

i,k
±∆m

[S(m)]

∆m̂?
i,k
← |m?

i,k − m̂?
i,k|

// if peak error is smaller than tolerance
if ∆m̂?

i,k
< ∆m then

removePeak(m̂?
i,k)

end
end

Algorithm 2: Pruning of a periodic series from the SACF S(m)
starting with the most salient maximum at m?

i .

3. Create a tapered cosine window w(m) (Tukey window)
which spans the whole width of the peak (parameter α =
0.2) and is zero elsewhere.

4. Remove the peak by multiplication with a properly scaled
inverse window

w(m)′ =

(
1− Ŝ(m̂?

i,k)

S(m̂?
i,k)
· w(m)

)
(15)

S(m) = S(m) · w′(m), (16)

where Ŝ(m̂?
i,k) is the expected peak amplitude determined

by the curve fitting as in (14). In the case that Ŝ(m̂?
i,k) >

S(m̂?
i,k), the quotient has to be bound to one to avoid a

negative window amplitude.

After the removal of all peaks in the series the next iteration
starts and the whole process is repeated until a certain break con-
dition is met.

2.3.3. Break condition

There are two possible conditions to stop the iterations for the cur-
rent frame and to proceed to the next one. First condition is to
limit the average number of iterations to the expected count of si-
multaneous note events (polyphony). As this is usually unknown
and may also change drastically throughout a musical piece, the
polyphony alone is not a sufficient criterion. Therefore, iterations
will also stop when the strongest salience does not any more excel
a threshold δ2, where usually δ2 > δ1.

2.3.4. Parameters

From the previous algorithmic description it could already be seen
that there are a lot of free parameters. Most of them are quite
empirical and can only be tweaked manually without any mathe-
matical or physical relationship. This makes it difficult to give an
optimal parameter set. However, the parameters in Table 1 turned
out to yield good results with all data sets during the development
process and also in the later evaluation. All parameters were de-
termined for a sampling frequency of 44.1 kHz.
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Description Param. Value

Block length N 4096

Hop size Nh 1024

Peak position tolerance ∆m 4 + mi/25

Peak detection threshold δ1 0.025

Salience threshold δ2 0.12 ≈ 5 δ1

Max. number of iterations - 6

Min. period of base peaks mi mlo 30

Max. period of base peaks mi mhi 735

Max. period of multiples mi,k mmax 2048

Table 1: Parameters of the periodicity analysis (fs = 44.1 kHz).

2.3.5. Example

In Fig. 3 the peak picking and pruning procedure is depicted for a
single iteration on a sample signal containing two harmonic tones
with fundamental frequencies of 110 Hz and 659 Hz. The peaks of
the strongest detected series in the first iteration are marked by an
asterisk in Fig. 3a). This series is then removed in Fig. 3b) under
the assumption of the estimated envelope which is drawn as a grey
dashed line. Now, the residual thick black curve mainly contains
periods of the lower fundamental frequency and the corresponding
strongest series is chosen in Fig. 3c). Due to the smooth and well
approximated envelope of the peak amplitudes it is possible to sep-
arate these tones even though the two series completely overlap.

2.4. Post-processing

A simple post-processing filter was used to remove isolated and
spurious detections with the length of a single frame. It is also
intended to fill single frame gaps in otherwise stable detections
over various frames. Despite its simplicity it turned out to be very
effective. Applied to algorithms with many spurious false positives
the post-processing has the ability to drastically raise the Precision
with only negligible decrease of the Recall values.

3. EVALUATION

3.1. Data sets

The pitch detection algorithm, described in the previous chapter,
has been evaluated with three different data sets. All of them are
established in the community and have been used to evaluate vari-
ous other algorithms in the past:

• Bach10 Data Set [12] consists of ten excerpts from several
J.S. Bach chorales played by violin, clarinet, saxophone and
bassoon. Matlab data files with fundamental frequencies
and onset/offset times are supplied as ground truth.

• MIREX Multi-F0 Woodwind Development Data Set [13, 14]
is the recording of a woodwind quintet (flute, oboe, clarinet,
horn and bassoon) with the respective pitch information as
a MIDI file. The whole recording has a length of 9 minutes
and is one of the pieces used in the evaluation of the annual
MIREX Multiple Fundamental Frequency Estimation and
Tracking task. Only a 30 second training snippet is publicly
available and was used for this evaluation.
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(a) Selected peak series with the strongest salience
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(c) Selection of the next series

Figure 3: Peak picking and pruning in the SACF of a signal with
fundamental frequencies of 110 Hz and 659 Hz. Subplot a) shows
the selected peak series with the strongest salience in the first iter-
ation which is then removed in b), where the dashed line shows the
estimated envelope. The lower frequency series stays intact after
the removal. In the residual c) the next series will be selected.

• TRIOS Score-aligned Multitrack Recordings Data Set [15]
is a collection of 4 multitrack recordings of short extracts
from classical trio pieces performed by piano, string and
several wind instruments. It also includes an additional
recording of the famous Take Five jazz piece played by pi-
ano, saxophone and drums.

Regarding the density and polyphony of the music, the Bach10
data set is the most simple one. Its pieces are played by a quar-
tet of monophonic instruments and therefore, have a maximum
polyphony of four. The same holds true for the MIREX piece,
but as it is played by a quintet, its polyphony is limited to five. The
most complex data set is TRIOS as it contains two monophonic in-
struments mixed with a difficult piano track which alone induces a
high polyphony. All input signals are available at a sample rate of
44.1 kHz and were mixed down to mono if necessary. Additional
normalisation to a mean sample power of one was applied to allow
an almost data set independent parametrisation of the algorithms.
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3.2. Metrics

For the calculation of the evaluation metrics, the amount of true
positive, false positive and false negative detections were counted
on a frame basis of 10 ms and accumulated over all songs in a data
set. Based on these values the standard metrics Precision, Recall
and F-measure were retrieved [13]. If the pitch detector output was
given as a set of fundamental frequencies, they were converted and
rounded to the closest integer MIDI value.

3.3. Algorithms and parameters

Besides the approach presented in this paper, three other algo-
rithms were investigated. The algorithm from Tolonen [5] shares
the same front-end as the presented approach. Hence, its purpose
is to show if the new iterative analysis of the SACF yields any
advantages. The algorithm from Klapuri [7] is also based on an
auditory front-end but uses a far more complex filter bank as input
stage. Its iterative analysis procedure is comparable to the pre-
sented one. Both algorithms were carefully implemented by the
authors of this paper in Matlab.

Finally the publicly available Matlab implementation1 of a re-
cent algorithm presented by Benetos [9] is included. It is among
the best algorithms that have participated in the MIREX campaign
in the last years and well suited to compare the presented algo-
rithm to a current state of the art system. Regarding its processing
principle it is completely different to the other systems in this eval-
uation. The algorithm takes the log-frequency spectrogram matrix
as input and tries to find a suitable factorisation into an activation
matrix and accompanying spectral templates. In a training stage
the spectral templates can be initialised with pre-trained spectra to
guide the later factorisation process.

The three reference systems were parameterised as recom-
mended in the respective papers. In particular:

• Benetos: sparsity for pitch activation sz = 1.05, sparsity
for source contribution su = 1.5, sparsity for pitch shift-
ing sh = 1.1. Time resolution of the resulting transcription
matrix was 40 ms. Final threshold for the transcription ma-
trix was set to δB = 45.

• Klapuri: blocklength N = 4096, hop size Nh = 2048, all
other parameters were chosen as proposed in [7].

• Tolonen: blocklength N = 4096, hop size Nh = 1024, all
other parameters as in [5].

All parameters, and primarily the thresholds, were manually tweaked
to yield a good balance between Precision and Recall throughout
all data sets. Due to the huge amount of parameters it was not pos-
sible to iteratively optimize them automatically and it cannot be
claimed that they are optimal under all conditions. However, the
comparison with previously published evaluations in the next sec-
tion will validate that the algorithms capabilities are well reflected
in our results.

3.4. Results

The detailed results from the evaluation with all data sets are listed
in Table 2. Every algorithm was evaluated in 4 different modes.
The first block of results is from the pure pitch detector outputs.
In the second block, the scores were calculated without taking the

1https://code.soundsoftware.ac.uk/projects/amt_
mssiplca_fast

absolute octave into account and only the correct detection of the
semitones was considered (chroma only). The post-processed re-
sults are achieved with the simple post-processing described in
Sec. 2.4 and finally the post-processed results are also evaluated
with chroma only metrics.

The auditory motivated iterative analysis of Klapuri yields gen-
erally better scores than the approach from Tolonen but it does
not reach the results from recently developed algorithms. This
matches the experience from various other evaluations [7, 16, 17]
in the past. However, in absolute values our implementation of
Klapuri’s algorithm seems to be a few percent worse than reported
in the above publications. In contrast the Tolonen algorithm per-
forms a bit better than the implementation from the MIR Toolbox
[18] used in [16, 17]. Comparing the post-processed Benetos re-
sults in Table 2 with the frame based F-measures in [9] (where
a similar post processing was applied), one can see that the val-
ues are quite close for the MIREX and TRIOS data set (MIREX:
67.2 %, TRIOS: 66.5 % in [9]). The algorithm has also been eval-
uated in the context of the MIREX campaign [19] and detailed
results are published on the corresponding website [14]. Again,
the post-processed results from our evaluation of the Benetos im-
plementation are in the same range. Small deviations of about 5 %
may be caused by different parameter settings, thresholds, or in
particular different training data. No data set specific training has
been conducted during this evaluation and the pre-trained basis
spectra from the available Matlab code have been used. However,
in [19] it was mentioned that elaborate training with various instru-
ments was performed for the MIREX contribution. After all, one
can state that our results of the reference algorithms are plausible
and they seem to be properly configured and evaluated.

The presented algorithm with an iterative analysis of the SACF
clearly performs much better than the simple stretch and subtract
procedure from Tolonen throughout all data sets and metrics. It
also yields better results than our implementation of the Klapuri
algorithm which uses a similar periodicity analysis but a much
more complicated pre-processing. This is a good indication that
it is not necessary to rely on a complex auditory model as a front-
end. At least it seems possible to drastically reduce the amount of
filters for a higher computational efficiency. The proposed system
works best on the simple Bach10 data set, where the F-measure is
5.3 % better than Benetos when post-processing is applied. The
results from all algorithms decrease with increasing complexity
and polyphony of the music. Finally, on the most complex TRIOS
data set, the presented approach and the one from Benetos reach a
nearly identical F-measure of 62.9 % and 63.1 %, respectively. On
all data sets, the Precision of the presented algorithm is constantly
high and only the Recall degrades with increasing polyphony. This
indicates a constantly low false positive rate and a slight penalty
with highly polyphonic content.

The simple post processing turned out to be very effective and
usually increases the Precision by 10-20 % on all algorithms with
only minor impact on the Recall values. For future research it
might be in particular interesting to see how it compares with more
complex post-processing methods like note tracking, e.g. with a
hidden Markov model (HMM) as in [20].

To summarize the evaluation, one can say that the presented
algorithm with its iterative analysis of the SACF shows a clear
advantage over the approach from Tolonen and is more accurate
than the algorithm from Klapuri. In fact, the results indicate that
the performance is in the range of current state of the art joint
estimation approaches like the one from Benetos.
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standard chroma only post-proc. post-proc. + chroma only

Algorithm F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec.

iterSACF 74.0 % 69.3 % 79.3 % 86.8 % 83.5 % 90.4 % 85.0% 90.2 % 80.3 % 94.4 % 100.0 % 89.3 %

Benetos[9] 68.4 % 61.6 % 76.8 % 86.4 % 81.7 % 91.7 % 79.7% 83.2 % 76.5 % 95.5 % 100.0 % 91.4 %

Klapuri[7] 61.9 % 60.0 % 64.0 % 72.1 % 67.5 % 77.3 % 68.3% 73.8 % 63.5 % 86.1 % 100.0 % 75.7 %

Tolonen[5] 61.4 % 61.5 % 61.2 % 72.9 % 70.7 % 75.3 % 66.8% 73.6 % 61.2 % 85.5 % 100.0 % 74.7 %

(a) Bach10 data set

standard chroma only post-proc. post-proc. + chroma only

Algorithm F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec.

iterSACF 61.6 % 58.3 % 65.3 % 77.2 % 69.3 % 87.3 % 73.2% 83.7 % 64.9 % 90.7 % 100.0 % 83.0 %

Benetos[9] 63.9 % 62.0 % 65.9 % 78.0 % 71.5 % 85.9 % 69.5% 76.0 % 64.1 % 91.7 % 100.0 % 84.7 %

Klapuri[7] 51.0 % 50.5 % 51.5 % 68.2 % 60.9 % 77.6 % 57.0% 70.7 % 47.7 % 84.7 % 100.0 % 73.5 %

Tolonen[5] 41.4 % 40.5 % 42.3 % 62.9 % 54.2 % 74.9 % 48.3% 57.1 % 41.8 % 84.2 % 100.0 % 72.8 %

(b) MIREX data set

standard chroma only post-proc. post-proc. + chroma only

Algorithm F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec.

iterSACF 54.5 % 58.8 % 50.8 % 73.3 % 71.8 % 74.8 % 62.9% 82.8 % 50.7 % 83.6 % 100.0 % 71.8 %

Benetos[9] 57.7 % 68.6 % 49.8 % 74.2 % 83.5 % 66.7 % 63.1% 86.6 % 49.6 % 79.4 % 100.0 % 65.9 %

Klapuri[7] 45.7 % 52.3 % 40.5 % 60.9 % 59.9 % 61.9 % 50.5% 70.7 % 39.2 % 73.6 % 100.0 % 58.2 %

Tolonen[5] 43.0 % 48.0 % 38.8 % 62.4 % 59.7 % 65.3 % 47.4% 61.7 % 38.5 % 77.9 % 100.0 % 63.8 %

(c) TRIOS data set

Table 2: Detailed evaluation results grouped by four different evaluation modes: standard rating from the pure pitch detector output, chroma
only ratings, ratings with applied post-processing and finally with post-processing and chroma only ratings.

4. CONCLUSION

Starting from the two channel auditory front-end of Tolonen, a
new method for the extraction of multiple fundamental frequen-
cies from polyphonic signals was derived. It is based on a novel
approach to iteratively extract pitch information from the autocor-
relation function. The evaluation proves that the new algorithm is
able to yield significantly higher scores than the basic system from
Tolonen and also performs better compared to the similar itera-
tive analysis from Klapuri. An average F-measure of 62.9 % was
achieved with the TRIOS data set, 73.2 % with the MIREX piece
and 85.0 % with the Bach10 data set. These are promising first re-
sults in the range of current state of the art algorithms. However,
more extensive evaluations are necessary, e.g. in the context of the
MIREX campaign, to give an absolute ranking.

One problem of the presented algorithm is its immense amount
of parameters that can only be tweaked empirically. Detailed anal-
ysis of the parameters, thresholds and their influence on the met-
rics still has to be done but may be quite time consuming due to
the high degree of freedom and existing parameter dependencies.
Therefore, it may be interesting to keep the front-end and the ad-
vantages of the SACF as described here but apply a joint estimation
analysis, as for example non-negative matrix factorisation (NMF)
[21] or to make use of probabilistic methods like [9].
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ABSTRACT

Robust Principal Component Analysis (RPCA) is a technique to
decompose signals into sparse and low rank components, and has
recently drawn the attention of the MIR field for the problem of
separating leading vocals from accompaniment, with appealing re-
sults obtained on small excerpts of music. However, the perfor-
mance of the method drops when processing entire music tracks.
We present an adaptive formulation of RPCA that incorporates
music content information to guide the decomposition. Experi-
ments on a set of complete music tracks of various genres show
that the proposed algorithm is able to better process entirepieces
of music that may exhibit large variations in the music content, and
compares favorably with the state-of-the-art.

1. INTRODUCTION

In the general context of processing high-dimensional data, a re-
current problem consists in extracting specific information from
a massive amount of related or unrelated information. Examples
include recovering documents with specific topics from a collec-
tion of Web text documents [1] or detecting moving objects from
camera recordings for video surveillance purpose [2]. Among nu-
merous existing methods, the technique of Robust PrincipalCom-
ponent Analysis (RPCA) [3, 4], has recently drawn a lot of atten-
tion. All the above-mentioned problems can be formulated assep-
arating some foreground components (the keywords in Web data,
the moving objects in video) from an underlying background (the
background corpus topic in Web data, the stable environmentin
video), that can be respectively modeled as a sparse plus a low-
rank contribution.

RPCA has been used extensively in the field of image pro-
cessing (e.g. image segmentation [5], visual pattern correspon-
dence [6], surveillance video processing [7], batch image align-
ment [8], etc.). However, its application in Music Information Re-
trieval (MIR) is much more recent. Existing applications inaudio
include audio classification, as in [9] where audio segmentsfrom
video sound files are classified into classes (applause and laugh-
ter occurrences); [10] addresses the problem of refining available
social tags obtained through social tagging websites to maximize
their quality. The main application of the RPCA framework in
music focuses on the task of separating a foreground component,
usually the singing voice, from a background accompanimentin
monaural polyphonic recordings, i.e., when only one channel of

∗ Part of this research was supported by a Marie Curie International Out-
going Fellowship within the 7th European Community Framework Pro-
gram.

recording is available. This scenario is the primary focus of this
paper.

The singing voice is a complex and important music signal
attribute that has been much studied in MIR. Its separation is es-
sential for many applications, such as singer identification [11],
melody transcription [12], or query by humming [13]. We refer
the reader to [14] for a recent review of singing voice separation
methods. Recently, approaches that take advantage of repetition
in the signal have emerged. These approaches assume that the
background accompaniment has a repetitive musical structure, in
contrast to the vocal signal whose repetitions, if any, occur only
at a much larger timescale [15, 16, 17]. In [15] a simple method
for separating music and voice is proposed based on the extraction
of the underlying repeating musical structure using binarytime-
frequency masking (REPET algorithm). The methods assumes
that there is no variations in the background and is thus limited
to short excerpts. In [16], the method is generalized to permit the
processing of complete musical tracks by relying on the assump-
tion of local spectral-periodicity. Moreover, artifacts are reduced
by using soft-masks. Inspired by these approaches, [17] proposes a
model for singing voice separation based on repetition, butwithout
using the hypothesis of local periodicity. The background musi-
cal accompaniment at a given frame is identified using the nearest
neighbor frames in the whole mixture spectrogram.

Most recently, RPCA has emerged as a promising approach
to singing voice separation based on the idea that the repetitive
musical accompaniment may lie in a low-rank subspace, while
the singing voice is relatively sparse in the time-frequency do-
main [18]. The voice and the accompaniment are separated by de-
composing the Short-Time-Fourier Transform (STFT) magnitude
(i.e., spectrogram) into sparse and low-rank components. When
tested on short audio excerpts from the MIR-1K dataset1 RPCA
shows improvement over two state-of-the-art approaches [19, 15].
The decomposition is improved in [20] by adding a regularization
term to incorporate a prior tendency towards harmonicity inthe
low-rank component, reflecting the fact that background voices
can be described as a harmonic series of sinusoids at multiples
of a fundamental frequency. A post-processing step is applied to
the sparse component of the decomposition to eliminate the per-
cussive sounds. [21] addresses the problem of jointly finding a
sparse approximation of a varying component (e.g., the singing
voice) and a repeating background (e.g., the musical accompani-
ment) in the sameredundant dictionary. In parallel with the RPCA

1The MIR-1K dataset [19] is a set of 1000 short excerpts
(4 − 13s) extracted from 110 Chinese karaoke pop songs, where
accompaniment and the singing voices are separately recorded. See
https://sites.google.com/site/unvoicedsoundseparation/mir-1k.
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idea of [3], the mixture is decomposed into a sum of two com-
ponents: astructuredsparse matrix and anunstructuredsparse
matrix. Structured sparsity is enforced using mixed norms,along
with a greedy Matching Pursuit algorithm [22]. The model is eval-
uated on short popular music excerpts from the Beach Boys. [23]
proposes a non-negative variant of RPCA, termed robust low-rank
non-negative matrix factorization (RNMF). In this approach the
low-rank model is represented as a non-negative linear combina-
tion of non-negative basis vectors. The proposed frameworkal-
lows incorporating unsupervised, semi-, and fully-supervised learn-
ing, with supervised training drastically improving the results of
the separation. Other related works including [24, 25] address
singing voice separation based on low-rank representations alone
but are beyond the scope of this article.

While RPCA performs well on the∼10 sec clips of MIR-1K,
the full-length Beach Boys examples of [14] give much less sat-
isfying results. When dealing with whole recordings, the musi-
cal background may include significant changes in instrumentation
and dynamics which may rival the variation in the foreground, and
hence its rank in the spectrogram representation. Further,fore-
ground may vary in its complexity (e.g., solo voice followedby a
duet) and may be unevenly distributed throughout the piece (e.g.,
entire segments with background only). Thus, the best way to
apply RPCA to separatecompletemusic pieces remains an open
question.

In this article, we explore an adaptive version of RPCA (A-
RPCA) that is able to handle complex music signals by taking
into account the intrinsic musical content. We aim to adjustthe
task through the incorporation of domain knowledge that guides
the decomposition towards results that are physically and musi-
cally meaningful. Time-frequency representations of music audio
may be structured in several ways according to their content. For
instance, the frequency axis can be segmented into regions corre-
sponding to the spectral range of each instrument of the mixture.
In the singing separation scenario, coefficients that are not in the
singing voice spectral band should not be selected in the sparse
layer. In the time dimension, music audio signals can generally
be organized into a hierarchy of segments at different scales, each
with its own semantic function (bar, phrase, entire sectionetc.),
and each having specific characteristics in terms of instrumen-
tation, leading voice, etc. Importantly, as the segments become
shorter, we expect the accompaniment to span less variation, and
thus the rank of the background to reduce.

We will show a way for this music content information to be
incorporated in the decomposition to allow an accurate processing
of entiremusic tracks. More specifically, we incorporate voice ac-
tivity information as a cue to separate the leading voice from the
background. Music pieces can be segmented into vocal segments
(where the leading voice is present) and background segments (that
can be purely instrumental or may contain backing voices). Find-
ing vocal segments (voicing detection [26]) is a subject that has
received significant attention within MIR [26, 27, 28, 29]. The de-
composition into sparse and low-rank components should be co-
herent with the semantic structure of the piece: the sparse (fore-
ground) component should be denser in sections containing the
leading voice while portions of the sparse matrix corresponding to
non-singing segments should ideally be null. Thus, while the tech-
nique remains the same as [18] at the lowest level, we consider the
problem of segmenting a longer track into suitable pieces, and how
to locally adapt the parameters of the decomposition by incorpo-
rating prior information.

2. ROBUST PRINCIPAL COMPONENT ANALYSIS VIA
PRINCIPAL COMPONENT PURSUIT

In [3] , Candèset al. show that, under very broad conditions, a data
matrix D ∈ Rm×n can be exactly and uniquely decomposed into
a low-rank componentA and a sparse componentE via a convex
program calledPrincipal Component Pursuit(RPCA-PCP) given
by:

min
A,E

‖A‖∗ + λ‖E‖1 s.t. D = A + E (1)

whereλ > 0 is a regularization parameter that trades between the
rank ofA and the sparsity ofE. The nuclear norm‖·‖∗ – the sum
of singular values – is used as surrogate for the rank ofA [30], and
the ℓ1 norm ‖·‖1 (sum of absolute values of the matrix entries)
is an effective surrogate for theℓ0 pseudo-norm, the number of
non-zero entries in the matrix [31, 32].

The Augmented Lagrange Multiplier Method (ALM) and its
practical variant, the Alternating Direction Method of Multipliers
(ADM), have been proposed as efficient optimization schemesto
solve this problem [33, 34, 35]. ALM works by minimizing the
augmented Lagrangian function of (1):

L(A, E, Y, µ) = ‖A‖∗+λ‖E‖1+〈Y, A+E−D〉+µ

2
‖A+E−D‖2

F

(2)
whereY ∈ Rm×n is the Lagrange multiplier of the linear con-
straint that allows removing the equality constraint,µ > 0 is a
penalty parameter for the violation of the linear constraint, 〈·, ·〉
denotes the trace inner product2 and‖·‖F is the Frobenius norm3.
ALM [34] is an iterative scheme that works by repeatedly mini-
mizingA andE simultaneously. In contrast, ADM splits the min-
imization of (2) into two smaller and easier subproblems, with A
andE minimized sequentially:

Ak+1 = argmin
A

L(A,Ek, Y k, µk) (3a)

Ek+1 = argmin
E

L(Ak+1, E, Y k, µk) (3b)

Both subproblems (3a) and (3b) are shrinkage problems that have
closed-form solutions that we briefly present here. We referthe
reader to [34, 35] for more details. For convenience we introduce
the scalar soft-thresholding (shrinkage) operatorSǫ[x]:

Sǫ[x] = sgn(x) · max(|x| − ǫ, 0) =

8

<

:

x − ǫ if x > ǫ
x + ǫ if x < −ǫ

0 otherwise

wherex ∈ R andǫ > 0. This operator can be extended to matrices
by applying it element-wise.

Problem (3a) is equivalent to:

Ak+1 = min
A



‖A‖∗ +
µk

2
‖A − (D − Ek +

1

µk
Y k)‖2

F

ff

(4)

that has, according to [36], a closed-from solution given by:

Ak+1 = US 1
µk

[Σ]V T

2The inner product between two matricesA and B is defined as
〈A, B〉 = trace(A∗B), ∗ being the conjugate transpose.

3The Frobenius norm of matrixA is defined as‖A‖F =

s

X

i,j

A2
ij .
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whereU ∈ Rm×r, V ∈ Rn×r andΣ ∈ Rr×r are obtained via the
singular value decomposition(U,Σ, V ) = SV D(D−Ek + Y k

µk ).

Problem (3b) can be written as:

Ek+1 = min
E



λ‖E‖1 +
µk

2
‖E − (D − Ak+1 +

1

µk
Y k)‖2

F

ff

(5)
whose solution is given by the least-absolute shrinkage andse-
lection operator (Lasso) [37], a method also known in the signal
processing community as basis pursuit denoising [38]:

Ek+1 = S λ
µk

[D − Ak+1 +
Y k

µk
]

In other words, denotingGE = D − Ak+1 + Y k

µk :

∀ i ∈ [1, m], ∀ j ∈ [1, n] Ek+1
ij = sgn(GE

ij)·max(|GE
ij |−

λ

µk
, 0)

3. ADAPTIVE RPCA (A-RPCA)

As discussed in Section 1, in a given song, the foreground vo-
cals typically exhibit a clustered distribution in the time-frequency
plane relating to the semantic structure of the piece that alternates
between vocal and non-vocal (background) segments. This struc-
ture should be reflected in the decomposition: frames belonging
to singing voice-inactive segments should result in zero-valued
columns inE.

The balance between the sparse and low-rank contributions
is set by the value of the regularization parameterλ. The voice
separation quality with respect to the value ofλ for thePink Noise
PartysongTheir Shallow Singularityis illustrated in Fig. 1. As we
can observe, the bestλ differs depending on whether we process
the entire song, or restrict processing to just the singing voice-
active parts. Because the separation for the background part is
monotonically better asλ increases, the difference between the
optimumλ indicates that the global separation quality is compro-
mised between the singing voice and the background part.
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Figure 1: Variation of the estimated singing voice NSDR (seedef-
inition in Section 4) according to the value ofλ under two situa-
tions. •: NSDR when only the singing voice-active parts of the
separated signal are processed.∗: NSDR when the entire signal is
processed.

Figure 2: Waveform of the separated voice for various valuesof
λ for the songIs This Loveby Bob Marley. From top to bottom:
clean voice,λ = λ1, 2 ∗ λ1, 5 ∗ λ1, 10 ∗ λ1.

In the theoretical formulation of RPCA-PCP [3], there is no
single value ofλ that works for separating sparse from low-rank
components in all conditions. They recommendλ = max(m, n)− 1

2

but also note that the decomposition can be improved by choos-
ing λ in light of prior knowledge about the solution. In prac-
tice, we have found that the decomposition of music audio is very
sensitive to the choice ofλ with frequently no single value able
to achieve a satisfying separation between voice and instrumen-
tal parts across a whole recording. This is illustrated in Fig. 2,
which shows the waveforms of the resynthesized separated voice
obtained with the RPCA-PCP formulation for variousλ. Forλ =
λ1 = 1/

p

max(m,n) andλ2 = 2∗λ1, aroundt = 1.15 s (dashed
rectangle) there is a non-zero contribution in the voice layer but no
actual lead vocal. This is eliminated with larger values ofλ, such
asλ = 5 ∗ λ1, 10 ∗ λ1 but at the expense of a very poor quality
voice estimate: the resulting signal consists of percussive sounds
and higher harmonics of the instruments, and does not resemble
the voice. Note that similar observations have been made in the
context of video surveillance [39].

To address the problem of variations inλ, we propose an adap-
tive variant of the RPCA consisting of a weighted decomposi-
tion that incorporates prior information about the music content.
Specifically, voice activity information is used as a cue to ad-
just the regularization parameter through the entire analyzed piece
in the (3b) step, and therefore better match the balance between
sparse and low-rank contributions to suit to the actual music con-
tent. This idea is related to previous theoretical work [40,41, 42],
but to our knowledge, its application in the framework of RPCA is
new.

We consider a time segmentation of the magnitude spectro-
gram intoNblock consecutive (non-overlapping) blocks of vocal /
non-vocal (background accompaniment) segments. We can rep-
resent the magnitude spectrogram as a concatenation of column-
blocksD = [D1D2 · · · DNblock], the sparse layer asE = [E1 · · · ENblock]
andGE = [GE

1 · · · GE
Nblock

].
We can minimize the objective function with respect to each

column-block separately. To guide the separation, we aim atset-
ting a different value ofλl, l ∈ [1, Nblocks] for each block ac-
cording to the voice activity side information. For each block, the
problem is equivalent to Eq. (5) and accordingly, the solution to
the resulting problem:

Ek+1
l = min

El



λl‖El‖1 +
µk

2
‖El − GE

l ‖2
F

ff

is given by:
Ek+1

l = S λl
µk

[GE
l ] (6)
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Algorithm 1 Adaptive RPCA (A-RPCA)

Input: spectrogramD, blocks,λ, λ1, . . . , λNblocks

Output: E, A
Initialization: Y 0 = D/J(D) where J(D) =
max(‖D‖2, λ

−1‖D‖∞); E0 = 0; µ0 > 0; ρ > 1;
k = 0
while not convergeddo

update A:
(U, Σ, V ) = SV D(D −Ek + Y k

µk ); Ak+1 = US 1

µk
[Σ]V T

update E:
for each blockl do

λ = λl;

Et+1
l = S λl

µk

[Dl − Ak+1
l +

Y k
l

µk ]

end for
Et+1 = [Et+1

1 Et+1
2 · · · Et+1

Nblock
]

update Y , µ:
Y k+1 = Y k − µk(Ak+1 + Ek+1 − D)
µk+1 = ρ · µk

k = k + 1
end while

Denoteλv the constant value of the regularization parameterλ
used in the basic formulation of RPCA for voice separation [18].
To guide the separation, in the A-RPCA formulation we assign
to each block a valueλl in accordance with the considered prior
music structure information. Using a largeλl in blocks without
leading voice will favor retaining non-zero coefficients inthe ac-
companiment layer. Denoting byΩV the set of time frames that
contain voice, the values ofλl are set as:

∀ l ∈ [1, Nblock]



λl = λv if El ⊂ ΩV

λl = λnv otherwise
(7)

with λnv > λv to enhance sparsity ofE when no vocal activity
is detected. Note that instead of two distinct values ofλl, fur-
ther improvements could be obtained by tuningλl more precisely
to suit the segment characteristics. For instance, vibratoinforma-
tion could be used to quantify the amount of voice in the mixture
within each block and to set a specific regularization parameter ac-
cordingly. The update rules of the A-RPCA algorithm are detailed
in Algorithm 1.

In Section 4, we investigate the results of adaptive-RPCA with
both exact (ground-truth) and estimated vocal activity information.
For estimating vocal activity information, we use the voicing de-
tection step of the melody extraction algorithm implemented in
the MELODIA Melody Extraction vamp plug-in4, as it is freely
available for people to download and use. We refer the readerto
[26] and references therein for other voicing detection algorithms.
The algorithm for the automatic extraction of the main melody
from polyphonic music recordings implemented in MELODIA is
a salience-based model that is described in [43]. It is basedon
the creation and characterization of pitch contours grouped using
auditory streaming cues, and includes a voice detection step that
indicates when the melody is present; we use this melody location
as an indicator of leading voice activity. Note that while melody
can sometimes be carried by other instruments, in the evaluation
dataset of Section 4 it is mainly singing.

4http://mtg.upf.edu/technologies/melodia

4. EVALUATION

In this section, we present the results of our approach evaluated on
a database of complete music tracks of various genres. We com-
pare the proposed adaptive method with the baseline method [18]
as well as another state-of-the-art method [16]. Sound examples
discussed in the article can be found at:
http://papadopoulosellisdafx14.blogspot.fr.

4.1. Parameters, Dataset and Evaluation Criteria

To evaluate the proposed approach, we have constructed a database
of 12 complete music tracks of various genres, with separated vo-
cal and accompaniment files, as well as mixture versions formed
as the sum of the vocal and accompaniment files. The tracks, listed
in Tab. 1, were created from multitracks mixed in Audacity5, then
exported with or without the vocal or accompaniment lines.

Following previous work [18, 44, 15], the separations are eval-
uated with metrics from the BSS-EVAL toolbox [45], which pro-
vides a framework for the evaluation of source separation algo-
rithms when the original sources are available for comparison.
Three ratios are considered for both sources: Source-to-Distortion
(SDR), Sources-to-Interference (SIR), and Sources-to-Artifacts (SAR).
In addition, we measure the improvement in SDR between the
mixtured and the estimated resynthesized singing voiceê by the
Normalized SDR (NSDR, also known asSDR improvement, SDRI),
defined for the voice as NSDR(ê, e, d) = SDR(ê, e)−SDR(d, e),
wheree is the original clean singing voice. The same measure is
used for the evaluation of the background. Each measure is com-
puted globally on the whole track, but also locally according to the
segmentation into vocal/non-vocal segments. Higher values of the
metrics indicate better separation.

We compare the results of the A-RPCA with musically-informed
adaptiveλ and the baseline RPCA method [18] with fixedλ, us-
ing the same parameter settings in the analysis stage: the STFT of
each mixture is computed using a Hanning window of1024 sam-
ples length with75% overlap at a sampling rate of11.5KHz. No
post-processing (such as masking) is added. After spectrogram de-
composition, the signals are reconstructed using the inverse STFT
and the phase of the original signal.

The parameterλ is set to1/
p

max(m, n) in the baseline method.
Two different versions of the proposed A-RPCA algorithm are
evaluated. First, A-RPCA with exact voice activity information,
using manually annotated ground-truth (A-RPCA_GT), andλl =
λ for singing voice regions andλl = 5∗λ for background only re-
gions. In the other configuration, estimated voice activitylocation
is used (A-RPCA_est), with same settings for theλl.

We also compare our approach with the REPET state-of-the-
art algorithm based on repeating pattern discovery and binary time-
frequency masking [16]. Note that we use for comparison the ver-
sion of REPET that is designed for processing complete musical
tracks (as opposed to the original one introduced in [15]). This
method includes a simple low pass filtering post-processingstep
[46] that consists in removing all frequencies below100Hz from
the vocal signal and adding these components back into the back-
ground layer. We further apply this post-processing step toour
model before comparison with the REPET algorithm.

Paired sample t-tests at the 5% significance level are performed
to determine whether there is statistical significance in the results
between various configurations.

5http://audacity.sourceforge.net
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Table 1: Sound excerpts used for the evaluation;back. proportion of background (no leading voice) segments (in% of the whole excerpt
duration); RecallRec.and False AlarmF.A.voicing detection rate.

Name % back. Rec. F.A. Name % back. Rec. F.A.
1- BeatlesSgt Pepper’s Lonely Hearts Club Band 49.3 74.74 45.56 8 - Bob MarleyIs This Love 37.2 66.22 36.84
2 - BeatlesWith A Little Help From My Friends 13.5 70.10 14.71 9 - Doobie BrothersLong Train Running 65.6 84.12 58.51
3 - BeatlesShe’s Leaving Home 24.6 77.52 30.17 10 -Marvin GayeHeard it Through The Grapevine 30.2 79.22 17.90
4 - BeatlesA Day in The Life 35.6 61.30 63.96 11 -The EaglesTake it Easy 35.5 78.68 30.20
5,6 -Puccinipiece for soprano and piano 24.7 47.90 27.04 12 -The PoliceMessage in aBottle 24.9 73.90 20.44
7 - Pink Noise PartyTheir Shallow Singularity 42.1 64.15 61.83

4.2. Results and Discussion

Results of the separation for the sparse (singing voice) andlow-
rank (background accompaniment) layers are presented in Tables
2, 3, 4 and 5. To have a better insight of the results we present
measures computed both on the entire song and on the singing
voice-active part only, that is obtained by concatenating all seg-
ments labeled as vocal segments in the ground truth.

• Global separation results. As we can see from Tables 2 and
3, using a musically-informed adaptive regularization parameter
allows improving the results of the separation both for the back-
ground and the leading voice components. Note that the larger the
proportion of purely-instrumental segments in a piece (seeTab. 1),
the larger the results improvement (see in particular pieces 1, 7, 8
and 9), which is consistent with the goal of the proposed method.
Statistical tests show that the improvement in the results is signifi-
cant.

As discussed in Section 3, the quality of the separation with
the baseline method [18] depends on the value of the regulariza-
tion parameter. Moreover, the value that leads to the best separa-
tion quality differs from one music excerpt to another. Thus, when
processing automatically a collection of music tracks, thechoice of
this value results from a trade-off. We report here results obtained
with the typical choiceλv = 1/

p

max(m, n) in Eq. (7). Note that
for a given value ofλv in the baseline method, the separation can
always be further improved by the A-RPCA algorithm using a reg-
ularization parameter that is adapted to the music content based on
prior music structure information: in all experiments, fora given
constant valueλv in the baseline method, settingλnv > λv in Eq.
(7) improves the results.

For the singing voice layer, improved SDR (better overall sep-
aration performance) and SIR (better capability of removing music
interferences from the singing voice) with A-RPCA are obtained
at the price of introducing more artifacts in the estimated voice
(lower SARvoice). Listening tests reveal that in some segments
processed by A-RPCA, as for instance segment[1′00′′ − 1′15′′]
in Fig. 3, one can hear some high frequency isolated coefficients
superimposed to the separated voice. This drawback could bere-
duced by including harmonicity priors in the sparse component of
RPCA, as proposed in [20]. This performance trade-off is com-
monly encountered in music/voice separation [14, 47]. However,
we can notice that all three measures are significantly improved
with A-RPCA for the background layer.

• Ground truth versus estimated voice activity location. Im-
perfect voice activity location information still allows an improve-
ment, although to a lesser extent than with ground-truth voice ac-
tivity information. In table 1, we report the accuracy results of the
voicing detection step. Similarly to the measures used for melody

Figure 3: Separated voice for various values ofλ for thePink Noise
Party songTheir Shallow Singularity. From top to bottom: clean
voice, constantλ1 = 1/

p

max(m, n), constantλ = 5∗λ1, adap-
tive λ = (λ1, 5 ∗ λ1).

detection in [48, 12], we consider theVoicing Recall Rate, defined
as the proportion of frames labeled voiced in the ground truth that
are estimated as voiced frames by the algorithm, and theVoicing
False Alarm Rate, defined as the proportion of frames labeled as
unvoiced in the ground truth that are mistakenly estimated to be
voiced by the algorithm. The decrease in the results mainly comes
from background segments classified as vocal segments. However,
statistical tests show that the improvement in the results between
RPCA and A-RPCA_est is still significant.

• Local separation results. It is interesting to note that using
an adaptive regularization parameter in a unified analysis of the
whole piece is different from separately analyzing the successive
vocal/non-vocal segments with different but constant values ofλ
(see for instance the dashed rectangles areas in Fig. 3).

• Analysis of the results on vocal segments: We expect the sep-
aration on background-only parts of the song to be improved with
the A-RPCA algorithm. Indeed the side information directlyin-
dicates these regions where the foreground (sparse) components
should be avoided; this can be clearly seen in Fig. 3. However, the
improvements under the proposed model are not limited to non-
vocal regions only. Results measured on the vocal segments alone
indicate that by using the adaptive algorithm, the voice is also bet-
ter estimated, as shown in Table 3. The improvement over RPCA
is statistically significant, both when using ground truth and esti-
mated voice activity location information. This indicatesthat side
information helps not only to better determine the background only
segments, but also enables improved recovery of the singingvoice,
presumably because the low-rank background model is a better
match to the actual background.

Side information could have been added as a pre- or post-
processing step to the RPCA algorithm. The adaptive-RPCA algo-
rithm presents advantages over such approaches. To analyzethis,
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Table 2: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the whole
song, for all models, averaged across all the songs. RPCA is the base-
line system, A-RPCA_GT is the adaptive version using groundtruth
voice activity information, and A-RPCA_est uses estimatedvoice ac-
tivity.

Entire song
RPCA A-RPCA_GT A-RPCA_est

Voice

SDR (dB) -4.66 -2.16 -3.18
SIR (dB) -3.86 0.74 -0.46
SAR (dB) 8.99 4.81 3.94

NSDR 1.70 4.20 3.18

Back.

SDR (dB) 4.14 6.52 6.08
SIR (dB) 11.48 13.30 12.07
SAR (dB) 5.51 8.03 7.83

NSDR -2.35 0.03 -0.41

Table 3: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the vocal seg-
ments only, for all models, averaged across all the songs. RPCA
is the baseline system, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses esti-
mated voice activity.

Vocal segments
RPCA A-RPCA_GT A-RPCA_est

Voice

SDR (dB) -3.19 -2.00 -1.96
SIR (dB) -2.33 -0.39 0.74
SAR (dB) 9.44 7.27 4.64

NSDR 1.67 2.85 2.90

Back.

SDR (dB) 3.63 5.18 5.28
SIR (dB) 9.95 10.64 10.41
SAR (dB) 5.39 7.32 7.54

NSDR -1.37 0.18 0.29

Table 4: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the whole
song, for all models, averaged across all the songs. RPCA is the base-
line system, A-RPCA_GT is the adaptive version using groundtruth
voice activity information, and A-RPCA_est uses estimatedvoice ac-
tivity. Low-pass filtering post-processing is applied. REPET is the
comparison algorithm [16].

Entire song
RPCA A-RPCA_GT A-RPCA_est REPET

Voice

SDR (dB) -2.76 -0.72 -2.11 -2.20
SIR (dB) -0.17 4.03 2.22 1.34
SAR (dB) 4.33 3.33 2.32 3.19

NSDR 3.60 5.64 4.25 4.16

Back.

SDR (dB) 5.16 7.61 6.81 5.01
SIR (dB) 14.53 14.49 12.99 16.83
SAR (dB) 5.96 9.02 8.44 5.47

NSDR -1.32 1.12 0.33 -1.48

Table 5: SDR, SIR and SAR (in dB) and NSDR results for the voice
(Voice) and background layer (Back.), computed across the vocal seg-
ments only, for all models, averaged across all the songs. RPCA
is the baseline system, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses esti-
mated voice activity. Low-pass filtering post-processing is applied.
REPET is the comparison algorithm [16].

Vocal segments only
RPCA A-RPCA_GT A-RPCA_est REPET

Voice

SDR (dB) -1.25 -0.53 -0.83 -0.70
SIR (dB) 1.49 3.04 3.62 3.02
SAR (dB) 5.02 4.46 3.12 4.02

NSDR 3.60 4.32 4.02 4.15

Back.

SDR (dB) 4.85 6.03 6.11 4.80
SIR (dB) 13.07 12.38 11.41 15.33
SAR (dB) 5.91 7.69 8.20 5.41

NSDR -0.14 1.03 1.11 -0.20

we compare the A-RPCA algorithm with two variants of RPCA in-
corporating side information either as a pre- or a post-processing
step:

• RPCA_OV pre: Only the concatenation of segments clas-
sified as vocal is processed by RPCA (the singing voice
estimate being set to zero in the remaining non-vocal seg-
ments).

• RPCA_OV post: The whole song is processed by RPCA
and non-zeros coefficients estimated as belonging to the
voice layer in non-vocal segments are transferred to the
background layer.

Results of the decomposition computed across the vocal seg-
ments only are presented in Table 6. Note that the RPCA_OV post

results reduce to the RPCA results in Table 3 since they are com-
puted on vocal segments only. There is no statistical difference be-
tween the estimated voice obtained by processing with RPCA the
whole song and the vocal segments only. Results are significantly
better using the A-RPCA algorithm than using RPCA_OV pre and
RPCA_OV post. This is illustrated in Figure 4, which shows an
example of the decomposition on an excerpt of theDoobie Broth-
ers songLong Train Runningcomposed of a non-vocal followed
by a vocal segment. We can see that there are misclassified partials
in the voice spectrogram obtained with the baseline RPCA that are
removed with A-RPCA. Moreover, the gap in the singing voice
around frame 50 (breathing) is cleaner in the case of A-RPCA than
in the case of RPCA. Listening tests confirm that the background

Table 6: SDR, SIR and SAR (in dB) and NSDR results
for the voice (Voice) and background layer (Back.), com-
puted across the vocal segments only, averaged across all the
songs. RPCA_OV post is when using the baseline system and
set the voice estimate to zero in background-only segments,
RPCA_OV pre is when processing only the voice segments with
the baseline model, A-RPCA_GT is the adaptive version using
ground truth voice activity information, and A-RPCA_est uses es-
timated voice activity.

RPCA_OV post RPCA_OV pre A-RPCA_GT A-RPCA_est

Voice

SDR -3.19 -3.28 -2.00 -1.96
SIR -2.33 -2.31 3.62 0.74
SAR 9.44 8.97 7.27 4.64

NSDR 1.67 1.57 2.85 2.90

Back.

SDR 3.63 3.72 5.18 5.28
SIR 9.95 9.22 10.64 10.41
SAR 5.39 5.85 7.32 7.54

NSDR -1.37 -1.28 0.18 0.29

is better attenuated in the voice layer when using A-RPCA.

• Comparison with the state-of-the-art. As we can see from Ta-
ble 4, the results obtained with the RPCA baseline method arenot
better than those obtained with the REPET algorithm. On the con-
trary, the REPET algorithm is significantly outperformed bythe
A-RPCA algorithm when using ground truth voice activity infor-
mation, both for the sparse and low-rank layers. However, note
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Figure 4: [Top Figure] Example decomposition on an excerpt of
the Doobie BrotherssongLong Train Runningand [Bottom Fig-
ure] zoom between frames [525-580] (dashed rectangle in theTop
Figure). For each figure, the top pane shows the part between0 and
500Hz of the spectrogram of the original signal. The clean sign-
ing voice appears in the second pane. The separated signing voice
obtained with baseline model (RPCA), with the baseline model
when restricting the analysis to singing voice-active segments only
(RPCA_OV pre), and with the proposed A-RPCA model are rep-
resented in panes 3 to 5. For comparison, the sixth pane showsthe
results obtained with REPET [16].

that when using estimated voice activity information, the differ-
ence in the results between REPET and A-RPCA is not statistically
significant for the sparse layer. If we look closer at the results, it
is interesting to note that the voice estimation improvement by A-
RPCA_GT over REPET mainly comes from the non-vocal parts
where the voice estimated is favored to be null. Indeed, Table 5
indicate that the voice estimates on vocal segments obtained with
A-RPCA_GT and REPET are similar. This is illustrated by the
two last panes in the [bottom] Figure 4, which show similar spec-
trograms of the voice estimates obtained with the A-RPCA and
REPET algorithms on the vocal part of the excerpt.

5. CONCLUSION

We have explored an adaptive version of the RPCA technique that
allows the processing of entire pieces of music including local
variations in the music structure. Music content information is
incorporated in the decomposition to guide the selection ofcoeffi-
cients in the sparse and low-rank layers according to the semantic
structure of the piece. This motivates the choice of using a regu-
larization parameter that is informed by musical cues. Results in-
dicate that with the proposed algorithm, not only the background
segments are better discriminated, but also that the singing voice is
better estimated in vocal segments, presumably because thelow-
rank background model is a better match to the actual background.
The method could be extended with other criteria (singer identi-
fication, vibrato saliency. etc.). It could also be improvedby in-
corporating additional information to set differently theregulariza-
tion parameters foreachtrack to better accommodate the varying
contrast of foreground and background. The idea of an adaptive
decomposition could also be improved with a more complex for-
mulation of RPCA that incorporates additional constraints[20] or
a learned dictionary [49].
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ABSTRACT

This paper describes a source separation system with the intent to
be used in high quality audio post-processing tasks. The system is
to be used as the front-end of a larger system capable of modify-
ing the individual sources of existing, two-channel, multi-source
recordings. Possible applications include spatial re-configuration
such as up-mixing and pan-transformation, re-mixing, source sup-
pression/elimination, source extraction, elaborate filtering, time-
stretching and pitch-shifting. The system is based on a new im-
plementation of the Matching Pursuit algorithm and uses a known
mixing matrix. We compare the results of the proposed system
with those from mpd-demix of the ’MPTK’ software package
and show that we get similar evaluation scores and in some cases
better perceptual scores. We also compare against a segmenta-
tion algorithm which is based on the same principles but uses the
STFT as the front-end and show that source separation algorithms
based on adaptive decomposition schemes tend to give better re-
sults. The novelty of this work is a new implementation of the
original Matching Pursuit algorithm which adds a pre-processing
step into the main sequence of the basic algorithm. The purpose
of this step is to perform an analysis on the signal and based on
important extracted features (e.g frequency components) create a
mini-dictionary comprising atoms that match well with a specific
part of the signal, thus leading to focused and more efficient ex-
haustive searches around centres of energy in the signal.

1. INTRODUCTION

In the sound engineering field, sometimes the post-processing of
an already made stereophonic recording is necessary. For exam-
ple, in a live studio setting, a system that modifies spatial infor-
mation contained in a pre-existing two-channel recording could be
an invaluable tool to the engineer, saving time and money. The
engineer could up-mix [1], [2] the recording making it suitable for
reproduction over different formats or apply panning transforma-
tion [3], [4], e.g from level panning to delay-based panning. Spa-
tial re-configuration could also benefit consumers in the domestic
listening environment. It is a fact that listening trends tend to vary
and evolve over time thus it is highly desirable to be able to mod-
ify pre-recorded material. Apart from spatial effects other types of
processing are source suppression/elimination (e.g. Karakoe sys-
tem) and individual source modification such as filtering, chang-
ing/correcting pitch of single/multiple instrument(s), time stretch-
ing/compressing etc.

∗ This work was funded by EPSRC

All the aforementioned problems and probably many more,
could be solved using a three stage approach: source separation
followed by post-processing and finally remixing. A simple ex-
ample system would have a coincident pair stereo recording as
its input, separate the sources within the mixture and re-mix the
separated sources using a different spatial configuration (e.g. by
applying delays to produce time-difference panning) [5], [6]. It is
clear that the crux of the system is the source separation step which
should produce high quality results as this would most probably
affect the quality of any subsequent processing.

Source separation is one of the trickiest types of signal pro-
cessing and it is a vast field. Of course it would be extremely diffi-
cult to devise a solution that handles all cases of source separation
and if such a system comes to life it would probably be a hybrid of
parametrized and statistical modeling techniques and everything
in between. Because of the complexity of the problem we need to
state some assumptions, minimize the requirements and design a
system that is realizable and scalable.

1.1. Mixing Model

In this work we assume an instantaneous mixing model with no
delay-time parameter and no noise term:

xm[n] =
P∑

p=1

αmpsp[n] , 1 ≤ m ≤M (1)

where xm[n] are the mixture signals, sp[n] the original source sig-
nals αmp are the mixing coefficients, M the number of mixtures
and P the number of sources. This can be expressed more com-
pactly using matrix notation:

x = A · s (2)

where x ∈ RM×N are the mixture signals, A ∈ RM×P is the
mixing matrix where each element is a mixing coefficient αmp and
s ∈ RP×N are the source signals. Equation 2 also makes the con-
nection between the problem at hand and linear algebra where, the
mixture signals can be seen as linear combinations of the source
signals. The problem of source separation is essentially the esti-
mation of the mixing matrix A and recovery of the sources s given
the mixture x. The problem of estimating both A and s is known
as ’Blind Source Separation (henceforth BSS) and when audio sig-
nals are involved as ’Blind Audio Source Separation’ (BASS).

1.2. Number of Mixtures & Sources

Source separation problems are classified based on the number
of mixtures and sources. In this work we deal with two-channel
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recordings comprising multiple sources, thusM = 2 and P > M .
This leads to the under-determined case of source separation which
in general is not a trivial task. In this case the inverse mixing ma-
trix cannot be directly used to estimate the original sources. In-
stead other ways are employed to estimate the mixing matrix and
separate the sources. Usually techniques based on ’Sparse Com-
ponent Analysis’ (henceforth SCA) are used since they produce
good results for this source separation case [7]. In this work we
use ideas from this field of study.

1.3. Known Mixing Matrix

The proposed system has knowledge of the mixing matrix A. In
this case we have a semi-blind source separation problem (SBSS
or SBASS for audio signals). Estimation of the mixing matrix is
usually treated as a separate problem to recovery of sources and
many algorithms can handle this specific task with very good re-
sults (TIFROM [8], DUET [9], DEMIX [10], [11], [12] etc.). In
fact we could estimate the mixing matrix with a modification of
the proposed algorithm but this is outside the scope of this paper
and will not be pursued any further. Generally speaking though
we can safely assume that the mixing matrix is known or can be
estimated accurately.

We also assume that the recording was made using a Blumlein
pair, i.e. two ’figure-of-eight’ microphones angled at 90◦. This is
a famous microphone technique that produces very accurate imag-
ing of sources in the front quadrant and is widely used. A source
is positioned in space, in-front of the listener, using inter-channel
level differences alone, thus it is in accord with the mixing model
presented in section 1.1. For the particular case of two-channel
mixtures the mixing coefficients are given by:

α1p =
ψp

1 + ψp
, α2p = 1− ψp (3)

with

ψp =
1 + tan(θp)

1− tan(θp)
, −45◦ ≤ θp ≤ 45◦ (4)

where θp is the direction of the pth source.

1.4. Sparsity of Sources

Another important assumption is that the source signals can be
sparsely represented in a suitable domain. A signal is considered
sparse in a domain if only few coefficients are needed to repre-
sent that signal in that domain. For example speech signals can
be sparse in the time domain (e.g. two speakers talking in turns)
whereas music cannot. Music exhibits sparsity in different do-
mains such as the time-frequency domain. The notion of sparsity
plays a central role in many signal processing fields including BSS
and SCA techniques. In fact, regarding BSS, it has been shown
that better separation can be achieved by exploiting sparse repre-
sentations of signals [13]. By representing the signals in a sparse
domain we hope that the coefficients of individual sources will be
much more distinguishable (i.e we can see time-frequency regions
where a source dominates) thus much easier to separate. After sep-
aration in the sparse domain, usually performed using frequency
masks or clustering algorithms, we invert the separated sources
back into the time domain to get the estimates. This is the main
idea behind many SCA techniques.

Based on these assumptions we propose a semi-blind audio
source separation algorithm that deals with linear, instantaneous
mixtures and uses a new software implementation of Matching
Pursuit (MP)[14] as its front-end. Similar algorithms that use MP
for source separation are the ’Stereo Matching Pursuit’[15], the
algorithms proposed in [16] which work with knowledge of the
mixing matrix and the algorithm in[17].

Some other systems that are designed for active listening ap-
plications but with some overlapping goals are DReaM [18] and
MPEG Spatial Audio Object Coding (SAOC) [19]. The funda-
mental difference against our algorithm is that these systems are
based on encoder/decoder schemes. In particular inaudible meta-
parameters are embedded within a mixture during the encoding
stage and then used in the decoding stage for post processing such
as re-mixing and respatialisation. Source separation algorithms
based on encoder/decoder schemes are referred to as ’Informed
Source Separation’ and differ significantly from BASS and SBASS
algorithms.

The rest of the paper is organized as follows: In section 2, we
describe the original MP algorithm. In section 3, we introduce a
modified MP version and make comparisons with basic MP algo-
rithms. In section 4, we show how to apply the new proposed MP
implementation in a source separation context. The final sections
are for results obtained from our experiments, discussion on future
work and conclusion.

2. BASIC MATCHING PURSUIT

Matching Pursuit is a recursive, adaptive algorithm for sparse sig-
nal decompositions. It belongs to a family of techniques known
as ’Atomic Decompositions’ (aka sparse decompositions or sparse
atomic decompositions) that aim to decompose a given signal x
as a linear combination of elementary waveforms (gγ)γ∈Γ, called
atoms, taken from a dictionary D. This can be formally expressed
as [20]:

x =
∑

γ∈Γ

cγgγ (5)

where γ is a set of parameters characterizing each atom, gγ are
the individual atoms and cγ are the expansion coefficients. We
can also get an approximate decomposition for a fixed number of
atoms m:

x =
m∑

i=1

cγigγi +R(m) (6)

where R(m) is a residual after an m-term decomposition. Match-
ing Pursuit and similar algorithms, aim to find a sub-optimal solu-
tion to (5).

For basic MP we let D = {gγ |γ ∈ Γ} be a dictionary com-
prising atoms of unit norm, ‖gγ‖ = 1, for all gγ ∈ D. We also let
the set of atoms in D to be redundant, i.e we have an over-complete
dictionary. Decompositions in over-complete dictionaries are not
unique since some atoms might be linearly dependent. MP will
recursively build the approximation signal, one atom at a time,
choosing at every iteration step the atom that minimizes ‖Rm‖ in
(6). In basic MP we first choose/create a dictionary D, initialize
R0 = x and for each iteration step i we proceed as follows:
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1. Compute inner products
〈
Ri−1, gγ

〉
, for all gγ ∈ D.

2. Select best atom gγi = arg maxgγ∈D

∣∣〈Ri−1, gγ
〉∣∣.

3. Get expansion coefficient ci =
〈
Ri−1, gγi

〉
.

4. Update the residual Ri = Ri−1 − cigγi.
5. Check for exit conditions. If none is met continue to next

iteration, otherwise stop decomposition.

We see that the standard inner product is used to compare the sig-
nal with the atoms in the dictionary. Thus the atom that maximizes
the inner product is the one that minimizes the residual. MP is said
to be a greedy algorithm in a sense that at every iteration it chooses
the atom that removes the most energy from the residual[21]. We
should note that MP can be configured to use other atom selec-
tion criteria and we will mention some of them in our proposed
method. For a more detailed mathematical explanation of MP the
reader is referred to [14].

Another important aspect of MP, and similar algorithms for
that matter, is the choice or creation of the dictionary D. The
classic dictionary proposed in [14] is the Gabor dictionary which
is parametric in nature; that is a set of parameters are needed to
describe or create atoms of that type. A real Gabor atom is given
by [15]:

gs,u,ξ,φ = Ks,ξ,φw(
t− u
s

) cos(2πξ(t− u) + φ) (7)

where s is the scale parameter (i.e length of the atom), u the loca-
tion parameter (i.e. location within the signal), ξ the frequency and
φ the phase of the atom. w(t) is generally any normalized window
but for Gabor atoms a Gaussian window is used and can be defined
as [22]:

w(t) = (πσs)
−0.25e

− t2

2σs (8)

where σs is the variance of the window:

σs = (
4

π
)22(s0−s) , s = 0, 1, 2, ...s0 (9)

and s0 depends on the application. In this work we set s0 =
nextpow2(N)-2, where N is the maximum length of an atom
in samples. Finally Ks,ξ,φ in (7) is a normalizing constant, set so
that the atom has unit norm. Other parametric dictionaries are the
Fourier dictionary, Chirplet dictionary, DCT and DST dictionaries,
Gamma-tone and Gamma-chirp dictionaries etc. each having its
own set of parameters. Other methods for creating non-parametric
dictionaries exist but for the proposed MP implementation we are
mostly interested in parametric ones.

Creating a parametric dictionary covering all possible param-
eter values would be impractical so usually the parameter space of
a dictionary is discretised. For example for the Gabor dictionary
we could include all atoms with scales N = 2s with s = 1, ...S,
frequencies ωk = 2πk/N for k = 1...N/2 and shift locations u
every N/4 samples. Even so such dictionaries can become very
large, especially when we consider joining multiple dictionaries,
making the realization of MP almost impossible. The state of the
art, of a publicly available MP implementation, is the ’Matching
Pursuit ToolKit’ (MPTK) [23] which is very fast and has support
for multi-channel signals and multiple dictionaries. We use the
MPTK in this work as a reference system.

3. GUIDED MATCHING PURSUIT

A modification of the basic MP algorithm is proposed where a
pre-processing step is included as the first step in the main se-
quence of events. At every iteration, the pre-processing step per-
forms some kind of analysis to the residual and extracts impor-
tant information which is then used to create a mini-dictionary Di

containing a fraction of the atoms that exist in the original dictio-
nary D. For example the pre-processing step could be a Fourier
analysis of the residual, where the frequency components with the
maximum magnitude can be used to create the atoms in Di. In
this particular example we choose the frequency components with
maximum magnitude since these are most likely to contain a big
portion of the signal energy. The idea is that the newly created
atoms will correlate well with the corresponding frequency com-
ponents of the residual. The pre-processing step acts as a guide
for creating atoms that might best correlate with the features of the
signal we are interested in, therefore we term this new approach
as ’Guided Matching Pursuit’ (henceforth GMP). Although this is
a simple modification of basic MP, this approach has some inter-
esting properties and allows for novel signal decompositions and
transformations.

For this work we use the fast Fourier transform (FFT) (or
short-time Fourier transform (STFT) for long signals) as the anal-
ysis of the pre-processing step, since this is a very simple and fast
analysis we can perform on a signal and, as already mentioned, can
give us information about the frequency of important partials in
the residual. Note that the analysis part can be more elaborate; for
example a phase vocoder analysis step or a re-assigned magnitude
spectrum could be used to get the instantaneous frequencies of par-
tials instead of the frequencies corresponding to the frequency bins
of the FFT. Also other information could be used for the creation
of atoms such as the phase obtained from the complex spectra.
Some of these options have been tested and in some cases lead to
much better results than when a simple FFT is used, but these are
not consistent. This issue requires further study. Although we use
steps similar to classic sinusoidal analysis systems, GMP differs
significantly from these in that the resulting decomposition goes
beyond the sinusoidal plus transient plus residual model usually
proposed by these systems. The modeling of the underlying audio
signal depends on the selection of the dictionary which can con-
tain many different types of atoms (e.g. Gabor atoms, chirp atoms,
harmonic atoms, wavelets, learned atoms etc.).

A good property of this method is that every Di contains a set
of atoms which is much smaller than an ordinary dictionary im-
plementation. To put it in perspective a normal Gabor dictionary,
discretized as mentioned earlier, would contain tens of thousands
of atoms whereas with our method each Di can contain as few
as 5 atoms per iteration (e.g. 1 frequency × 5 scales). This
is a big reduction in the number of atoms we need to correlate
with, which for a ’textbook’ implementation of MP is a huge re-
duction in computation. Also with our method it is much easier
to create dictionaries comprising different atom types. Of course
the atoms should be mathematically defined (i.e. have parameters
that describe them) but this should not pose a problem since many
interesting dictionaries exist that can represent a wealth of signal
features and share a similar structure and parameter space. For
example some possible atoms that can be used are Gabor atoms,
Fourier atoms (i.e. Sine and Cosine atoms), DCT and DST atoms,
Gaussian chirps, damped sinusoids, Gamma-tones, Gamma-chirps
and FM atoms.
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Another trick that we employ is the computation of groups of
inner products using the FFT, as mentioned in [23]. We know that
the inner product of two real, square-integrable functions f(x) and
g(x), on an interval [a, b] is given by:

〈f, g〉 =

∫ b

a

f(x)g(x)dx (10)

We also know that the cross-correlation between two continuous
functions f and g is the ’sliding inner product’ of those two func-
tions:

f(t) ? g(t) =

∫ +∞

−∞
f(τ − t)g(t)dτ (11)

Finally comparing the cross-correlation with the convolution of
two continuous functions f and g:

f(t) ∗ g(t) =

∫ +∞

−∞
f(t− τ)g(τ)dτ (12)

we see that the only difference is the reversal of f for the convolu-
tion operation. Thus cross-corralation and convolution are related
by:

f(t) ? g(t) = f(−t) ∗ g(t) (13)

and in the case where f is Hermitian (which implies a symmetric
real part) then the cross-correlation and convolution operations are
the same. By taking advantage of the convolution theorem and
using a fast linear convolution algorithm we can compute groups
of inner products really fast. Also since fast convolution computes
the inner products between the atoms and the residual for every
sample, the need to shift atoms along the residual is eliminated;
that is the atom location parameter u is implied by the location of
the correlation coefficient with the maximum absolute value (step
2 in basic MP).

Let x ∈ RN be a short duration, mono-channel input signal,
N be the length of the signal in samples,R (t) be the residual after
the decomposition, R (ω) the Fourier transform of the residual, k
a frequency bin index, Di a mini-dictionary, gγ the atoms in the
dictionary, C ∈ RN×M a matrix holding the cross-correlations
between the residual and each atom in the dictionary, then the steps
for a GMP implementation are as follows:

1. Initialise R0(t) = x, i = 1.

2. Compute FFT of residual: Ri−1(ω) = FFT
(
Ri−1(t), N

)

with N being the size of the FFT.

3. Select frequency bin with maximum magnitude
k = arg maxk∈R(ω)

∣∣Ri−1(ω)
∣∣.

4. Create mini-dictionary Di comprising real atoms (of pos-
sibly different types) with normalized frequency k/N and
different scales.

5. Compute cross-correlations of the residual with all atoms in
Di: Ci = XCORR

(
Ri−1(t),Di

)
.

6. Select best atom gγi = arg maxgγ∈Di
|Ci|.

7. Get expansion coefficient ci =
〈
Ri−1(t), gγi

〉
.

8. Update the residual Ri(t) = Ri−1(t)− cigγi.
9. Check for exit conditions. If none is met increase iteration

number i by one and go to step 2, otherwise stop decompo-
sition.

Steps 2, 3 and 4 collectively form the analysis step we dis-
cussed earlier in its simplest form. Note that these steps could be
different depending on the information we want to extract from
the residual. Also in this case we assume that the residual is a
short signal (e.g. N = 2048 samples). If the residual is very long
then we should apply the STFT and step 3 would select the fre-
quency bin with the maximum magnitude from a single time frame
or maybe select the frequency bins with maximum magnitude from
each time frame, for multiple atom extraction (in contrast to sin-
gle atom extraction of original MP). It is clear that adding a pre-
processing step to the basic MP opens up new ways of looking for
specific features in a given signal.

We compare the proposed algorithm against MATLAB’s R©

wmpalg [24] (hencefoth WMP) and MPTK [23]. A 2048 sam-
ples long snippet of the ’o’ vowel, is decomposed using a Fourier
dictionary for 20 iterations (i.e. 20 atoms in the decomposition).
Table 1 shows the residual energy and the signal to residual ratio at
the last iteration and the time taken for each MP implementation to
complete. We can see that GMP and MPTK perform better com-
pared to WMP with GMP giving better results overall. MPTK is
faster but we should take into account that MPTK is written in C++
whereas GMP and WMP are written in MATLAB’s R© mcode thus
they are not optimised for speed. Having said that we can see that
GMP performs much faster than WMP. Figure 1 shows how the en-
ergy of the residual decays with every iteration and figure 2 shows
how the SRR increases with every iteration. Again we can see
GMP performing better compared to MPTK and WMP.

A MATLAB R© implementation of GMP with all files that pro-
duce these and subsequent results can be found in [25].

Table 1: Metrics for different MP algorithms after 20 iterations.

Algorithm Res. enrg. (dB) SRR (dB) time (sec)
GMP 0.6441 13.83 0.89

MPTK 0.9748 12.03 0.39
WMP 1.8315 9.29 1.75

Figure 1: Residual energy decay curves for three different MP im-
plementations.
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Figure 2: Signal to residual ratio (SRR) for three different MP
implementions.

4. APPLICATION OF GMP IN SBASS

So far we have described how GMP works and we have shown
that we get desirable results when the algorithm is used for signal
decomposition. In this section we explain how to modify GMP to
work with a source separation problem.

First of all we assume that we deal with two-channel record-
ings so the first modification regards an extension of the algo-
rithm that works with multi-channel signals. In GMP this is easily
achieved by applying the analysis steps to all channels of a signal.
In particular we alter step 2 of GMP to compute the Fourier trans-
form of both channels, then we add the resulting spectra and step
3 selects the frequency bin with the maximum magnitude from
the new combined magnitude spectrum. Another approach could
be to select frequency bins from each channel spectrum and the
resulting dictionary would contain atoms with corresponding fre-
quencies. The former approach was used since it makes sure that
the frequency selection step is not biased by a particular source
direction. The algorithm continues with the creation of the dictio-
nary Di and the cross-correlation of Di with each channel of the
residual.

Let us focus on step 5 of GMP. Assuming Di holds M atoms
then C is an N ×M matrix where each column holds the N sam-
ples long cross-correlation of an atom with the residual. In the
multi-channel case C becomes a N ×M × J matrix where the
third dimension represents channels with J = 2 for a two-channel
signal. Also remember that cross-correlation can be thought of as
a ’sliding inner product’, so every sample in each column of C
is effectively the inner product between an atom and the residual
signal at a particular time instance n , ∀n ∈ {1..N}. Thus the cor-
relation samples in C are all potential expansion coefficients. We
will therefore refer to that matrix as the coefficient matrix C. Be-
cause of our instantaneous mixing model assumption in section 1.1
we can use the coefficient matrix to calculate the estimated direc-
tions of each expansion coefficient pair (i.e. left and right channel
coefficients at same time instance) using:

Θ = arctan

( |Cn,m,2|
|Cn,m,1|

)
− π

4
, ∀n ∈ {1..N}, ∀m ∈ {1..M}.

(14)
where Θ ∈ RN×M and the constant π/4 is subtracted in order to
bring the estimated directions in the range of −π/4 ≤ Θn,m ≤
π/4 which stems from our assumption in section 1.3. What we are
interested in, is the distribution of the values in each column of Θ.

Figure 3 shows the histograms of three columns of Θ (which im-
plies a mini-dictionary with three atoms) obtained by an example
mixture with four sources equidistantly spaced in the front quad-
rant. We can clearly see that most values are clustered around
specific directions; in this example around −11.25◦ and 11.25◦

which are two of the known mixing directions.

Figure 3: Histograms of values in columns of Θ

Having this information at hand we can proceed with the mod-
ification of step 6 of GMP. As already mentioned the original MP
algorithm selects at each iteration, the atom that minimizes the en-
ergy of the residual, but this is not a strict requirement. What we
are after are alternative selection criteria that take advantage of our
known mixing matrix and the estimated atom directions. In this
paper we test three different atom selection criteria.

In the first case we select the pair of expansion coefficients
that are closest to a known direction and have the maximum ab-
solute magnitude. The idea is that if a pair of coefficients is close
to a known direction then there is a higher chance that the corre-
sponding atom belongs to the source indicated by that direction.
Also selecting an atom with the maximum magnitude (i.e. high
energy) makes sure that the algorithm will converge fast. LetN be
the maximum length of an atom (in samples), M be the number of
atoms in the mini-dictionary and P the number of sources. Also
let θ ∈ RP be a vector of P known directions. Then we calculate:

M =
2∑

j=1

|Cn,m,j | (15)

∀n ∈ {1..N} ,∀m ∈ {1..M} and

dn,m,p = |Θn,m − θp| (16)

∀n ∈ {1..N} ,∀m ∈ {1..M}, ∀p ∈ {1..P},
where d ∈ RN×M×P is a matrix holding the distances of each
estimated direction in Θ from the known directions θ. Then we
calculate:

E =
M

d
(17)

where E ∈ RN×M×P . The indices of the maximum value in
E indicate the extraction location in the signal (in samples), the
atom to choose from the dictionary (which implies the atom pa-
rameters such as type, scale, frequency, phase etc.) along with the
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expansion coefficients (obtained from C) and the source the atom
belongs to. At this point we should mention that because of our
sparsity assumption in section 1.4 each atom is allocated to only
one source.

In the second case we favor atoms that appear to be coming
from a dominant source. In order to find the dominant source we
first find the maximum value of each histogram in Θ and then sub-
tract from the known directions θ. The minimum absolute value of
that result indicates the source to allocate to. Then we use equa-
tions 15, 16 and 17 to obtain the atom to extract, the expansion
coefficients and the location to extract from. Note that in this case
d and E become N ×M matrices since the source to allocate to
has already been calculated, thus the third dimension reduces to 1.

In the final selection criterion we start by choosing the ’best’
histogram for obtaining the expansion coefficients. The choice is
based on the shape of the histograms obtained from Θ. In particu-
lar we favor histograms with values concentrated on one direction
only. For example looking at figure 3 we see that the values of
column 1 of Θ are concentrated around direction 11.25◦ degrees
whereas columns 2 and 3 produce peaks at two different directions.
The idea is that if all or most of the estimated directions of a partic-
ular column of Θ are clustered around one direction only then this
is a strong indication that the corresponding atoms belong to the
source indicated by that direction. Thus in this particular example
the algorithm will select the expansion coefficients that correspond
to column 1 of Θ as candidates. We select the ’best’ histogram h
as follows:

h = max




∑N
n=1 Mn,m

min

(∑N
n=1|Θn,m−θp|

N

)


 (18)

∀m ∈ {1..M}, ∀p ∈ {1..P}. Having found the histogram to
operate upon we use equations 15, 16, 17 with fixed m = h and
obtain E which is now a vector of length N . The index corre-
sponding to the maximum value of E will give us the atom extrac-
tion location (in samples). Finally using the found location and h
we can obtain the expansion coefficients from C.

All three selection criteria presented here, provide us with the
expansion coefficients and parameters of the atom to extract, the
extraction location in the signal and finally the source that the atom
belongs to. A new step is introduced where the selected atom is
added to an approximated source. Note that the number of ap-
proximated sources will be the same as the number of mixing di-
rections. Finally the algorithm proceeds with updating the residual
and checking for exit conditions before continuing to the next iter-
ation.

5. EXPERIMENTS

For the simulation a mixture comprising four sources was used.
The sources were obtained from [26] and are anechoic recordings
of a clarinet, a violin, a soprano and a viola. The sources are sam-
pled at 44.1kHz and segments of 217 samples (approx. 3 seconds)
were used. The mixture was created using the mixing model in
section 1.1 with a mixing matrix produced using equations 3 and
4. The sources were mixed so that they were equidistantly spaced
in the front quadrant; a situation similar to a string quartet record-
ing.

The same mixture was processed using three different source
separation algorithms. All algorithms use the mixing matrix as

prior information. We should also mention at this point that these
algorithms have many parameters that can affect the outcome of
the separation. In this experiment we tested all algorithms using
various configurations and the best results are presented. The first
algorithm used can be found in [5]. It uses the STFT as its front-
end and performs source separation based on the directions es-
timated by the magnitude spectra of the mixture channels. It was
found that a good setting for the particular mixture was an FFT size
of 4096 with 75% overlap using a hanning window. The second
algorithm we test against can be found in [16] and uses MP as its
front-end. For this algorithm we used a Gabor dictionary (similar
to that expressed by equation 7) comprising atoms with six scales,
from s = 512 until 16384 samples with a 50% window-shift be-
tween atoms (see [23] for how to setup a dictionary in MPTK).
The third algorithm is the one proposed in this paper. In order
to be as fair as possible the proposed algorithm was set-up to use
a Gabor dictionary comprising atoms up to six different scales.
The algorithm also operated in the ’Short-Time Matching Pursuit’
(STMP) mode were the signal is split into frames and each frame
is processed separately in a similar fashion to the STFT. This is in
contrast to MPTK where the signal is processed as a whole. Also
for this example, GMP produced the ’best’ results using the second
atom selection criterion that was described in section 4

Because we are interested in high quality source separation
for audio post-processing we used the PEASS toolkit [27], [28]
for evaluating the performance of each algorithm. The toolkit pro-
duces the standard SDR,SIR,SAR and SNR measures but most
importantly it calculates a set of perceptually motivated subjec-
tive measures which correlate better with human assessments. In
particular it calculates the Overall Perceptual Score (OPS), Tar-
get related Perceptual Score (TPS), Interference related Percep-
tual Score (IPS) and Artifact related Perceptual Score (APS). Ta-
ble 2 shows the SDR and SIR measures and table 3 the OPS, TPS
and IPS scores produced by PEASS toolkit. The best scores are
marked in bold.

Table 2: SDR and SIR performance measures (values in dB).

SDR SIR
Src STFT MPD GMP STFT MPD GMP
1 5.83 8.93 7.16 14.23 10.93 12.16
2 2.75 2.98 3.91 7.28 5.23 6.09
3 5.77 10.24 13.83 18.41 18.13 17.21
4 4.97 9.96 9.98 15.54 12.96 14.51

By quick inspection of the tables there is no clear ’winner’
algorithm. Having said that there are some interesting points we
can talk about. First of all we can see that overall the algorithms
that use MP as their front-end perform better. Also in the SIR case
we see that the STFT algorithm produces better results by a small
margin. This verifies to some extent the claim that algorithms
which use adaptive decomposition schemes as their front-end tend
to produce better results. We should also take into account that the
mpddemix and GMP algorithms were used with their most basic
settings, that is they use only one dictionary with limited number
of atom variations. We expect the results to get better if we let the
MP based algorithms run with multiple dictionaries comprising
various atoms. These tests have yet to be performed. We should
also mention that the STFT based algorithm was implemented to
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Table 3: OPS, TPS and IPS performance scores (all scores out of 100)

OPS TPS IPS
Src STFT MPD GMP STFT MPD GMP STFT MPD GMP
1 27.09 25.19 32.57 46.83 53.41 43.14 24.02 26.14 59.76
2 25.81 22.66 24 21.95 11.44 30.82 33.59 47.73 66.02
3 47.89 70.36 52.93 80.21 69.17 67.48 80.1 80.94 68.45
4 36.08 35.03 36.13 52.14 57.83 45.91 46.65 45.89 51.68

be used with this particular example. In particular the clustering
of the coefficients that is performed in the STFT based algorithm
is specifically designed to work with a mixing matrix that evenly
places sources in the front quadrant. The MP based algorithms do
not have this limitation and can operate using any mixing matrix.

Regarding the perceptually motivated evaluation scores we see
again that the MP-based algorithms produce better results. Com-
paring MPD and GMP again does not show a clear ’winner’ be-
cause sources obtain high scores in both algorithms. These are
encouraging results for the proposed implementation since we test
it against a well established source separation algorithm that uses
MP. An interesting observation is that the IPS results show that
GMP performs better on all sources but one. The interference re-
lated perceptual score is very important when we deal with high-
quality source separation because it implies that the separated sources
do not suffer from bleeding from other instruments. Informal lis-
tening tests have verified that to some extent. Audio examples can
be found in [25].

6. CONCLUSION AND FUTURE WORK

In this paper we described a new method for decomposing multi-
channel audio signals using a variant of the basic Matching Pursuit
algorithm. The new approach, which we term ’Guided Matching
Pursuit’, uses a pre-processing step to gather information about the
signal and create a mini-dictionary comprising atoms that are ex-
pected to correlate well with the signal. We compared the new de-
composition method with two accepted MP implementations and
showed that we get better results regarding the signal to residual
ratio and the residual energy decay rate. We further described
how to apply the new decomposition method in a source separa-
tion problem by using three different atom selection criteria that
take advantage of a known mixing matrix. We tested and com-
pared the proposed algorithm against two available source separa-
tion algorithms that work using same principles and showed that
we get similar results and in some cases better perceptual evalua-
tion scores.

At the time, only one mixture has been tested. In particular this
is an instrumental mixture comprising sources with quasi-periodic
content which is expected to be decomposed well using a Fourier
or Gabor dictionary. It will be of great interest to try the algorithm
using mixtures that contain transients such as percussion content.
To that extend we also want to try the algorithm using dictionar-
ies comprising many atom types such as multi-scale Gabor atoms,
windowed multi-scale Fourier atoms, damped sinusoids, chirplets,
gamma-tones, gamma-chirps, and fm atoms, in which case we ex-
pect to see an increase in quality scores. Also at this point the
algorithm takes a big amount of time to complete, which for our
purposes at the moment does not pose a problem, but a faster im-

plementation should be considered. This will be achieved by op-
timizing the code and possibly re-writing the algorithm using a
faster language such as C. Finally, since our goal is audio post-
production, a next step would be to try out the source separation
algorithm in that context and perform subjective listening tests.
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ABSTRACT

Time-domain finite difference (FD) and digital waveguide mesh
(DWM) methods have seen extensive exploration as techniques
for physical modelling sound synthesis and artificial reverberation.
Various formulations of these methods have been unified under the
FD framework, but many discrete boundary models important in
room acoustics applications have not been. In this paper, the finite
volume (FV) framework is used to unify various FD and DWM
topologies, as well as associated boundary models. Additional
geometric insights on existing stability conditions provide guidance
into the FV meshing pre-processing step necessary for the acoustic
modelling of irregular and realistic room geometries. DWM “1-D”
boundary terminations are shown, through an equivalent FV formu-
lation, to have a consistent multidimensional interpretation that is
approximated to second-order accuracy, however the geometry and
wall admittances being approximated may vary from what is de-
sired. It is also shown that certain re-entrant corner configurations
can lead to instabilities and an alternative stable update is provided
for one problematic configuration.

1. INTRODUCTION

Finite difference (FD) methods applied to time-domain partial dif-
ferential equations have a long history [1] and have, more recently,
become popular techniques for wave simulation in musical acous-
tics and room acoustics modelling. FD methods have appeared in
the acoustics literature in various forms, including the digital waveg-
uide mesh (DWM) [2, 3], and the “finite difference time domain”
(FDTD) [4, 5] and transmission line matrix (TLM) methods [6]
adapted from electromagnetics [7, 8, 9]. The DWM and TLM meth-
ods were originally expressed in terms of scattering variables, but
they are equivalent to FD methods when expressed solely in terms
of nodal quantities [2, 8, 10].

Finite element (FE) methods comprise another major family of
numerical methods that can be used for time-stepping wave simula-
tions [11]. FE methods are based on unstructured grids of cells and
interpolants defined over points within those cells. One advantage
of FE methods over FD methods is that they are well-suited to
irregular geometries (boundaries), whereas FD methods are suited
to simple geometries, or “staircase” approximations to irregular
boundaries. FE methods have been applied to musical acoustics
problems [12], though generally not for sound synthesis.

Finite volume (FV) methods can be seen as a medium between
these two methods [13], as they are based on grids of volumetric

∗ This work was supported by the European Research Council,
under grant StG-2011-279068-NESS, and by the Natural Sciences and
Engineering Research Council of Canada.

cells and differences between points within those cells. FV methods
on Cartesian grids were introduced to room acoustics and shown to
be equivalent to the Cartesian FDTD method [14, 4], but they have
not seen the same popularity as the finite difference based meth-
ods. Recently, FV methods have been reintroduced for acoustical
applications, but on unstructured grids and with rigorous energy-
based stability analyses, allowing for the modelling of irregular
geometries [15].

FV schemes can reduce to FD schemes on the interior do-
main when the tiling is regular, providing computationally efficient
calculations appropriate for large domains such as in 3-D room
acoustics modelling. This was shown for the Cartesian case and the
2-D hexagonal case [15] and later on the 3-D face-centered cubic
(FCC) grid with rhombic dodecahedral cells [16]. Equivalences
such as these remain to be determined for the rest of the DWM
topologies. This is the first contribution of this study, which is pre-
sented in Section 4, after the introduction of the model equations
and finite volume formulations in Sections 2 and 3. The second
contribution of this study is a geometrical interpretation of passiv-
ity conditions at boundary cells (given certain constraints on the
tiling), which provides insight towards meshing of irregular do-
mains (Section 5). Various boundary models have been presented
for FD/DWM methods [3, 17, 18], but their FV interpretations have
yet to be determined. This is the third contribution of this study
(Section 6). Conclusions and future work are given in Section 7.

2. MODEL EQUATIONS

2.1. Second-order wave equation

There have generally been two departure points for time-domain
finite difference schemes in acoustics. The first is the second-order
wave equation:

∂2
tΨ− c2∆Ψ = 0 , (1)

where Ψ := Ψ(t,x) represents a velocity potential field, t ∈ R+

is time, x is a position vector within a d-dimensional closed vol-
ume V ⊂ Rd, ∆ is the d-dimensional Laplacian operator, ∆ :=∑d
i=1 ∂

2
xi , and c is the wave speed, assumed to be constant. The

notation ∂t denotes the partial derivative with respect to t, and
similarly for spatial directions. The most common FD scheme for
this equation was provided by Courant et al. [1], and the multidi-
mensional extensions (d ≥ 3) can be found in [19]. It was later
applied to acoustic modelling for seismology [20], with Ψ as the
variable of interest. Another wave equation can be found in the
pressure field p := p(t,x) through the use of the first of the two
following relationships:

p = ρ∂tΨ , v = −∇Ψ , (2)
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where ρ represents the density of air and v := v(t,x) is the particle
velocity field. The pressure wave equation is then

∂2
t p− c2∆p = 0 . (3)

Eqs. (1) and (3) are ultimately equivalent, but one must take care in
choosing the appropriate source, boundary conditions, and output
for (3) as it is one time-derivative higher than (1). FD methods were
also applied to Eq. (3) for seismology [21], and later, DWM meth-
ods derived from networks of “acoustic tubes” were also expressed
as FD schemes for this wave equation in 2-D [2] and in 3-D [3].

2.2. Conservation equations

The second departure point has been the following linear hyperbolic
system, i.e. the conservation equations:

1

ρc2
∂tp = −∇ · v (cons. of momentum) , (4a)

ρ∂tv = −∇p (cons. of mass) , (4b)

where ∇· and ∇ are the d-dimensional divergence and gradient
operators respectively. The FDTD1 method, a popular technique for
simulating Maxwell’s equations on staggered grids, was adapted to
the acoustics equations (4a) and (4b) for the purposes of vocal tract
simulation [5] and room acoustics modelling [4]. These equations
were also approached using TLM methods adapted from electro-
magnetics [6], and FV methods [14]. It is straightforward to check
that these are different forms for the same underlying system, i.e.
(4a) and (4b) give (3), and (1) is recovered using (2). Similarly,
it has been shown that the various discretised forms (FD, DWM,
TLM, FDTD, FV) are equivalent when implemented on Cartesian
grids [24, 23, 2, 3, 10, 22, 15].

3. FINITE VOLUME APPROXIMATION

3.1. Cells and tiling

The following describes a general notation for a tiling of the volume
V by cells in d-dimensions, which will be used to derive a finite
volume approximation for the model equations. A tiling of V is
made up of closed cells Ci indexed by i ∈ I , whose interiors are
pairwise disjoint, i.e.

⋃
i∈I Ci = V , and the boundary of each cell

is denoted by ∂Ci. A (d− 1)-dimensional face (or side) of the cell
Ci is denoted by Sij := Ci ∩Cj = Sji and its (d− 1)-dimensional
volume is Sij . Any cell Cj such that Sij 6= {} is a neighbour-
ing cell of Ci. Let Ni be the index set of the neighbouring cells
of Ci and let Ki := |Ni|, where |Ni| denotes the cardinality of
the set. A boundary face is denoted by Si(b) := Ci ∩ ∂V and its
(d − 1)-dimensional volume is denoted by Si(b). Finally, let I(i)
and I(b) represent the index sets where Si(b) = 0 and Si(b) > 0
respectively. Note, in 1-D cell-faces are just points, so it suffices to
set all measures Sij = 1 when Sij 6= {} and likewise, Si(b) = 1
when Si(b) 6= {} for the case d = 1. The tiling will also have an

1In this study, the acronym “FDTD” will refer only to staggered schemes
for the system (4) which were adapted from the electromagnetics litera-
ture [7, 9]. Second-order wave equation schemes, which are much older [1],
are more commonly (and efficiently [22]) employed will simply be called
“FD methods” to be more consistent with the larger body of literature on
numerical methods for such equations [1, 19, 23] and their applications
in various fields [24, 20, 21]. The additional “time-domain” distinction is
not necessary here, since this is implied by the model equations.

x0

x1

x2

x3

x4

S01

S02

S04

S12

S24

S23

S34

S3(b)

S2(b) S1(b)

Figure 1: A section of a 2-D tiling, and the triangulation of its grid of
points G. The interior is shaded and part of the boundary ∂V is denoted
by the thick line.

associated grid of points G := {xi ∈ V, i ∈ I} such that xi is not
a point shared with other cells, i.e. xi ∈ Ci \ (

⋃
j∈Ni

Sij).
For the purposes of this paper, it will be assumed that Ci is the

Voronoi cell of xi for i ∈ I(i) and it will be further assumed that
the line segment with endpoints xi and xj (denoted by xij) for
j ∈ Ni is oriented normal to Sij and passes through that side. Not
all Voronoi tessellations have this “line of sight” property; those
that do are the dual tilings of Pitteway triangulations (of G) [25].
Such a tiling is illustrated in Fig. 1.

3.2. Integral form

A finite volume formulation can be derived starting from the acous-
tic velocity potential wave equation and integrating over the volu-
metric cell Ci,

∫

Ci
∂2
tΨ dV = c2

∫

Ci
∆Ψ dV . (5)

Using ∆Ψ = ∇ · ∇Ψ and the divergence theorem gives
∫

Ci
∂2
tΨ dV = c2

∫

∂Ci
n · ∇Ψ dσ , (6)

where n denotes the outward normal vector at x ∈ ∂Ci. Then using
∂Ci = (

⋃
j Sij) ∪ Si(b), (6) can be written as

∫

Ci
∂2
tΨ dx = c2

∑

j∈Ni

∫

Sij
n · ∇Ψ dσ − c2

∫

Si(b)

n · v dσ . (7)

The last term isolates the velocity field pointing out of the boundary,
which can be used to implement impedance boundary conditions.

3.3. Finite volume schemes

Let Ψ̂ = Ψ̂(t,x) represent an approximation to the acoustic veloc-
ity potential Ψ(t,x), and the following abbreviated notation will
be used: Ψ̂±i := Ψ̂(t ± k,xi) for some time-step k. The differ-
ence operators that will provide a discrete approximation to (7) are
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Table 1: Isohedral cells and FD/DWM/FDTD equivalents (found in the literature) for pointwise FV approximations

cell (Ci) dim. (d) Ki
2d
Ki

δ∆ = ∆ +O(hq) grid FD/DWM scheme staggered (FDTD) scheme for (4)

line segment 1 2 1 q = 2 integer lattice standard FD scheme [1] [24, 23]
regular triangle 2 3 4/3 q = 1 honeycomb grid “hexagonal DWM” [26] -

square 2 4 1 q = 2 square grid standard FD scheme [1] Yee’s 2-D scheme (FDTD) [7]*
hexagon 2 6 2/3 q = 2 hexagonal grid hexagonal FD scheme [27] hexagonal FDTD [28]*

cube 3 6 1 q = 2 cubic grid standard FD scheme [19] Cartesian FDTD [4, 5]
regular tetrahedron† 3 4 3/2 q = 1 diamond grid “tetrahedral DWM” [26] -

octahedron† 3 8 3/4 q = 2 BCC grid “octahedral FD” scheme [10] -
rhombic dodecahedron 3 12 1/2 q = 2 FCC grid “dodecahedral DWM” [29] -

†does not tile space *see Footnote 2

defined as follows

δt±Ψ̂i := ± 1

k
(Ψ̂±i − Ψ̂i) , (8a)

δtt := δt+δt− = δt−δt+ , (8b)

δijΨ̂i :=
1

hij
(Ψ̂j − Ψ̂i) = −δjiΨ̂i , (8c)

where hij = ‖xij‖ and xij := xj − xi.

Eq. (7) can be approximated by replacing Ψ with Ψ̂ and then
applying difference operators in the place of continuous deriva-
tives. It must also be assumed that the approximation Ψ̂ is constant
(averaged) over cells and boundary sides [15]. This results in the
following

Vi
c2
δttΨ̂i =

∑

j∈Ni

SijδijΨ̂i − Si(b)v̂i(b) , (9)

where v̂i(b) represents the boundary term averaged over Si(b), to be
specified by the boundary conditions. Due to the imposed restric-
tions on the Voronoi tessellation, δijΨ̂i can be seen as a centered
difference about some point on the face Sij , and the approximation
will be second-order accurate.

A finite volume approximation of the conservation equations
can also be recovered by defining approximations to the pressure
and velocity field, denoted by p̂ and v̂ respectively, on staggered
grids in space and time. Consider the following spatial and temporal
half-step shift operators, applied to some function u(t,x):

et±ui := u(t± k/2,xi) , (10a)
eij±ui := u(t,xi ± xij/2) = eji∓ui . (10b)

The pressure and velocity approximations are then staggered as

p̂i := et−p̂(t,xi) , (11a)
v̂ij := xij · eij+v̂(t,xi) , (11b)

and these are related to Ψ̂i using

p̂i = ρδt−Ψ̂i , (12a)

v̂ij = −δijΨ̂i , (12b)

resulting in the equivalent (to (9)) staggered scheme:

Vi
ρc2

δt+p̂i = −
∑

j∈Ni

Sij v̂ij − Si(b)v̂i(b) , (13a)

ρδt−v̂ij = −δij p̂i . (13b)

When Ci is a hexahedron, that is, the Voronoi cell of a “quasi-
Cartesian” grid (d = 3), (13) defines the FV scheme proposed
in [14]. The FV framework presented in [15] generalises these FV
schemes to unstructured grids of polytopes (d ≥ 1).

Finally, by applying ρδt− to both sides of (13a) and substituting
in (13b), or simply by applying (12a) to (9), a wave equation scheme
for the pressure can be recovered, with an isolated boundary term:

Vi
c2
δttp̂i =

∑

j∈Ni

Sijδij p̂i − ρSi(b)δt−v̂i(b) . (14)

4. EQUIVALENCES WITH FD/DWM/FDTD SCHEMES

4.1. Pyramidal decomposition

In this section, only the interior cells will be considered (i ∈ I(i)),
so Si(b) = {}, or Si(b) = 0. Taking into account the previously
imposed restrictions (“line of sight”), an interior cell can then be di-
vided into Ki d-dimensional pyramids Pij with bases Sij , heights
hij/2, and a shared apex xi. As is commonly known, the area of
a 2-D pyramid (a triangle) is the area of the base times the height
divided by two. This extends to d-dimensions [30], giving

Vi =
∑

j∈Ni

Vij , Vij := Sijhij/(2d) . (15)

A cell Ci will be called “isohedral” (face-transitive) when the param-
eters Sij and hij are constants (Sij = Si, hij = hi for j ∈ Ni).
The volume of an isohedral cell is then simply

Vi = KiSihi/(2d) . (16)

This pyramidal decomposition is illustrated in Fig. 2 for square and
hexagonal cells (d = 2), and various isohedral cells are listed in
Table 1 for d ∈ {1, 2, 3}.

xi

hi
2

Si

xi

Si

hi
2

Figure 2: Square and hexagonal cells divided into pyramids. Si denoted
by thick line, hi/2 denoted by dotted line.

4.2. Discrete Laplacians and wave equation FD/DWM schemes

Various FV schemes can be simplified using the pyramidal decom-
position. The wave equation scheme in (14), for the isohedral cells
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listed in Table 1, can be written as

δttp̂i = c2δ∆p̂i , δ∆p̂i :=
2d

Kih2
i

∑

j∈Ni

(p̂j−p̂i) = ∆p̂i+O(hq) .

(17)
The spatial operator δ∆ represents a discrete Laplacian with first
(q = 1) or second-order (q = 2) accuracy, and (17) represents
one of the various FD/DWM schemes that have appeared in the
literature, as summarised in Table 1. Note, the regular tetrahedron
and the octahedron do not tile space so they do not permit a full
finite-volume approximation over V . Nevertheless, the FD schemes
derived from their single cell approximations are equivalent to the
pointwise approximations from their associated FD/DWM schemes.

4.3. Discrete divergence and FDTD staggered schemes

Staggered (FDTD) schemes that employ isohedral cells can also
be recovered from FV schemes. Using the pyramidal decomposi-
tion, (13a) becomes

1

ρc2
δt+p̂i = −δ∇·v̂i , δ∇·v̂i :=

2d

Kihi

∑

j∈Ni

v̂ij (18)

The spatial operator δ∇· is essentially a discrete divergence oper-
ator, but this is more clear in the following special case. When the
cell Ci is made up of pairs of parallel faces (Ki is even), the set Ni
can be divided into two non-overlapping complementary sets Ni,1
and Ni,2 each with Ki/2 elements such that for every j ∈ Ni,1
there is a complementary index j∗ ∈ Ni,2 where xij = −xij∗ .
Making use of the skew-symmetry v̂ij = −v̂ji results in

δ∇·v̂i =
2d

Ki

∑

j∈Ni,1

1

hi
(eij+ − eij−)(xij · v̂i) ≈ ∇ · v̂i , (19)

which is, more clearly, a sum of centered spatial differences in
the directions of xij for j ∈ Ni,1. This defines the discrete di-
vergence used in the Cartesian case (xij for j ∈ Ni,1 become
the standard unit vectors in Rd), leading to the staggered schemes
adapted from Yee’s scheme for Maxwell’s equations [5, 4]. Fur-
thermore, (18) leads to a hexagonal staggered scheme for acoustics
similar in principle to one derived for Maxwell’s equations [28].2

In 3-D this leads to staggered schemes on the face-centered cubic
(FCC) and body-centered cubic (BCC) grids. These equivalences
are also summarised in Table 1. Clearly, these staggered schemes
are all equivalent to their second-order wave equation counterparts,
which generalises the link that has been established in the Cartesian
case [22]. The staggered FDTD formulation is known to be less effi-
cient than the wave equation formulation in the Cartesian case [22],
and this can be shown for the non-Cartesian FDTD extensions for
acoustics (left out for brevity). Wave equation schemes are also
more efficient than their DWM forms in d > 1 [10].

5. STABILITY/PASSIVITY CONDITIONS

In this section, additional geometric insights will be provided
on the stability conditions derived in [15], but the full energy
analysis provided in [15] will be omitted for brevity. First, con-
sider the lossless case, where the boundary velocity is set to zero,

2Maxwell’s equations in polarised form (2-D) can be adapted to the
acoustics equations (4) with a simple change of variables [31]. It is
straightforward to show that this also applies to the 2-D FDTD schemes.

xi

v̂i1

−v̂i3

v̂i2−v̂i4 xi

v̂i1

−v̂i4

v̂i2

−v̂i5

−v̂i6

v̂i3

Figure 3: Square and hexagonal cells for staggered grid (FDTD) schemes

i.e. v̂i(b) = 0, i ∈ I(b). In the lossless case it can be shown that
the total numerical energy remains bounded (stability) when the
following condition is satisfied for each cell (i ∈ I) [15]:

k2 ≤ 2Vi
c2
∑
j∈Ni

Sij/hij
. (20)

This appears to be the condition derived in [4] (considering only
quasi-Cartesian grids) but, in fact, it is different. The condition
derived in [4] does not distinguish between interior sides Sij and
boundary sides Si(b), whereas the boundary sides are not counted
in the denominator of (20). As such, condition (20) becomes more
relaxed at the boundaries for Cartesian cells. The importance of
this detail will be pointed out in Section 6.2.

5.1. A sufficient condition for interior isohedral cells

Further insight on condition (20) can be obtained when it is as-
sumed that a “locally irregular” tiling is used, which means that the
cells are isohedral and congruent when i ∈ I(i), but they may vary
for i ∈ I(b). Thus, Ki = K, Sij = S, hij = h, and Vi = V for
i ∈ I(i). For an interior cell (i ∈ I(i)) the stability condition then
becomes

k2 ≤ 2V

c2K(S/h)
. (21)

Using V = KSh/(2d), the above reduces to

k2 ≤ h2/(c2d) , (22)

or more simply, λ ≤
√

1/d where λ := ck/h is the Courant
number. This can be recognised as the condition obtained from
von Neumann analysis for many schemes, including the Cartesian
one [19]. In certain cases the von Neumann bound is more relaxed,
such as in the hexagonal [10] and FCC schemes [16], as well as
many parameterised schemes [10]. It is perhaps more appropriate
to call (22) the “passivity condition” [10], since it implies that a
DWM/TLM network implementation made up of concretely passive
elements is possible, from which stability follows [32].

5.2. A sufficient condition for boundary cells

Now condition (20) will be simplified for boundary cells (i ∈ I(b)).
It will be assumed that hij = h, which implies that Ci has been cut
or enlarged, but the point xi has not moved from its regular posi-
tion (for i ∈ I(b)). It is straightforward to prove that λ =

√
1/d

is sufficient for stability at boundary cells that are congruent to
interior cells (e.g., “staircase boundaries”); the denominator in (20)
decreases but the total volume Vi does not, so the local condition
at the boundary cell is more relaxed than λ ≤

√
1/d.

Next, consider the case where the boundary cells are not con-
gruent to the interior cells, which amounts to special cases of “fitted
boundaries”. Removing the volumes of the interior pyramids Pij
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Some boundary cell types possible for a locally irregular square
tiling. Green denotes positive V ∗i , red denotes negative V ∗i . Black line
denotes Si(b). Dotted lines denote pyramid divisions. (a)-(f) are stable
with λ =

√
1/2, (g) and (h) are not.

from the volume of the cell Ci leaves a quantity denoted by V ∗i ,

V ∗i := Vi −
∑

j∈Ni

Sijh/(2d) . (23)

Then starting from (20), a bound on k2 is

k2 ≤ 2Vi
c2
∑
j∈Ni

Sij/h
≤
∑
j∈Ni

Sijh+ V ∗i

c2d
∑
j∈Ni

Sij/h
(24a)

≤ h2/(c2d) when V ∗i ≥ 0 . (24b)

Thus, λ =
√

1/d is sufficient as long as V ∗i ≥ 0. This condition
is illustrated in Fig. 4 with some example 2-D cells in a locally
irregular square tiling. Figs. 4g and 4h illustrate the types of cells
that should be avoided since they will enforce more strict stabil-
ity conditions than what is obtained from interior cells. This can
be detrimental in audio applications as it reduces the overall tem-
poral bandwidth of the output [33] and reduces the efficiency in
minimising dispersion error [34].

It is worth pointing out a link with “conformal methods” for
irregular boundary modelling in acoustical FDTD simulations [35,
36, 37]. These techniques are, ultimately, staggered schemes on
locally irregular Cartesian grids, and more specifically, the “fitted
boundaries” considered here. It was empirically found that a certain
minimum volume had to be kept for locally conforming boundary
cells, otherwise instabilities would be experienced [35, 36, 37], but
a stability condition was not obtained. The condition that needs to
be satisfied in such conformal methods is indeed the geometric one
described here (V ∗i ≥ 0), or more generally, condition (20).

6. BOUNDARY MODELS

Some commonly used discrete boundary models in FD/DWM meth-
ods can be shown to have equivalent FV formulations. To be con-
sidered are the simplest frequency independent lossy boundary
conditions:

n · v = (γ/ρc)p , x ∈ ∂V . (25)

where γ ≥ 0 represents the specific acoustic admittance. Apply-
ing one temporal derivative and employing (4b) gives the pressure
boundary condition

− n · ∇p = (γ/c)∂tp . (26)

Frequency-independent lossy boundaries are achieved in the FV
framework by discretising (25), while (26) has been the preferred
condition in FD-based studies [38, 18, 33]. It will be seen that the
FV and FD discretisations are essentially the same. To this end, the
following average and difference operators will be necessary:

µt+p̂i =
1

2
(p̂+
i + p̂i) , δt·p̂i =

1

2k
(p̂+
i − p̂−i ) . (27)

(a) DWM modelling (b) FV equivalent

Figure 5: Desired L-shaped domain in blue, modelled using 1-D DWM
boundaries (left) and equivalent FV interpretation (right). Dashed lines
indicate connectivity, or DWM delay lines. Notice that adjacent boundary
nodes are not interconnected, in both cases.

In the FV formulation from [15], (25) is discretised on Si(b) with

v̂i(b) = (γ/ρc)µt+p̂i . (28)

Applying ρδt− and using the identity δt· = µt+δt− gives

ρδt−v̂i(b) = (γ/c)δt·p̂i , (29)

and now defining a fictitious “ghost point” xg := xi +n/2 outside
of the domain (as employed in the FD framework, but unnecessary
in the FV framework), one could write (29) as

− δig p̂i = (γ/c)δt·p̂i , (30)

which is a (centered) FD discretisation of (26). This is just a starting
point for equivalences between FV boundaries and FD boundaries.
Still to consider are specific boundary geometries and boundary
cell types.

It can be shown that as long as the interior energy remains
bounded, the only extra condition for stability is γ ≥ 0 (passiv-
ity) [15]. In other words, if the lossless case is stable then the lossy
boundaries will remain stable. Thus, when γ ≥ 0, the stability
of the scheme is ensured with λ ≤

√
1/d as long as V ∗i ≥ 0

for i ∈ I(b).

6.1. DWM “1-D boundaries”

Using the DWM paradigm, boundaries in d > 1 are set via 1-D con-
nections from boundary nodes to interior nodes. This is somewhat
of an ambiguous way to set the boundaries, but it has the advantage
of ensuring stability by virtue of a concretely passive network. For
convenience, the DWM boundary node update, connected to Ki

interior nodes, will be expressed in the FD equivalent formulation
(the so-called “Kirchoff DWM”). Adapted from [17], the update is

(γ′ +Ki)p̂
+
i = 2

∑

j∈Ni

p̂j + (γ′ −Ki)p̂
−
i , i ∈ I(b) , (31)

where γ′ is meant to represent the desired γ in (26), but its precise
value is to be determined. Dividing (31) through by Ki gives
(
(γ′/Ki) + 1

)
p̂+
i = (2/Ki)

∑

j∈Ni

p̂j +
(
(γ′/Ki)− 1

)
p̂−i .

(32)
The Courant number is set to λ =

√
1/d for a DWM (by construc-

tion). In order to obtain the familiar DWM cancellation of the p̂i
term that would have appeared in the summation (see (17)) with
the term 2p̂i left over from the expansion of δttp̂i, the following
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(a) Backwards difference
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Figure 6: Backwards and centered spatial differences, in terms of FV cells.
Dotted lines show pyramidal decomposition of C0. Volume pertaining to
V ∗0 is shaded. Vc denotes the exterior.

condition would be required from an equivalent FV formulation:

λ2Ki
Sh

Vi
= 2 ⇒ Vi = Ki

Sh

2d
(33)

Thus, an equivalent, and multidimensionally consistent to second-
order accuracy, FV interpretation of the DWM boundary cell is
the union of Ki pyramids Pij with a shared apex xi, bases Sij
(with Sij = S) and heights h/2. This is illustrated in Fig. 5 for the
Cartesian DWM on an L-shaped geometry. Note that the pyramidal
boundary cells result in a crude approximation to the desired do-
main. Also note, the so-called “1-D ambiguity” problem [18] was
avoided here, which is to interpret the Courant number as being
set to unity locally at the boundary. It was suggested that this may
lead to stability issues [38], but the DWM boundary model remains
passive since it will always be the case that V ∗i = 0.

Finally, the precise value of γ′ is found to be

γ′ = γ
√
d(Si(b)/S) . (34)

Thus, γ′ is not necessarily the desired acoustic admittance γ. It is
consistent with γ in at least two special cases: d = 1 (as expected)
and when γ = 0. For the boundary cells depicted in Fig. 5 one
has γ′ = 2γ. It should be pointed out that, while only the 2-D
Cartesian case was illustrated, this FV interpretation extends to all
other multidimensional DWM topologies, as long as the associ-
ated isohedral cell tiles d-dimensional space, which excludes the
tetrahedral DWM and the octahedral DWM.

6.2. Centered and non-centered boundaries

Here, the basic 2-D FD scheme for the wave equation, also known
as “standard leapfrog” (SLF), will be used to give an interpretation
of boundaries commonly implemented for a half-plane. Consider
the half-plane terminations featured in Fig. 6. Based on these two
configurations, the spatial derivative in (26) can be approximated
using one of the following spatial differences:

1

h
(p̂0−p̂−1) ≈ −n·∇p̂0 ,

1

2h
(p̂1−p̂−1) ≈ −n·∇p̂0 . (35)

The former is a backwards “non-centered” difference and the latter
is a centered difference. The centered difference has been pre-
ferred in the literature because it is, at first glance, second-order
accurate [18]. However, the first operator is also centered if one

p̂0

p̂2

p̂3

p̂1p̂4

Vc

(a) “Non-centered”

p̂0

p̂2

p̂3

p̂1p̂4

Vc

(b) “Centered”

Figure 7: Re-entrant corner configurations in 2-D with Cartesian grid

redefines the boundary to lie between x0 and x−1, as in Fig. 6a.
The temporal derivative (26) is usually approximated by δt· to give
an overall second-order accuracy. From the FD perspective, the
update at the boundary node p̂0 is then:

p̂+
0 = λ2(p̂−1 + p̂1 + p̂2 + p̂3 − 4p̂0) + 2p̂0 − p̂−0 , (36)

where p̂−1 represents the “ghost node” to be eliminated using the
discretised boundary conditions. After eliminating the ghost node,
the boundary update using the backwards spatial difference is

p̂+
0 =

1

1 + γλ
2

(
λ2(p̂1 + p̂2 + p̂3 − 3p̂0) + 2p̂0 +

(
γλ

2
− 1

)
p̂−0

)
,

(37)
and the boundary update using the centered spatial difference is

p̂+
0 =

1

1 + γλ

(
λ2(2p̂1 + p̂2 + p̂3 − 4p̂0) + 2p̂0 + (γλ− 1) p̂−0

)
.

(38)
On the other hand, both cases are summarised by the FV update:

p̂+
0 =

1

1 + γσ

(
c2k2

V0h

3∑

j=1

S0j(p̂j − p̂0) + 2p̂0 + (γσ − 1) p̂−0

)
,

(39)
where σ := ckS0(b)/(2V0). For the full cell, one has S0(b) =

S0j = h for j ∈ {1, 2, 3} and V0 = h2. Thus σ = λ/2 and the
“backwards” update (37) is obtained (c2k2S0j/(V0h) = λ2). For
the half cell, one has S0(b) = S01 = h and S02 = S03 = h/2,
meanwhile V0 = h2/2, so σ = λ and the “centered update” (38)
is obtained.

In terms of stability, the full-cell has V ∗0 = h2/4 remaining af-
ter subtracting interior pyramids (seen in Fig. 6a), and the half-cell
has V ∗0 = 0. Thus, both conditions remain stable with λ =

√
1/2,

which is consistent with the literature [18, 33]. On the other hand,
using the stability condition derived in [14] one would obtain a
restriction of λ ≤

√
1/3 at the half-cell, which is too strict.

It is straightforward to extend this type of analysis to the corner
case in 2-D (quarter-cell, Fig. 4d) and further, to wall, edge, corner
FD conditions with cubic cells in 3-D [18]. These turn out to be
cubic cells that are cut into one-half, one-quarter, and one-eighth
respectively.

6.3. Re-entrant corners

Re-entrant corners are simple examples of irregular geometries to
be modelled. An example re-entrant corner is displayed in Fig. 7,
in two different configurations with respect to a square grid. In
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Figure 8: Top: two test domains. The scheme is initialised by setting p̂ to
zero at t = 0, and p̂ is set to -1 at the point marked by blue dot and 1 at the
point marked by the red dot at t = k. Bottom: outputs from simulations,
read at a point on the interior of the domain.

the FD paradigm, one proceeds with a specialised boundary update
only when there is a ghost node to be eliminated. In this case, there
is no ghost node at the interior corner node, so one might proceed
at x0 with the usual interior update

p̂+
0 = λ2(p̂1 + p̂2 + p̂3 + p̂4 − 4p̂0) + 2p̂0 − p̂−0 . (40)

The first configuration, seen Fig.7a, is the implied geometry when
“non-centered” boundary updates are applied at the points adjacent
to the corner node (x3 and x4). There is no problem with this case
as the re-entrant corner cell is a regular interior cell.

The second configuration, seen Fig.7b, requires more consider-
ation. It has been shown that when centered boundary updates are
applied at points x3 and x4 they correspond to half-cells. Simply
applying (40) to the interior corner node [18] would imply that C0
is no different from an interior cell, but this would not agree with
the half-cell neighbours, since the side lengths do not match. A
more coherent update at x0 for this configuration would take into
account the volume and sides of this “three-quarter cell”. It would
be difficult to arrive at such an update using only the FD framework
since there are no accessible side and volume parameters to set. On
the other hand, the following update, which is consistent with the
90-degree interior corner, can be obtained from a FV perspective:

p̂+
0 =

(
2λ2

3
(2p̂1 + 2p̂2 + p̂3 + p̂4 − 6p̂0) + 2p̂0 + σ2p̂

−
0

)
/σ1 ,

(41)
where σ1 = 1 + 2γλ

3
and σ2 = 2γλ

3
− 1. This update ensures

stability because V ∗0 = 0 for the three-quarter cell.
It remains to be seen if the usual update, (40), applied at the

interior corner node in the “centered” configuration leads to insta-
bilities. To this end, consider the following experiments on the two
L-shaped geometries depicted in Fig. 8. The boundaries are made
lossless (γ = 0) and the usual interior update (40) is applied to
the interior corner node. The Courant number is set to the usual
λ =

√
1/2. The input and output locations are marked in the

figures, and the scheme is excited by a non-zero initial condition.
The two outputs are shown in Figs. 8a and 8b. In the first case
the scheme is clearly unstable as it exhibits exponential growth.
However, the same growth is not seen in the second case, even
after 3×105 time-steps. Thus, employing the usual update at a
re-entrant corner adjacent to “centered” boundaries does not always
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Figure 9: Energy variation for re-entrant corner tests on Domain A using
three-quarter cell (left), full cell (middle), and DWM boundaries (right).

lead to instabilities and appears to depend on the overall geometry
of the domain. Nevertheless, it would be wise to employ (41) or
a full-cell variant since stability will be ensured. The problematic
domain (Domain A) was also simulated with the three-quarter cell
update (41) and, as expected, this simulation was found to be stable,
and more precisely, energy-conserving to machine accuracy, as
shown in Fig. 9. The energy was calculated using the expression
given in [15] (left out for brevity). Employing the full-cell config-
uration and the 1-D DWM boundaries on the problematic domain
also ensures numerical stability and energy-conservation to machine
accuracy. The code used for these simulations will be available at:
http://www2.ph.ed.ac.uk/~s1164563/dafx14.

7. CONCLUSIONS AND FUTURE WORK

In this study, finite volume equivalences were established for cer-
tain FD and DWM schemes for the wave equation and staggered
(FDTD) schemes for conservation equations. It was shown that the
underlying connection between pointwise FD methods and finite
volume methods is a pyramidal decomposition, given certain con-
straints on the volumetric cells and their neighbours. Additional ge-
ometrical interpretations were provided for stability conditions. The
“centered” and “non-centered” half-plane boundary updates were
shown to be special cases of a FV update. The “1-D” DWM bound-
ary model was shown to have a consistent interpretation in d > 1,
but that there may be discrepancies with the desired acoustic ad-
mittance and domain geometry. Commonly used re-entrant corner
updates combined with centered edge conditions in the 2-D Carte-
sian scheme were shown to have geometrical inconsistencies, lead-
ing to unpredictable instabilities. A stable and energy-conserving
re-entrant corner update was proposed for the 2-D Cartesian case.

It is straightforward to extend the re-entrant corner analysis to
more general schemes in 2-D [39] and 3-D [34], of which the stan-
dard Cartesian schemes are special cases. As such, the geometric
inconsistencies and possible instabilities reported here extend to pro-
posed re-entrant corner boundary updates for nine-point schemes in
2-D [39] and 27-point schemes in 3-D [34], since the volume and
side parameters of re-entrant cells were not taken into account when
centered conditions were applied to adjacent cells. Such instabili-
ties have been observed in practice using the proposed interior edge
conditions [40]. A matrix eigenvalue analysis of the re-entrant edge
in the 3-D SLF scheme can also be found in [41] and conclusions
were obtained that are similar to those presented here.

One could proceed and work out the correct re-entrant edge
and re-entrant corner updates for the 3-D SLF scheme, to be com-
bined with centered half-plane (half-hyperplane) and quarter-plane
terminations, but such boundary updates will still amount to “stair-
case” boundaries for irregular (curved, slanted) geometries, so they
will be no more valid than full-cell staircase boundaries, for which
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stability is guaranteed (this was proved in Section 5.2). A FV
meshing pre-processing step, successfully implemented, should
provide coefficients for all the specialised boundary updates. Strate-
gies for meshing will invariably need to take into account stability
conditions, and this will present new challenges.

More generalised impedance boundary models, such as those
in [18], which differ in the time-varying components, were not
featured, but similar impedance boundary conditions can be found
in [15]. The analysis presented here extends to those boundary mod-
els, since the condition to bound the total interior energy, (20), does
not change as long as the discrete temporal operators are chosen
properly and the impedance parameters are non-negative [15].
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ABSTRACT

This work presents an algorithm that is able to achieve novel spa-
tialization effects on multitrack audio signals. It relies on a cross-
adaptive framework that dynamically maps the azimuth positions
of each track’s time-frequency bins with the goal of reducing mask-
ing between source signals by dynamically separating them across
space. The outputs of this system are compared to traditional pan-
ning strategies in subjective evaluation, and it is seen that scores
indicate it performs well as a novel effect that can be used in live
sound applications and creative sound design or mixing.

1. INTRODUCTION

Recent work on adaptive digital audio effects has seen the emer-
gence of a new class of cross-adaptive systems that aim to do au-
tomatic or computer assisted mixing (see [1] for a review). The
architecture is one that allows for a mapping of all concurrent sig-
nals in a mix to determine the processing parameters on each of
the individual inputs in order to optimize either a perceptual (e.g.
loudness balance, see [2]) or objective (e.g. release from masking,
see [3]) characteristic of the mixed output signal. In the present
work we focus on panning as a tool to overcome masking prob-
lems, as done in [4] and others, but following a radically different
approach that focuses in the creation of a novel type of tool.

Previous approaches have relied on grounded theory, trying
to mimic the decisions that a human sound engineer would un-
dertake. We propose that an interesting area of exploration for
intelligent systems is to strive for processing techniques that are
prohibitively difficult to achieve with traditional means and by hu-
man practitioners. Being non-standard, there is a good chance that
results will be unconventional and careful analysis and subjective
evaluation is paramount.

The approach we are suggesting follows close on [5], which
looks at the possibilities of adaptive digital audio effects, but not
specifically the problem of mixing. In that work the authors pro-
posed a method for panning different frequency bins of a signal
into different azimuthal positions, where the mapping decisions
for panning placement may come from the analysis of a separate
signal. We extend the idea so that the azimuthal mapping opti-
mizes masking constraints arising from the need to sum multiple
individual tracks in a mix, and that this can be extended to a time-
varying system that will achieve a new approach to spatialization

∗ The author P.D. Pestana was sponsored by national funds through the
Fundação para a Ciência e a Tecnologia, Portugal, in projects: ‘’PEst-
OE/EAT/UI0622/2014’ and ’PEst-OE/MAT/UI2006/2014’.
† The author is supported by EPSRC grant EP/K007491/1, ‘Multisource

audio-visual production from user-generated content’

and spatial unmasking optimization. A similar approach is done
in terms of frequency-unmasking in [6], and DirAC [7] touches
on similar concepts, though it aims at ‘transparent’ reproduction,
instead of acting as a cross-adaptive effect.

In Section 2 we elaborate on the theoretical reasons for why
a spectral audio panner can be a viable tool, and the concepts on
which spatial audio is built upon. Section 3 presents a detailed de-
scription of our cross-adaptive algorithm, while Section 4 presents
an objective analysis of results in selected samples. In Section 5
we summarize a subjective evaluation performed on examples. Fi-
nally, Section 6 points to further directions and application, and
provides an overview of our results.

2. THEORETICAL MOTIVATION

Spatialization depends on Interaural Level Difference (ILD) and
Interaural Temporal Difference (ITD) cues, but the relative im-
portance of each is still not fully understood. The former works
mainly at high frequencies, where the head casts an acoustic shadow
that is large enough to attenuate the level reaching the contra-
lateral ear. On the other hand, the latter is predominantly an active
mechanism for low-mid frequencies, where the phase difference
can be resolved by the brain. At really low frequencies, sounds
seem to have an enveloping place of origin. ITDs and ILDs are
often distorted and conflicting, and the auditory mechanism uses
the most consistent cue; the one that suggests the same direction
over a broad spectral band [8].

According to Griesinger [9], with broadband sources cues are
ambiguous, and human hearing appears to simply average over the
various possible sound directions to determine the best-guess po-
sition for the source, while weighting-in past history. The brain
seems to use mechanisms other than localization to stream sounds
together and only afterward does it assign a common place of ori-
gin. Furthermore, Blauert [10] argues that in principle, within a
critical band, all sound can only be perceived as a single source of
wider or narrower character. To this extent, Pulkki [11] concludes
that spatial realism is not needed in audio for the resulting image
to have any verisimilitude.

Modern audio production relies on amplitude panning tech-
niques almost exclusively for the creation of azimuthal cues out
of monophonic source signals. In this work we shall ignore cues
stemming from signal delay, though a translation of the technique
could trivially be achieved. It is typical to distribute sound sources
among the reproduced stage, as the spatial release from masking
(SRM) that is achieved improves clarity and intelligibility. The re-
lationship of ITD and ILD to SRM is not fully studied, but it seems
level is panning is a sensible choice [12].
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3. ALGORITHM AND CONSTRAINTS

Our algorithm is based on the typical phase vocoder implementa-
tion, and can be outlined as follows:

1. Perform a Short-Time Fourier Transform (STFT) on all the
input tracks of an audio mix.

2. Pan each resulting time-frequency (t-f) bin on each track
independently, placing the heaviest (magnitude-wise) bins
of each track to non-colliding locations.

3. Perform the Inverse Fourier Transform to reconstruct the
time-domain signals of the mix.

An audio mix is the result of a summation of an arbitrary num-
ber J of input tracks. Let us call each individual track xj and as-
sume out of simplicity that it is monophonic (single-channel) and
that all tracks are equal in length. Let us define our notation and
establish that the mix’s time-frequency representation is then given
by the STFT [13]:

Xj (n, k) =
∞∑

m=−∞
xj (m)h (n−m) e−i2πkm/N , (1)

with n indexing discrete time, k the discrete frequency bin and
h(n −m) a window function of length N . This results in a com-
plex number at each element, which can then be decomposed into
magnitude and phase angle. Consider:

Xmagj (n, k) =

√
Re[Xj (n, k)]

2 + Im[Xj (n, k)]
2 (2)

to be the 3-dimensional matrix of individual magnitudes for each
t-f bin n-k of each track j. The phase angle will actually not be
important for our application, but it is given by the inverse tan-
gent of the ratio of imaginary to real part, for each element of the
matrix. It is both prohibitive and irrelevant to perform the STFT
at every point in discrete time, so one uses a fixed window length
(N ) overlapping with a hop size (I) which is a subdivision of N ,
and uses time frames that start at nI and are N samples long.
A Hamming-windowed STFT with a hop size of N/2 will yield
perfect reconstruction upon performing the inverse transform and
adding all the individual frames. It is now clear that the matrix
whose elements are described by equation 1 is J × G × N ele-
ments long, where G is the signal length zero-padded to the next
multiple of I and divided by I , and N , being the window length,
is also the number of bins in the spectral domain.

Prior to reconstruction, our goal in the spectral domain is to
perform a readjustment of each bin so that it yields two different
results for a left (L) and a right (R) channel:

Xj (n, k) −−−→
{
Yj

(L) (r, k)

Yj
(R) (r, k)

. (3)

with r the outbound time-frame. For all practical purposes, we
shall have r = n, since our analysis hop size is equal to the syn-
thesis hop size. Reconstruction of channel Z (either L or R) can
then be performed by overlap-adding the windows [13]:

yj
(Z) (n) =
∞∑

r=−∞
h (n− r) 1

N

N−1∑
k=0

[
ei2πrk/NYj

(Z) (r, k)
]
ei2πnk/N

,

(4)

and scaling the output so that the overlap of a large number of
hops does not increase the synthesized amplitude too much. Note
that while the notation quickly becomes heavy, this is simply the
strategy behind the well-known phase vocoder approach to spectral
domain processing and equation 4 simply represents the summa-
tion of the Inverse Fourier Transform of all individual time-frames.
The core part of our research is not the analysis-synthesis process,
but how to implement the mapping in (3).

A viable reconstruction of a spectrally processed signal de-
pends upon a careful choice of windowing parameters. For our
case, with a short window one would likely encounter amplitude
modulation artifacts, while a long window would cause temporal
aliasing and smearing. A similar balance results from the hop size;
allowing for no overlap or little overlap results in clicking noises
and too much overlap will cancel out the desired effect, restrict-
ing panning azimuth to a very narrow area. An heuristic approach
convinced us that a window length of 216 (working at a 44.1 kHz
sample rate; one update approximately every 1.49 seconds) with
a hop size of one sixteenth the window length yields sonically ac-
ceptable results. There is temporal smearing that makes signals
sound as if they had been put through a nonlinear reverb, but the
amount is subtle enough so that it is still pleasing.

Each track’s t-f bins can now be placed at position pj(n, k) ∈
[−1, 1], where−1 represents full left and 1 full right. This position
will then be converted to a specific azimuthal angle dependent on
the position of the speakers (the standard stereophonic situation is
defined by speakers at ±30◦ from the median plane). The sine-
cosine rule for amplitude panning states that we should have gains
for the left and the right channel that follow:

g(L) = cos

(
(1 + pj(n, k))π

4

)
, (5)

g(R) = sin

(
(1 + pj(n, k))π

4

)
. (6)

We know from [10] that azimuthal discrimination is more ac-
curate near the origin at the median plane than when we drift to the
sides. It is thus sensible to envisage a position distribution scheme
that mimics this perceptual phenomenon. We chose to allow for
J discrete possible placements (as many as the track count) and
balance them according to a variation on the roots of the first order
Chebyshev polynomials, which gives us a well-behaved distribu-
tion. The root calculation is done through:

Pg = sign

[
cos

(
2g − 1

n
π

)]
− cos

(
2g − 1

n
π

)
, g = 1, 2...n,

(7)
Notice we are shifting the nodes so that they are center-heavy

instead of tail heavy (the sign function is -1 for negative values, 1
for positive values and 0 for the value zero). We then transform
{P1, P2, ..., PJ} −→ {P1:n, P2:n, ..., PJ:n} by simply sorting the
results, where tk:n denotes the k-th ascending order statistic. This
gives us fixed position to which we shall map our J tracks differ-
ently for each t-f bin.

Figure 1 shows the constrained positions for four possible track
counts. Notice that positions at the extreme left or right are never
allowed, something that is considered a good practice by some
sources [14]. Two other possible positional distributions were con-
sidered: equidistant spacing and the non-constrainment to discrete
angles (relying instead on the energy distribution of each bin to
achieve symmetrical balance). Informal testing showed that our
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choice yields better perceptual envelopment than equidistant spac-
ing and more stability than not having fixed discrete points (pan-
ning positions are less prone to large changes from frame to frame).
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Figure 1: Allowable azimuthal positions P for four possible track
counts J , according to our Chebyshev-roots based constraint.

The decision regarding which position to choose for each bin
must be bound by some constraints, following [4, 14, 15]:

1. For each bin the sum of the individual track amplitudes con-
tributing to the left and right signal must be balanced in
terms of magnitude:

J∑

j=1

pj(n, k) |Xj (n, k)| = 0, ∀n, k. (8)

2. The sum of the magnitudes of all weighted frequency bins
for a fixed time-frame must be equal at all chosen azimuthal
steps:

N−1∑

k=0

pj(n, k) |Xj (n, k)| = α,∀j, n, (9)

where α is a time-frame-varying constant.

3. Successive time frames cannot allow for a frequency-azimuth
pair to shift more than a maximum azimuthal step-size. We
have restricted the step size to two after some informal lis-
tening tests.

4. Bins representing frequencies below a cut-off point should
be centrally panned, in keeping with most industry prac-
tices. We have chosen that frequency to lie in the vicinity
of 150Hz.

It is impossible to enforce constraints 1 and 2 when bounded
by discrete positions and the need to fulfill constraint 3, so we
use those as lax rules that provide a per-frame platonic ideal, that
is then revised by the need to restrict sudden movement. We es-
tablish the positions for the first time-frame by applying a palin-
dromic Siegel-Tukey type ordering [16] to each bin across tracks,
according to ordered magnitude, and continue in the following
time-frames with a greedy algorithm. The starting point choice
and iterative proceeding rules are best explained by example:

Suppose we have a five track mix and that the first time-frame
results in the following magnitude vectors:





Xmag1 (1, k) = {0.2, 0.3, 0.25...}
Xmag2 (1, k) = {0.3, 0.2, 0.15...}
Xmag3 (1, k) = {0.4, 0.1, 0.35...}
Xmag4 (1, k) = {0.6, 0.02, 0.6...}
Xmag5 (1, k) = {0.8, 0.01, 0.5...}

(10)

For the first bin (ignoring the fact that constraint 4 would force
us not to use panning) track 5 has the highest magnitude value,
followed by 4, 3, 2, 1. These would then be panned respectively

to p1, p5, p4, p2, p3. This ordering would place heavier track-bins
towards the extremes, yet would tend to enforce constraint 1.

For the second bin, track 1 has the highest magnitude value,
followed by 2, 3, 4, 5. They would be panned respectively to p3,
p2, p4, p5 and p1. This reverse Siegel-Tuckey ordering will help
enforce constraint 2. We can move to bin 3 and simply shift the
order so that it starts with the heaviest bin at p5 and bin 4 will
start with p3 but move to p4 and bin 5 will have equal positioning
possibilities to bin 1. Thus, this part of the algorithm works as a
4-step mapping climbing up the frequency bins.

The second time-frame is first planned in a similar fashion, but
we do not allow for individual bin shifts of more than two positions
between consecutive time-frames. The target goal will sometimes
become unattainable, and in such cases we try to minimize the
least square errors between the intended position vector and the
possible position vector. There is one special feature that we can
use to optimize which is the symmetry of ordering: symmetrical
azimuths about zero are equal terms of weight for our constraints 1
and 2. So if we see an intended shift of a specific bin from p1 to p4
in two successive time frames, constraint 3 would tell us to move
no farther than p3 (two steps), but given that p4 is symmetrical to
p2, thus p2 would present a better move. The programmatic imple-
mentation of the greedy algorithm is consequently messy and more
prone to be described then notated. Since for each new frame we
always calculate our pseudo-optimal positions, the actual overall
placement never diverges too far from the intended one.

Finally, with the intended position for each t-f bin in mind,
there are two possible approaches to performing the calculations:
multiplying Xj(n, k) (the complex spectrum as a whole, not the
individual magnitudes) by the gains that were obtained (g(L) and
g(R)) or zeroing all t-f bins that are not going to be panned to a spe-
cific position for each track, doing the Inverse Fourier Transform
of the result, and panning on the time domain. We chose to do the
former for our examples, but the latter will be explored in the fu-
ture. There are some audible examples of the algorithm’s working
at http://www.stereosonic.org/phd/specPanning/, alongside spec-
trograms that illustrate the change it brings about.

4. RESULT ANALYSIS

Figure 2 shows the intended positions for a segment of a five-track
mix. The five discrete azimuthal positions are described in shades
of gray from maximum-left (white) to maximum-right (black).

This is an illustrative example of something that is quite hard
to visualize but serves to show 1) that pan position is different
for each frequency bin of each track, when considering a fixed
time-frame (if one looks at any column on any track), 2) that pan
positions of each bin change over time (if one looks at any row
on any track), 3) that there is some degree of inertia for each time
frame, frequency bin (i.e, a row or column will not change position
too drastically) and 4) Drums and Synth tend to be either full-left
or full-right, the other tracks are much more inert.

An algorithm that proposes to work as a novel audio effect is
quite hard to assess objectively. It is important to understand how
closely the constraints 1 and 2 are met, in light of the fact that our
rules are lax. We have looked at four multitrack songs in order
to understand deviations from what is expected. We are dealing
with multi-dimensional phenomena so there is little tangible feel-
ing for how big a deviation can be and how to measure it. We
use the following two metrics to determine how well we match the
constraints. For constraint 1, we find the discrete frequency and
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Figure 2: Intended pan positions for 5 tracks (front-to-back: bass,
drums, guitar, vocals, synth. The time segments are always the
same 5-seconds. White means left and black right.

discrete time mean of the absolute weighted azimuth deviations
from zero:

∑
n

∑
k

∣∣∣∣∣
∑
j

pj (n, k) |Xj (n, k)|
∣∣∣∣∣

G×N , (11)

where, as before,N represents the window length, and here is used
as the number of bins, and G is the number of time windows used
on the STFT.

For constraint 2, we find the mean over discrete time of the
standard deviation between azimuthal magnitudes:

∑
n

sdev

(∑
k

|Xj (n, k)||pj(n,k)=Pg

)

G
(12)

Table 1 shows the results for the four song segments (≈ 20 s),
for three different approaches. The benchmark approach is ran-
dom panning of the t-f bins. We compare that with following our
algorithm with a window length of 215 and a hop size of 1/16 and
a window length of 210 with a hop size of 1/2.

Approach Song #1 Song #2 Song #3 Song #4
Random panning 4.957 6.148 4.469 6.065
Window 215, hop 1/16 0.024 0.019 0.018 0.024
Window 210 hop 1/2 0.077 0.101 0.992 0.140

Approach Song #1 Song #2 Song #3 Song #4
Random panning 1.664 2.167 1.857 1.935
Window 215, hop 1/16 0.325 0.143 0.464 0.656
Window 210 hop 1/2 1.431 0.542 1.161 1.548

Table 1: Approximation to constraints 1 (top) and 2 (bottom). Top
table values are multiplied by 103, bottom table by 1016.

The values show that constraint 2 will always be approached
as a result of the law of large numbers, even for the case of random
panning. However, both our approaches achieve a better result than
a random strategy. A large window size will yield more frequency
bins, which will likely smooth the variations at each position, so
its relatively better score comes as no surprise. As for constraint 1,

the algorithm shows a clear improvement against random panning.
Here the larger window also seems to work consistently better,
most likely because of the larger overlap, stemming from the hop
size.

5. SUBJECTIVE EVALUATION

In order to understand whether the approach is worthwhile we
performed a subjective multi-stimulus evaluation. Twenty sub-
jects of moderate experience with audio engineering took place.
The test signals were presented via headphones at a consistent lis-
tening level (83 dB) through a steady signal chain. The use of
headphones was a compromise, as the technique is better suited
for a loudspeaker test; however, repeatability in different settings
was important, so a compromise was chosen. Tests were double
blind, using 4 different versions of 4 different songs (20 second
segments). Versions of one such song can be heard online at
http://www.stereosonic.org/phd/specPanning/. Procedures followed
closely [17] and the different stimuli were:

1. A monophonic version that served as the base for the algo-
rithm. Loudness balance done by a mixing engineer. This
balance choice was kept throughout (M).

2. A traditional static stereophonic version, where panning de-
cisions were done by a professional mixing engineer (S).

3. A spectrally panned version with our best time constants:
window length of 215 with a 1/16th hop (Lg, for ‘long win-
dow’).

4. An anchor, a spectrally panned version with a time constant
that some preliminary tests had shown problematic: win-
dow length of 210 with a 1/2 hop (Sh, for ‘short window’).

The order of presentation was randomized, a fact that was ex-
plained to the listeners in advance. Subjects were asked to rank
the versions according to three parameters (one per listening run
for a total of 3 × 4 runs with 4 versions per run): ‘clarity’, ‘pro-
duction value’ and ‘excitement’. The concept of clarity should be
associated with the ability to segregate sources, thus with release
from masking. Production value is inherently ambiguous and sub-
jective, but because subjects were studying or had studied audio
engineering, the meaning should be clear: technical quality of the
mix. Excitement was expected to reveal a dimension that is not
coupled to the evaluation of quality but of a rawer reaction to the
mix.

Results are summarized in Figure 3, showing mean and con-
fidence interval bounds for the three parameters. The professional
version is superior in terms of production value perception, yet our
algorithm competes in terms of clarity. This is an encouraging re-
sult, as we are comparing a trained professional approach to an
experimental algorithm that goes dangerously against what would
be considered accepted by traditional standards. Our algorithm
also yields the best score for excitement, beyond the error bounds,
which validates the hypothesis of using it on a mix for its ’special
effect’ character. The anchor version is perceived as unpleasing,
yet it scores fairly well in terms of excitement. A Friedman test for
evaluation consistency among users only finds evidence for ran-
domness in terms of production value, which might be explainable
by the difficulty in having consensus on what "Production Value"
means. Further investigation reveals that subjects are evaluating
songs differently in that case. Separating by song, our algorithm
is perceived as excelling in production value for one of the four
examples (exactly the one that can be found online).

DAFX-4

DAFx-306



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

M S Lg Sh M S Lg Sh M S Lg Sh

4

3

2

1

Condition

R
an

k

Production Value ExcitementClarity

Figure 3: Evaluation results for Clarity (left), Production Value
(middle) and Excitement (right), averaging both in terms of songs
and subjects. See main text for conditions.

6. CONCLUSIONS AND FURTHER WORK

A technique of spectral unmasking through cross-adaptive dynamic
panning is explored. It is to be understood as an experimental ef-
fect and not a method that can be used in traditional mixing. An
absolute constraint equilibrium cannot be met constantly, and slow
variations through time are shown to produce better results. Sub-
jective evaluation confirms the algorithm can be used as a novel
effect, resulting in an appreciated level of excitement. It is shown
to compete with a professional mix in terms of clarity, so the pur-
pose of unmasking is to some degree accomplished (particularly
if one remembers the evaluators will always understand the algo-
rithm as "strange"). Such a radical panning strategy could very
well be understood as nonsensical, but results show otherwise, at
least when considering the longer time-constant version. It is safe
to assume that a listener will not understand that there is an explo-
sion of panned events, and is still very much able to identify each
sound source as being one.

A technique such as this can be useful in several scenarios:

1. Whenever amplitude panning of whole sources is frowned
upon, such as large outdoor live shows, where elements are
kept in the middle. The algorithm would allow audience
members on the center to feel a sense of spaciousness while
allowing everyone to still have the perception of a full mix.

2. In song sections, where the producer wishes to add a subtle
other-worldly feeling to a part.

3. In excessively dense mixes, where the mixing engineer is
struggling for clarity.

Several extensions of the idea can be researched in the future
if one considers that the azimuthal positional choices on this work
were mainly heuristic. There are many explorations on the nature
of the constraints, and the reasons for their choice, that can result
in clearer and more effective results. The research for a real-time
strategy is in the works. A comparison with techniques involving
filter-bank methods either in the analysis or synthesis is also an
important step.

7. REFERENCES

[1] Joshua D. Reiss, “Intelligent Systems for Mixing Multichan-
nel Audio,” in 17th Intl Conf on Digital Signal Processing
(DSP), 2011.

[2] Enrique Perez Gonzalez and Joshua D. Reiss, “Automatic
Gain and Fader Control For Live Mixing,” in IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics,
2009.

[3] Enrique Perez Gonzalez and Joshua D. Reiss, “Improved
Control for Selective Minimization of Masking Using Inter-
Channel Dependancy Effects,” in Proc of the 11th Intl Conf
on DAFx, 2008.

[4] Stuart Mansbridge, Saoirse Finn, and Joshua D. Reiss, “An
Autonomous System for Multi-track Stereo Pan Position-
ing,” in Proc of the 133rd AES Convention, 2012.

[5] Vincent Verfaille and Udo Zölzer, “Adaptive Digital Au-
dio Effects (A-DAFx): A New Class of Sound Transfor-
mations.,” IEEE Transactions on Audio, Speech, and Lan-
guage., vol. 14, no. 5, pp. 1817 – 1831, 2006.

[6] Piotr Kleczkowski and Adam Kleczkowski, “Advanced
Methods for Shaping Time-Frequency Areas for the Selec-
tive Mixing of Sounds,” in Proc of the 120th AES Conven-
tion, 2006.

[7] Ville Pulkki, “Spatial Sound Reproduction with Directional
Audio Coding,” Journal of the Audio Engineering Society,
vol. 55, no. 6, pp. 503–516, 2007.

[8] Ville Pulkki, “Localization of Amplitude-panned Virtual
Sources I: Stereophonic Panning,” Journal of the Audio En-
gineering Society, vol. 49, no. 9, pp. 739–752, 2001.

[9] David Griesinger, “Stereo and Surround Panning in Prac-
tice,” in Proc of the 112th AES Convention, 2002.

[10] Jens Blauert, Spatial Hearing: the Psychophysics of Human
Sound Localization, MIT Press, Cambridge, 1997.

[11] Ville Pulkki, T. Lokki, and Davide Rocchesso, “Spatial Ef-
fects,” in DAFx, Udo Zölzer, Ed., chapter 5, pp. 139–180.
John Wiley & Sons, Chichester, second edition, 2011.

[12] J. M. Dillon H. Cameron S. Glyde, H. Buchholz and L. Hick-
son, “The importance of interaural time differences and level
differences in spatial release from masking,” Journal of the
Acoustical Society of America, vol. 2, no. 134, pp. 147–152,
2013.

[13] R.E. Crochiere, “A Weighted Overlap-Add Method of Short-
Time Fourier Analysis/Synthesis,” IEEE Trans. on Speech
and Aud. Proc., vol. 281, no. 1, pp. 99–102, 1980.

[14] Pedro D. Pestana, Automatic Mixing Systems Using Adap-
tive Digital Audio Effects, Phd, Universidade Católica Por-
tuguesa, 2013.

[15] Enrique Perez Gonzalez and Joshua D. Reiss, “A Real-Time
Semiautonomous Audio Panning System for Music Mixing,”
EURASIP Journal on Advances in Signal Processing, 2010.

[16] S. Siegel and John W. Tukey, “A nonparametric Statistics for
the Behavorial Sciences,” Journal of the American Statistical
Association, vol. 55, pp. 429–445, 1960.

[17] S. Bech and N. Zacharov, Perceptual Audio Evaluation —
Theory, Method and Application, John Wiley & Sons, Chich-
ester, 2006.

DAFX-5

DAFx-307



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

DAFx-308



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014
Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

LOW-DELAY ERROR CONCEALMENT WITH LOW COMPUTATIONAL OVERHEAD FOR
AUDIO OVER IP APPLICATIONS

Marco Fink, Udo Zölzer

Dept. of Signal Processing and Communications
Helmut-Schmidt-Universität

Hamburg, Germany
marco.fink@hsu-hamburg.de

ABSTRACT

A major problem in low-latency Audio over IP transmission is the
unpredictable impact of the underlying network, leading to jitter
and packet loss. Typically, error concealment strategies are em-
ployed at the receiver to counteract audible artifacts produced by
missing audio data resulting from the mentioned network charac-
teristics. Known concealment methods tend to achieve only unsat-
isfactory audio quality or cause high computational costs. Hence,
this study aims at finding a new low-cost concealment strategy us-
ing simplest algorithms. The proposed system basically consists of
an period extraction and alignment module to synthesize conceal-
ment signals from previous data. The audio quality is evaluated
in form of automated measurements using PEAQ. Furthermore,
the system’s complexity is analyzed by drawing the computational
costs of all required modules in all operating modes and comparing
its computational load versus another concealment method based
on auto-regressive modeling.

1. INTRODUCTION

The transmission of audio material over packet-switched networks
experienced increasing popularity in many application areas over
the last decade. To comply with the bound of available data rates
it was necessary to develop audio codecs to decrease the data rate
of audio material without affecting the audible quality in a severe
way. In other words, the massive distribution of digital music con-
tent was initiated by the development of codecs.

Nowadays, the usage of the internet tends to change from file-
based multimedia exchange to streaming-based and interactive sce-
narios, like Networked Music Performances (NMP) [1, 2]. To al-
low the experience of a real-time system the overall delay between
sender and receiver should be minimal. Unfortunately, there are
many delay contributors between source and sink. Besides the ob-
vious non-deterministic network delay, the blocking delay of the
audio hardware, the delay introduced by receiver buffers, and the
algorithmic delay of underlying codecs have to be considered. Ap-
parently, only the blocking delay and the algorithmic delay can be
reduced with the help of signal processing. Therefore, the focus of
optimization in codecs has changed from data rate to delay. State
of the art audio codecs [3, 4] feature algorithmic delays less than
5 ms to allow the aforementioned interactive scenarios.

A major problem in interactive online applications is the di-
minished audio quality caused by non-optimal network conditions
leading to jitter and packet loss. Commonly, receivers apply error
concealment techniques to reduce the impact of audible artifacts
by replacing the gap, resulting from packet loss, in various ways.

Many different concealment strategies are known [5, 6] but the ma-
jority of them requires an unpractical amount of processing power
or can not satisfy a certain quality level. Popular strategies are of-
ten based on Overlap and Add techniques, like Waveform Similar-
ity Overlap and Add (WSOLA) [7], or model-based extrapolation
[8, 9, 10].

For Audio over IP (AoIP) implementations on embedded de-
vices [11] like the Raspberry Pi [12], the concealment is even the
systems’s limiting module. Hence, this study aims at finding a low-
cost alternative and still allow a reasonable audio quality. Since the
concealment is to be applied in low-delay AoIP applications, it is
optimized for very short blocks.

The proposed concealment strategy aims at extracting periods
from past data blocks and utilize them to fill the gap produced
by packet loss. In contrast to the before mentioned techniques,
the computation of an auto-regressive model and/or autocorrela-
tion shall be avoided to save computations.

A crucial property of high-quality audio error concealment
strategies is to guarantee correct phase alignments between frames.
Hence, the fade-in and fade-out of the concealed block to the orig-
inal data receives much attention. Several methods to realize this
important property are proposed and analyzed. The actual pe-
riod extraction is accomplished with the help of zero-crossings
and matched pre-processing. The quality of the proposed conceal-
ment strategy was ranked using large-scale automated measure-
ments with the Perceptual Evaluation of Audio Quality (PEAQ)
[13] algorithm. Additionally, the complexity was compared to a
high-quality concealment strategy [8], based on extrapolation us-
ing auto-regressive models [14].

The paper is structured as follows. The overall system and
all its sub-modules are explained in Section 2. The result of the
quality measurements can be found in Section 3, whereas the com-
plexity analysis is located in Section 4. Section 5 concludes this
paper.

2. SYSTEM

The concealment system is structured module-wise as shown in
Fig. 1. Previous data xp(n) is optionally enhanced in the Pre-
Processing block to improve the performance of the Zero-Crossing
Analysis module, which generates the zero-crossings vector zc(n).
The resulting zc(n) is then used to identify extraction boundaries,
allowing the cutting out of multiple periods of the unaltered pre-
vious data xp(n) within the Extraction block. Subsequently, the
alignment module is supposed to identify the phase offset between
the last data block and the extracted concealment signal xe(n).
The actual phase alignment can then be performed within the same
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Figure 1: System overview

module. To allow smooth transitions from the previous data block
into the concealment data the extrapolation module is applied. It
computes several continuative samples and cross-fades them with
the concealment data resulting in xc. Lastly, the Fade-Out module
guarantees a certain continuity from the concealed data xc into the
next data block. Hence, the length of xc should exceed a single
block length.

2.1. Pre-processing

Two different pre-processing steps are considered to improve the
system’s overall performance. Only the fundamental harmonic
content of the input signal should be suspect to the zero-crossing
analysis. Therefore, a FIR lowpass HLP with a normalized fre-
quency of ωn = .01 · 2π and order 20 is utilized. In order to
guarantee a DC-free signal a first-order recursive filter HHP =

1−z−1

1−0.99z−1 is additionally applied. The corresponding transfer func-
tions are illustrated in Fig. 2. To conserve the position of the zero-
crossings, it is crucial to apply zero-phase filtering. Therefore, the
FIR lowpass is applied in forward and reverse direction [15]. The
IIR filter phase response is close to zero in the passband and hence,
is not affecting the signal.

Besides restricting the bandwidth of the input, the signal was
subject to non-linear processing to enhance the first harmonic as
proposed in [16]. The characteristic curves of the considered non-
linear functions

f1(x) =
√

|x| (1)

f2(x) =
√

|x| · sgn(x) (2)

are depicted in Fig. 3. Apparently, f1(x) and f2(x) are odd and
even non-linear functions, respectively.
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Figure 2: Pre-processing filters

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
y

=
f
(x

)

NL1: f1(x)

NL2: f2(x)

Figure 3: Odd and even pre-processing non-linearities

2.2. Zero-Crossing Detection

Zero-crossing positions are a meaningful low-level feature, mostly
utilized in speech processing. For example, the detection of voiced
and unvoiced parts in speech recordings using the zero-crossing
rate (ZCR) is very common [17]. It can also be beneficial in the
context of AoIP since received audio streams primarily consist of
single instruments or speakers and therefore, should mainly con-
tain harmonic signals featuring a strong periodicity. Zero-crossings
can be stored in a binary vector

zc(n) =

{
1 if sgn(x(n) · x(n − 1)) < 0

0 else
(3)

of length Ni, indicating a zero-crossing at samples [n1, . . . , nNi ].
A zero-crossing is similar to sign changes between two conse-

quent samples x(n − 1) and x(n). Whenever their product turns
negative a zero-crossing can be assumed. Applying the XOR op-
eration to the sign bits of x(n − 1) and x(n) is an efficient way to
achieve the same result.

The following processing steps require the actual position in-
dex vector izc containing the Ni sample indexes [n1, . . . , nNi ],
where zc(n) is non-zero. The resulting vector izc can be refined by
defining a lower bound δzc for the distance between two zero cross-
ings. This value should be set according to the maximal expected
fundamental frequency fmax of the input signal and the sampling
frequency fs

δzc =

⌈
fs

2 · fmax

⌉
. (4)

Whenever the inter-zero-crossing-interval falls below δzc, the cor-
responding zero-crossing candidate index is removed from izc.
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Figure 4: Relationship between xp(a), zc(b), xe(c), xs(d), and
xc(e)

2.3. Period Extraction and Alignment

The period extraction module receives a block of previous data xp

and a vector izc, containing the indexes of zero crossings in xp,
to extract one or P periods. The process is illustrated in Fig. 4.
Fig. 4a) shows a periodic waveform xp(n), while Fig. 4b) depicts
the corresponding zero-crossings, which are used to define the ex-
traction boundaries, defined by the zero crossing indexes nNi−2P

and nNi , which are marked with red stripes in the Fig. 4a). The
extracted signal

xe(n) = xp(n), for n = [nNi−2P , . . . , nNi ] (5)

of length Ne is shown in Fig. 4c). The quantity of extractable
periods depends on the amount of identified zero crossings. To
extract at least a single period one has to allow a certain length Np

for xp. Np can be restricted when a minimal frequency fmin for
the concealment process is defined. From this it follows that

Np =

⌈
β · fs

fmin

⌉
, (6)

where β is an optional safety margin.
Since the extracted periods are concatenated until they show

a certain length Nc, the beginning and end have to be matched
to allow smooth transitions between the repeated periods. In the
implementation this feature was realized by replacing nm samples
at the front and the end with a linear series between xe(Ni −nm +
1) and xe(nm) of length 2 · nm.

The block xe(n) is zero-phased due to its cutting at the zero
crossings. To align the phase of the extracted periods to the end of
the last block xp, a circular shift by l samples is applied to obtain
extracted and shifted sequence

xs(n) = xe(n − l mod Ne), (7)

which is plotted in Fig. 4d).
Several ways to estimate the shifting offset l are possible. In

this study three methods are chosen and analyzed:

1. Zero-crossing distance: The simplest reviewed method is
to compute the offset of the last zero-crossing in izc and the
length of the past data block xp(n), which is determined by
the amount of blocks in the buffer M and the block size N

l1 = NM − nNi .

Apparently, the estimation accuracy mainly depends on the
zero-crossing’s precision.

2. Slope and amplitude matching: If the slope and amplitude
of two periodic signals with the same frequency are simi-
lar, one can assume a similar phase at that point. Hence,
it is necessary to obtain the slope at the end of xp(n) and
the slope of xe(n) by differentiating both. The ten clos-
est values are assumed as candidates. In a second step, the
candidate showing the smallest deviation in amplitude to
the last sample of xp(n) is determined and its index is used
for the shift operation.

3. Cross-correlation: It is well-known that the delay between
two signals can be computed using the cross-correlation
[18]. The time delay is the offset between the location of the
cross correlation’s maximum and the zero lag index. Since
the alignment of xe(n) to the end of xp(n) is desired, the
cross correlation from the end of the signals in inverse di-
rection is computed.
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Subsequently, the concealment signal xc(n) is synthesized by con-
catenating xs(n) until it exceeds a certain length Nc > N to al-
low the replacement of a complete data block of length N . The
phase-matched concatenation of xp(n) and xc(n) is illustrated in
Fig. 4e). The actual block transition is highlighted with the red
box.

2.4. Extrapolation and Fade-In

The last section exposed a strategy to produce the actual conceal-
ment waveform xc(n) that is supposed to show similar character-
istics as the waveform of previous blocks. However, the conceal-
ment quality can be improved by extrapolation of previous data
and fading the resulting Nf samples into xc(n). Alike the es-
timation of the offset l, multiple strategies of extrapolation were
compared and shall be described in the following.

1. Reflection: Applying the point reflection to the signal’s tail
can be performed by reverse indexing, inversion, and an
offset with the last value times 2

xf1(n) = 2 · xp(Np) − xp(Np − n).

2. Weighted Slope Continuation: The slope of previous data
is linearly weighted to avoid a constant slope in the extrap-
olation

xf2(n) = xp(Np)+ (xp(Np −n) − xp(Np − 1 − n)) · n.

3. Linear: A linear extrapolation can be achieved by determin-
ing the slope at the end of xp and accumulating it Nf times
to the last value of xp.

xf3(n) = xp(Np) + (xp(Np) − xp(Np − 1)) · n.

4. Polynomial: The extrapolation with a polynomial can be
described as the attempt to find a function f(x) describ-
ing previous data and feed it with following x values to
obtain new data. The polynomial p can be found in the
least-square sense by solving




1 x1 · · · x
Nf −1

1

1 x2 · · · x
Nf −1

2

...
...

. . .
...

1 xNe · · · x
Nf −1

Nf




·




p0

p1

...
pNf −1


 =




f(x1)
f(x2)

...
f(xNf )


 ,

where [x1, . . . , xNf ] is assumed to be a linear series from 1
to Nf . The actual extrapolated signal can then be computed
the following way

xf4(n) = p0+p1(n+Nf )1+ · · ·+pNf −1(n+Nf )Nf −1

or using the Horner’s method.

An overview of the utilized extrapolation is illustrated in Fig. 5. It
shows an arbitrary waveform which is extrapolated at n = 8 using
the four presented methods.
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Figure 5: Different simple extrapolation algorithms for Nf = 8
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Figure 6: Fading windows for Nw = 16

2.5. Fade-Out

As already mentioned, the signal quality of error concealment strate-
gies depends crucially on smooth transitions between extrapolated
and actual received data. Hence, the transition from conceal data
to the subsequent intact audio block has to be assured. As already
denoted in [8] it is beneficial to choose the extrapolated block’s
length Nc longer than the actual block size N and apply a cross-
fade with the next block. Several window forms w(n) and lengths
Nw were investigated and it turned out that only cross-fades lead-
ing to a constant amplitude

w(n) + w(Nw − n) = 1 (8)

are of benefit. Although, constant power windows

w2(n) + w2(Nw − n) = 1 (9)

are widely used in audio processing, and especially mixing, they
can only be optimally used in the case of uncorrelated signals, like
when mixing different tracks. In this study, four different constant
amplitude cross-fade windows are applied. Namely, a cosine, a
linear, a logarithmic, and a squared. All those windows are illus-
trated in Fig. 6. The influence of the cross-fade window length and
form shall be evaluated in the following sections.
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Figure 7: ODG score over SQAM test files

3. EXPERIMENTS

3.1. PEAQ

The quality of the proposed system was initially evaluated objec-
tively using automated measurements in MATLAB, similar to the
experiments in [8]. Although the Perceptual Evaluation of Au-
dio Quality (PEAQ) method [13] was actually developed to rate
audible artifacts caused by audio codecs, it turned out to be an ad-
vantageous tool to judge the quality of audio error concealment.
The experiments in [8] revealed a significant correlation between
the automated PEAQ measurements and a listening test. The re-
sult of the PEAQ algorithm is the so-called Objective Difference
Grade (ODG). It ranges from −4 to 0, covering the identified
audio quality impairment from "very annoying" to "impercepti-
ble". The sound data base used for the measurement is the Sound
Quality Assessment Material (SQAM) [19], consisting of 70 high-
quality test items featuring a large variance of sound sources and
tonal characteristics.

The actual test procedure was designed as follows: Initially, a
SQAM item is loaded and down-mixed to mono. Using the test
item’s amount of samples and the current block size N allows to
calculate the corresponding amount of frames. For every frame a
random value is computed, that indicates a lost frame if its larger
than the currently simulated packet loss rate assuming that one net-
work packet contains a single audio frame. To have an error refer-
ence for following comparisons the input signal is copied once and
all erroneous frames are set to 0. In other words, muting is applied
as a worst-case concealment for the comparison.

The concealment routine was then called for the erroneous
frame with NP previous samples, the amount of required samples
Nc, and the modes for the pre-processing, alignment, and extrap-
olation modules, respectively. The first N samples of its result
are used to replace the erroneous frame and the remaining sam-
ples are cross-faded with the following audio frame. The overall
result is written to a wave file. To obtain the ODG score, the self
implemented PEAQ tool is fed with the resulting wave file and
the corresponding original one. This test procedure is repeated for
different parameters of the block size N , packet loss rate e, pre-
processing mode, alignment mode, extrapolation mode, cross-fade
length Nw , the cross-fade window function wcf , and for every

SQAM test item. Note, that the sample rate fs of all test items is
44.1 kHz, the minimal frequency fmin is chosen to be 80 Hz, and
the safety margin β is set to 1.2. Hence, the search window length
Np, which is used to find zero-crossings, is restricted to 662 sam-
ples.

Note, that the authors verified the correctness of the self imple-
mented PEAQ tool by comparing it with two different freely avail-
able implementations peaqb and PQevalAudio [20, 21]. A test run
over the SQAM data set using the three implementations and using
a random concealment setting resulted in a mean absolute devia-
tion of 0.09 for peaqb and 0.07 for PQevalaudio in comparison to
the ODG scores of the own implementation.

First of all, it shall be shown how well the presented conceal-
ment strategy, denoted as Low-Cost Concealment (LCC) in the
following, performs for the different SQAM items. Fig. 7 shows
the ODG score over the SQAM items for a block size of 64 sam-
ples, packet loss rate e = 0.01, a cosine-shaped cross-fade window
of length 32. Additionally, the corresponding ODG score of an-
other concealment method [8], based on auto-regressive modeling
(AR-Model) using the Burg method, and the muting error refer-
ence are shown. The AR-Model produces very good result if the
models are computed using a large amount of previous data. Nev-
ertheless, the quality of LCC and AR-Model are similar for very
short blocks, although the AR-model requires much more com-
putational effort. LCC even shows a slightly improved average
score µLCC = −1.93 vs. µAR = −2.11 for the explained sim-
ulation parameters. Both proposed methods outperform the mut-
ing concealment clearly (µMute = −2.88). It comes apparent that
the results are strongly signal-dependent. Interestingly, the overall
trend is quite similar for LCC and AR-Model. For example, the
SQAM items 1 − 7, which are different synthetic signals, don’t
show any improvement while the string instruments, voice, and
singing items work very well. Also items 26 − 34 lead to very
bad results since these are percussive and bell-like sounds without
strong periodicity. As mentioned in the introduction, the system is
designed to conceal natural, harmonic sounds. Hence, the previ-
ously described items are removed from the test set to evaluate the
proposed system in the context of its potential application.

As a next step, the measurement was repeated using the lim-
ited SQAM data set but with varying block length N and error rate
e. The results of the individual SQAM test items were averaged.
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for the proposed method (solid) and the AR reference method
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As expected, the quality decreases for increased e and hence, the
ODG curves in Fig. 8 decrease monotonically. The solid curves
represent the LCC results, whereas the dashed curves show the re-
sults for the error reference. The ODG scores are degraded more
severely for shorter blocks even when the same amount of previ-
ous data is used for the concealment. This behavior allows two
conclusions. On the one hand the replacement and fading using
longer blocks is smoother and causes less abrupt signal changes or
on the other hand, short signal deviations have stronger negative
impact on the ODG score.

In the following, the influence of the combination of the differ-
ent operating modes are analyzed. Therefore, the block size N and
error rate e were set to 64 and 0.01, respectively. Only the operat-
ing modes are varied and the average ODG score using the limited
SQAM data set was computed. First of all it should be noticed
that all LCC modes, besides the combination of the first non-linear
function and the filter with arbitrary alignment and extrapolation,
improved the average ODG score significantly. Most combinations
show an improvement of more than 1 ODG score in comparison
to the muting error reference, which was rated µMute = −2.8361
by PEAQ. The mode combinations, yielding the ten best results,
are shown in Table 1. Apparently, the pre-processing improves the
performance of the zero-crossing analysis since the four best com-
binations use the filter and/or the second non-linear function. The
alignment, based on matching of slopes and amplitudes, outper-
forms the cross correlation and zero-crossing distance estimations
to estimate the phase offset. The simple linear extrapolation seems
to be the favorable method for the fade-in process since the six best
results are obtained using the linear extrapolation.

As mentioned before, also the effect of the cross-fade win-
dow’s form and length on the PEAQ results shall be demonstrated.
The previous test setup was repeated with fixed parameters (N =
64, e = 0.01) and the best-performing concealment mode (see Ta-
ble 1), presented in the previous section. The limited SQAM set
was used for this experiment again. As it is apparent from Fig. 9,
showing the ODG score for the windows described in Sec. 2.5 and
relative window lengths, the centered cross fades (Cosine and Lin-
ear) clearly outperform the non-centered ones (Logarithmic and
Squared). This implies that neither extrapolated data nor the next
intact block should be emphasized in the cross-fade process. The
linear cross-fade window is slightly beneficial, especially for larger
Nw. There is only minor improvement for window lengths Nw >

Table 1: 10 best-performing LCC modes

Pre-Processing Alignment Extrapolation ODG score
NL2+F SA L −1.5924

F SA L −1.5948
F ZC L −1.6171

NL2+F ZC L −1.6247
None SA L −1.6452
NL2 SA L −1.6452

NL2+F SA P −1.6648
F SA P −1.6661

NL2+F SA S −1.6740
F SA S −1.6744

Muting −2.8631

F: Filter, NL1: Non-linearity 1, NL2: Non-linearity 2,
SA: Slope and Amplitude Matching, ZC: Zero-Crossing Distance,
L: Linear Extr., P: Polynomial Extr., S: Slope Extr.
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Figure 9: ODG score over different window lengths and forms

0.5N but if it falls below, strong quality degradation occurs.

4. COMPLEXITY

Since the LCC complexity significantly depends on the operation
mode and parametrization it is non-trivial to express an overall
complexity. Hence, the complexity of the included modules in
different configurations shall be discussed. The following expres-
sions (see Table 2) represent the complexity to conceal a block
of length N . Non-complex multiplications (MULs) and additions
(ADDs) are listed in the corresponding MUL and ADD column,
whereas important conditionals, memory operations, and functions,
which significantly depend on the implementation and target plat-
form like the root square function, are listed in the misc column.

1. Preprocessing: The twice-executed FIR filter of order 20
(21 taps) consumes 2 · 21 · N MULs and ADDs, whereas
the IIR filter requires 4 MULs and 5 ADDs. Both non-linear
functions consist of the abs function (e.g. conditional and
assignment) and the square root function, which is strongly
implementation-dependent and hence can not be described
generically.

2. Zero-Crossing Analysis: The zero-crossing analysis can be
implemented by comparing the sign of two consecutive sam-
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Table 2: Complexity Overview

Module MUL ADD misc
Preprocessing

FIR 2 · 21 · N 2 · 21 · N
IIR 4 · N 5 · N

NL1 0 0 N · sqrt, N · abs
NL2 N 0 N · sqrt, N · abs

Zero-Crossing N 0 N · sign
Extraction 0 0 memcpy(Ne)
Alignment

ZC 1 0
SA 0 2 · Ne + 11 sort(Ne) + sort(10)
XC 0 0 conv(Ne) + sort(2 · Ne − 1)

Extrapolation
Mirror 0 5
Slope 4 8
Linear 5 8

Polynomial 9 12 solve(4)
Fading 8 4

ples by multiplying them and comparing the resulting sign
bit.

3. Extraction: The actual extraction is a simple copy operation
(memcpy) of previous data in a new processing buffer.

4. Alignment: The alignment itself is simply a rearrangement
of the extracted buffer which can be realized by adapted
indexing, e.g. with a pointer offset. If the alignment offset
index l is computed using the zero-crossing distance one
can subtract the last zero-crossing index from the length of
the buffer used for the zero-crossing analysis.
For the case of the Slope and amplitude matching, the deriva-
tive of the extracted concealment signal (Ne ADDs) needs
to be computed. Then, the derivative of the last two samples
(1 ADD) of the last block is subtracted from the derived ex-
tracted block (Ne ADDs). The result is sorted (sort(Ne))
to find the 10 smallest values, corresponding to the closest
matches. The closest amplitude is obtained by subtracting
the amplitude of the last sample of the last block (1 ADD)
from the 10 candidates and again searching the maximum
value by sorting (sort(10)).
Finding the offset index l using the cross correlation (XC)
is the most complex method since it requires to convolve
the extracted periods with the last samples of previous data
(conv(Ne)) and then find the maximum in the result by sort-
ing (sort(2 · Ne − 1)).

5. Extrapolation: The result of the extrapolation is always cross
faded with the aligned extracted block to allow smooth tran-
sitions. The fading window length is fixed and hence the ac-
tual fading consumes 8 MULs and 4 ADDs on top of every
extrapolation method. The mirrored extrapolation is imple-
mented by subtracting the inversely indexed previous sam-
ples (4 ADDs) from the last sample times 2 (1 ADD). The
weighted slope continuation requires 4 ADDs to compute
the slope, 4 MULs for the the weighting, and 4 ADDs for
offsetting the result. The simple linear extrapolation only
utilizes the last derivative of previous data (1 ADD), the
linear weighting (4 MULs), plus the offset (4 ADDs). To

compute the polynomial extrapolation a linear equation sys-
tem with 4 unknown variables has to be solved (solve(4)).
Computing the polynomial using the Horner’s scheme re-
quires 3 · 3 MULs and 3 · 4 ADDs.

Comparing the performance of the different LCC modes (Ta-
ble 1) and their corresponding complexities (Table 2) reveals an
extraordinary situation. The typical quality versus complexity trade-
off doesn’t hold true in these measurements. The best-performing
LCC alignment mode was SA which clearly outperforms the XC
mode but is clearly less complex. The same holds true for the ex-
trapolation mode. The best performing linear mode only requires
a fraction of the polynomial complexity but yields better results.

To roughly determine the computation time difference of the
LCC in contrast to the AR-Model, a test run over the complete
SQAM test set was performed and the execution times of the cor-
responding conceal function calls were measured. Both conceal-
ment strategies were fed with the same data, a common block size
N of 64, and error rate of 0.01. LCC, in its best working configu-
ration, required about 233 ms to conceal a complete file in average,
whereas the AR-Model computed about 1269 ms. In other words,
the current implementation of LCC requires only about 18 % of
the AR-Model’s execution time.

5. CONCLUSIONS

The goal of this study was to find a low-cost error concealment
which is suited for AoIP applications requiring lowest latency, like
Distributed Network Performances, on low-power platforms, like
embedded devices. The proposed system basically consists of an
period extraction and alignment module. The simple extraction,
based on zero-crossings and matched pre-processing, is sufficient
to extract periods, which can then be aligned to prior data and con-
catenated to synthesize a concealment waveform. For the purpose
of smooth phase transitions from previous frames into the conceal-
ment frame and back into following audio frame, cross-fades are
applied. The samples, extending the previous audio frame to allow
the cross-fade, are obtained by extrapolation. The audio quality of
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the presented concealment system, and all of its operating modes,
is evaluated using a large-scale automated test using PEAQ and the
SQAM data set. The improvement of the average ODG constitutes
more than 1 ODG score in comparison to muting as the simplest
concealment method. The best-performing operating modes were
identified using the same test setup.

Apparently, the repetition of periods from prior audio frames,
combined with proper fade-in and fade-out, allows a significant
quality improvement in comparison to simplest methods like mut-
ing or frame repetition. The resulting audio quality was found to
be even slightly superior then for computationally demanding con-
cealment methods based on auto-regressive modeling. The initial
goal of this study, the reduction of computational complexity of
concealment strategies, was accomplished since the new proposed
system only consumes 18 % computation time while offering at
least comparable quality.
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ABSTRACT

Since digital audio is encoded as discrete samples of the audio
waveform, much can be said about a recording by the statistical
properties of these samples. In this paper, a dataset of CD audio
samples is analysed; the probability mass function of each audio
clip informs a feature set which describes attributes of the musi-
cal recording related to loudness, dynamics and distortion. This
allows musical recordings to be classified according to their “dis-
tortion character”, a concept which describes the nature of ampli-
tude distortion in mastered audio. A subjective test was designed
in which such recordings were rated according to the perception
of their audio quality. It is shown that participants can discern be-
tween three different distortion characters; ratings of audio quality
were significantly different (F (1, 2) = 5.72, p < 0.001, η2 =
0.008) as were the words used to describe the attributes on which
quality was assessed (χ2(8, N = 547) = 33.28, p < 0.001).
This expands upon previous work showing links between the ef-
fects of dynamic range compression and audio quality in musical
recordings, by highlighting perceptual differences.

1. INTRODUCTION

While a single, consistent definition for quality has not yet been
offered, it has an accepted meaning when applied to certain re-
stricted circumstances, such as audio reproduction systems. Mea-
surement standards exist for the assessment of audio quality [1, 2]
however such techniques typically apply to the measurement of
quality with reference to a golden sample; what is in fact being
ascertained is the perceived reduction in quality due to destructive
processes. One such example is in the case of lossy compression
codecs in which the audio being evaluated is a degraded copy of
the reference and the deterioration in quality is measured [3].

This study is concerned with the audio quality of “produced”
music where there is no fixed reference and quality is evaluated by
comparison with all other samples heard. In this manner, “audio
quality” is perhaps better related to “product quality”, as consid-
ered in consumer research, food science and sensory profiling in
general. In these cases quality is based on multi-modal perception
- partly influenced by objective parameters, such as sugar level in
drinks, and partly by issues such as branding and packaging [4].

The assessment of audio quality in musical recordings, espe-
cially that of popular music, is therefore thought to be based on
both subjective and objective considerations. The weighting of
these two factors can vary by individual, depending on experience
and expertise [5].

1.1. Signal statistics

The distribution of sample amplitudes in digital audio signals has
been shown in a number of previous studies - such works have dis-
played the probability mass function (PMF) for a number of digi-
tised recordings of popular music. A PMF shows the probabilities
of a discrete random variable occurring at discrete values. Partic-
ular characteristics can be observed in the PMF, such as clipping
of the signal and errors in the analogue-to-digital conversion [6].
Often, this distribution is represented as an “amplitude histogram”,
where bins are chosen based on decibel increments [7, 8]. Some
summary features have been suggested [9, 10], however such a
logarithmic approach lacks the required detail in high-amplitude
values. A detailed investigation of high-amplitude distributions is
particularly relevant due to the fact that signal levels increased in
recent decades, in what is often described as a “loudness war” [11].

1.2. PMF distortion

Throughout the literature there is rarely much attempt to analyse
this distribution in the required detail and provide summary fea-
tures. Previous work by the authors has provided one such sum-
mary feature of the PMF, which relates to the level of distortion
and the perception of audio quality [5].

Hard-limiting and dynamic range compression have been stud-
ied in relation to listener preference [12, 13]. Since these param-
eters are encompassed by the PMF of an audio segment, the pre-
vious study by the authors attempted to gather them into a higher-
level feature. Since the PMF describes many possible states (here,
it is the 216 quantisation levels in a 16-bit audio signal), a histogram
was generated with 201 bins, providing a good balance of runtime,
accuracy and clarity of visualisation. In order to evaluate the shape
of the distribution, particularly the slope and the presence of lo-
calised peaks, the first derivative was determined. For the ideal
distribution this had a near-Gaussian form so the goodness-of-fit
to a Gaussian distribution was obtained for each sample (ratio of
the sum of squares of the regression and the total sum of squares).
This was used as a feature describing loudness, dynamic range and
related distortions, referred to previously and herein as ‘Gauss’.

This feature was shown to relate significantly to subjective im-
pressions of audio quality, when participants were asked to rate
“the audio quality of the sample” [5]. While this feature can distin-
guish between distorted and non-distorted audio signals and give
an approximation of the amount of distortion, the difference be-
tween different types and causes of distortion is not clear from this
feature alone. This paper will describe a method which can be used
to determine other aspects of distorted audio in addition to level.
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2. TYPICAL DISTORTIONS IN MASTERED AUDIO

An examination of commercial music samples was undertaken in
order to identify typical outputs of the mastering process and its
visible imprints on the PMF. The nature of the sample amplitude
distribution is influenced by the aforementioned loudness war, in
which the perceived loudness of digital music signals has increased
since the launch of the CD in 1982, at the expense of reduced
micro-dynamics, achieved using dynamic range compression [10].
Despite the popular term, this may be thought of more as a “loud-
ness race”, as this increase takes place primarily in the 1990’s and
has remained at an escalated level since, in a state of détente.

Shown in Figure 1 is the PMF for a selection of audio samples.
While the area under the curve is identical by definition, the shape
varies. Figure 1a shows a distribution which is typical of its time.
Due to the nature of its dynamic range, a distribution of this shape
is often considered to be an ideal, neutral distribution, in relation
to issues of loudness and dynamic range compression.

While hard-clipping of the waveform becomes increasingly
popular during this “loudness race”, as in Figure 1b, it becomes
less common in recent years. Other PMF distributions have be-
come popular, featuring a similar loudness level while avoiding
hard-clipping. This can be achieved in a number of ways, one of
which is to apply limiting to individual instrument groups during
the mix process, or the use of multi-band limiters in the mastering
chain. The awareness of inter-sample peaks has also lead some
engineers to avoid the implementation of hard-clipping [14].

If a mix has been clipped the subsequent processing in the
mastering stage, including equalisation, further dynamics process-
ing, stereo-enhancement and downsampling from high sample rates,
can cause this clipping to be spread out over a wider amplitude
range, in regions around the maximal values, as in Figure 1d.

Figure 1c shows an example of a distribution highly warped in
comparison to typical distributions and therefore the Gauss value
is very low. Distortion, across the full mix, is evident on audi-
tion. It was worth noting that this album involved the same pro-
ducer, mix-engineer and mastering-engineer as ‘Death Magnetic’,
the 2008 album by Metallica which was responsible for a popular,
if at times ill-informed, backlash against the loudness war [15, 16].
This demonstrates how a team of engineers can impart a distor-
tion characteristic on productions and that this characteristic can
be identified by listeners.

2.1. Distortion character

It becomes apparent that hard-clipping is one of a number of possi-
ble outcomes when attempting to maximise the perceived loudness
of digital music signals. Incorporating this distortion type into a
two-dimensional paradigm with distortion amount introduces the
notion of distortion character, as illustrated in Figure 2.

This is referred to as distortion character by the authors since
the problem is essentially one of character recognition. For ex-
ample, while the letter W can be defined as such, W and W are
still recognised as equivalent symbols. In this case, the shape of
the PMF curve is the ‘character’ in the problem and comparable
PMFs are considered to contain similar amplitude characteristics.

2.2. Test hypotheses

This paper describes an investigation into the perception of different
distortion profiles in relation to audio quality. In constructing a
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(d) Katy Perry, ‘Roar’, 2013

Figure 1: Examples of probability mass functions for digital music,
showing a variety of production outcomes
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Figure 2: 2D distortion paradigm demonstrating three discrete
characters

subjective test and its subsequent analysis, the following null hypotheses
are used as a basis for the design.

#1 There is no difference in quantitative quality ratings of the
different audio clips.

#2 There is no difference in quantitative quality ratings of the
different distortion character groups.

#3 There is no difference in how words are used to describe
the quality ratings of different distortion character groups.

Test hypothesis #1 was rejected in previous work by the authors
featuring a similar experiment [5] but stands as the basic null hypothesis
in this work.
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2.3. Audio dataset

The dataset of audio examples is comprised of 321 songs by 229
different bands or artists. There is a mean of ten samples from
each year between 1982 and 2013. The clips used for analysis are
20-second excerpts centred about the second chorus.

The audio is being collected as part of a larger study into the
nature of quality-perception. While other studies have included
digital audio files representing music from earlier periods [8, 9, 10]
there is usually not much explanation as to how they have been
sourced. In particular, what is often not acknowledged is that sam-
ples which represent music made prior to the advent of digital
media would have been remastered for release on digital media.
When these remasters were made is important; remastered audio
does not typically retain the amplitude characteristics of the orig-
inal release. To address this issue, only audio from original CD
releases is considered here, i.e. from 1982 onwards.

There are only two samples from 1982, due in part to the fact
that many of the earliest CD releases were re-issues of material
recorded in previous years. Both of these releases feature an em-
phasis system, designed to compensate for deficiencies in the A/D
conversion process, which at this time was based on earlier, 14-bit
technologies. The signal had been subject to pre-emphasis, and de-
emphasis was to be performed on-board the player. For this study,
a de-emphasis filter was designed in order to retrieve representa-
tive amplitude statistics for any samples featuring pre-emphasis.
Based on an available circuit analysis [17], the filter was an IIR
design, constructed by use of the Yule-Walker method.

2.4. Labelling of distortion character

For simplification, only three categories of distortion character are
considered - clean, hard and soft, as in Figure 2. The clean and
hard categories are quite well-defined analytically, however the
soft character is a set of PMF shapes having high dynamic range
compression but without hard-clipping, such as Figure 1d, where
small deformations in the PMF can be seen just below the extreme
levels. Two options were available for labelling the dataset;

1. The samples could be labelled analytically, since hard clip-
ping, or lack thereof, can be determined by the values of the
PMF in its extreme values, after normalisation.

2. The samples could be labelled by an expert panel, by simul-
taneous audition of the signal and visual inspection of the
PMF.

Method 2 was used due to the subjective nature of the problem and
the fact that method 1 makes assumptions about the nature of the
soft distortion character, which is harder to categorise. As a result
of this labelling approach a classifier was designed to blindly label
samples, as learned by the initial classification of the expert panel.

3. CLASSIFICATION

3.1. Feature extraction

The designing of such a classifier, in this case, has two objectives.

1. To label unseen samples with the appropriate distortion char-
acter, using a consistent metric

2. To provide information on which objective features were
used to perform this labelling

Table 1: Features used in objective analysis

Feature Description
Crest factor Ratio of peak amplitude to RMS amplitude
Loudness According to ITU BS. 1770-3 [19]
Top1dB Proportion of samples between 0dBFS and

-1dBFS
Rolloff Frequency at which 85% of spectral energy

lies below [20]
Harsh energy Fraction of total spectral energy contained

within 2k-5kHz band
LF energy Fraction of total spectral energy contained

within 20-80Hz band
MIRemotion Objective predictions of emotional response

- Happy, Sad, Tender, Anger, Fear, Activity,
Valence, Tension [21]

PMF Evaluated as a histogram with 201 bins - see
Section 1.2

Centroid First moment of PMF
Spread Square root of second moment of PMF
Skewness Third moment of PMF
Kurtosis Fourth standardised moment of PMF
Flatness Ratio of geometric mean and arithmetic

mean of PMF
PMF_d First derivative of PMF
Gauss Measure of distortion in PMF_d feature [5]

Table 1 shows features which were extracted from each sample
in order to train the classifier. These are mainly amplitude-based
features due to the nature of the problem. The evaluation of certain
features was aided by the MIRtoolbox [18].

3.2. Classifier design

Statistical analysis was aided by the use of Orange, a data-mining
toolbox for Python [22]. Orange can also be used as a visual pro-
gramming environment and this was used for prototyping. Based
on this prototyping stage, the decision was made to use support
vector machines (SVM) for classification. This decision was made
as it is a well-known method which can address both aims of the
classifier, as mentioned in section 3.1, and as described below.

3.2.1. Optimisation

For optimisation and reproducibility, the final classifier was also
implemented using Orange but with the Python-scripting interface.
The SVM implementation in this package is that of LIBSVM [23].
As the initial set of features extracted contains over 400 features,
this number was reduced by means of recursive feature elimination
(RFE) [24]. The algorithm is described below.

1. A list of features is provided and a linear SVM is obtained.

2. The features are ranked according to their weights in the
SVM solution.

3. The lowest-ranked feature is removed from the list.

4. Repeat these steps until desired number of features remain.

This algorithm was used to return the ten features most rele-
vant to distortion character classification from the initial set shown
in Table 1. All 321 audio clips were used in this analysis. The fea-
tures found to be most important in classifying distortion character
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Figure 3: PMF and (PMF)′ feature sets, in which the features
important to distortion character classification are highlighted by
circles

were the following: gauss, kurtosis, flatness, the 1st, 197th, 199th

and 201st elements of PMF and the 1st, 79th and 200th elements of
PMF_d. Features that are a subset of PMF and PMF_d are shown
in Figure 3, highlighted in PMF and PMF_d of audio which dis-
plays clipping, as evident from the values of these features.

A new SVM implementation was created, using a multi-class
configuration. The parameters of the SVM are automatically opti-
mised using LIBSVM’s procedures [23].

3.2.2. Performance

This data was randomly divided into two portions; 50% for train-
ing and 50% for testing. The trained classifier was tested using
10-fold cross-validation and achieved a classification accuracy of
0.795, with area under ROC curve of 0.888. The confusion matrix
for this test is shown in Table 2.

Table 2: Confusion matrix showing performance of trained classi-
fier on test dataset of 161 samples

Predicted
clean hard soft recall

R
ea

l clean 73 5 4 0.89
hard 2 28 5 0.80
soft 5 12 27 0.61

precision 0.91 0.62 0.75

Both recall and precision is greatest for the ‘clean’ category.
This indicates that there is a conformity between these examples
and, as such, they can easily be recognised.

Recall is high for the ‘hard’ category, as this clipping is recog-
nised easily by the PMF_d features (see Figure 3). However, pre-
cision is lower, as samples with hard clipping may have any other
general PMF shape as identified by the gauss, kurtosis and flatness
features. This leads to misclassification into this category.

Similarly, recall is low for the ‘soft’ class as this category is
composed of a collection of PMFs that could not more easily be
labelled as either of the two other groups. Precision is still rather
high, as other groups are unlikely to be misclassified as members
of this category. The most common misclassification is that of
‘soft’ as ‘hard’, likely due to the lack of conformity in the ‘soft’
group and reasons described above.
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Table 3: Variance explained by first five dimensions

Dim. 1st 2nd 3rd 4th 5th

% var. 58.18 21.22 7.76 5.72 3.50
Cumulative % var. 58.18 79.39 87.15 92.87 96.37

3.3. Principal component analysis

In order to investigate how the ten identified features vary across
the proposed three characters, a Principal Component Analysis
(PCA) is performed. This yields dimensionality-reduction; the ten
dimensions can be reduced to a combination of orthogonal func-
tions which explain as much of the original variance as possible.
PCA is performed with the ‘FactoMineR’ package, using R.

58.18% of the variance in the data is explained by Dim.1,
which relates mainly to features associated with hard-clipping. The
first two dimensions account for 80%, with Dim.2 describing the
kurtosis and general ‘peakiness’ of the distribution. The variance
of each dimension and cumulative variance is shown in Table 3.

Figure 5 shows the individual audio samples, grouped by dis-
tortion character. The centroid of each group is shown, with el-
lipses representing 90% confidence. This shows that each group
is distinctly defined in this space. The axis limits were chosen for
clarity; some outliers are not visible.
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4. RELATION TO SUBJECTIVE IMPRESSION OF
AUDIO QUALITY

4.1. Test design and execution

Of these 321 audio samples which were analysed, 62 were used
in a listening test in which participants were asked to report their
impression of the quality of the recording. This was assessed using
the following instructions for each sample.

1. How do you rate the audio quality of this sample?

2. Please choose two words which describe the attributes on
which you assessed the audio quality.

Participants rated the audio quality of each sample on a 5-point
scale, with 5 as highest. For question 2, participants were provided
with a list of commonly used terms as a reference but were en-
couraged to provide their own terms. The list of words provided
is shown in Appendix A. In this paper, the frequencies of these
words are used in a post-hoc investigation of the perception of the
three different distortion characters, i.e. to avoid bias, participants
were not made aware of the distortion character concept prior to,
or during, the listening test.

The test took place in the listening room at University of Salford,
a room which conforms to BS.1116-1 [1]. Audio was delivered via
Sennheiser HD 800 headphones, the frequency response of which
was measured using a Brüel & Kjær Head and Torso Simulator
(HATS). Low-frequency rolloff in the response below 110Hz was
compensated for using an IIR filter designed using the Yule-Walker
method. This then facilitated the addition of a notch filter at 0Hz.

The loudness of all audio samples was normalised, accord-
ing to current broadcast standards, after headphone compensation
had taken place [19]. The presentation level to participants was
82dB(A), as measured using the HATS and sound level meter.

One additional clip was added to the beginning of each test to
serve as a trial. A short break was automatically suggested when
40% of trials had been completed. Post-experiment discussion was
typically led by the participant and offered valuable insight.

4.2. Participant demographics

The total number of participants was 22 (4 female, 18 male), tested
over a period of five days. The participants were 13 experts and 9
non-experts, which was self-reported, based on their level of aca-
demic or professional experience in fields relating to acoustics and
audio. The mean age of participants was 24.2 years (std.dev =
4.5 years), varying from 19 to 39. Participants were asked to in-
dicate their preferred musical genres and it was observed that the
participants had diverse musical tastes.

Test duration varied by participant, with a mean value of 40
minutes (std.dev = 11 minutes). As this contained the option of
a short break, the effect of fatigue on the reliability of subjective
quality ratings was considered to be negligible, according to sug-
gested guidelines [25].

4.3. Results

With 63 audio samples and 22 subjects, these 1386 auditions were
gathered and analysis was performed on this dataset. As this test
was also concerned with variables outside the scope of this pa-
per, an n-way ANOVA was performed. This revealed a significant
effect of the variables relevant to this paper, in terms of the influ-
ence on quality ratings, which were investigated further.

2.9 3 3.1 3.2 3.3

soft

hard

clean

Quality ratings of distortion groups

Mean Quality

Figure 6: 1-way ANOVA: Quality, grouped by distortion character

A one-way ANOVA was performed with post-hoc multiple
comparison and Bonferroni adjustment applied. As shown in Fig-
ure 6, the mean quality rating is higher for the ‘clean’ category
compared to the other two, while ‘hard’ and ‘soft’ distortion cat-
egories are rated similarly (F (1, 2) = 5.72, p = 0.00, η2 =
0.008). This provides evidence in support of rejecting test hypotheses
#1 and #2, however the effect size is considered to be small, as
η2 < 0.01. This is influenced by the narrow use of the scale and
contributions from other variables, as seen in earlier tests [5].

4.3.1. Analysis of words used to explain quality ratings

While the provided list contained 41 words, in total, 255 words
were used over the course of the 1386 unique auditions, after spelling
had been corrected and equivalent terms collated (for example,
‘compressed’ and ‘over-compressed’ were equivalent in this con-
text). In this lexicon, many words are not used often, some being
unique to a single participant. While this study is comparatively
small, connections between a words frequency and rank in a fre-
quency table are found in other studies of linguistic corpora [26].

Figure 7 shows word clouds of the terms used to describe the
participants’ quality ratings, generated using R, along with the
packages ‘tm’ [27] and ‘wordcloud’. The five most frequently oc-
curring terms are shown in Table 4 and account for 19.7% of all de-
scriptions requested. In order to determine if there was significant
variation in the frequency of each term across the three categories,
a Chi-Square analysis was performed. The words chosen to de-
scribe the quality of each distortion character differed significantly
(χ2(8, N = 547) = 33.28, p = <.001). This data provides evidence
in support of rejecting test hypothesis #3. In Table 4, frequencies
highlighted in bold (with ‘>’ or ‘<’) are either significantly greater
than (>) or less than (<) the expected counts.

Groups
Clean Hard Soft TOTAL

W
or

ds

Distorted 21< 47> 59> 127
Punchy 53 37 34< 124
Clear 49 30 45 124
Full 29 28 30 87

Harsh 42> 20 23 85

Table 4: Frequency count (Chi square test analysis) of five most
commonly used words
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Figure 7: Word clouds, showing the most used terms for each category. Larger/darker text indicates greater frequency.

5. DISCUSSION

5.1. Feature reduction

The RFE process returned the most important features for classi-
fication. Perhaps unsurprisingly, all of these features are directly
associated with the PMF. Other features such as crest factor or
loudness (see Table 1) are indirectly encoded in the PMF, while
spectral features were ranked lower. The emotion features ‘Happy’
and ‘Anger’ [21] were found to relate to audio quality in a previous
study [5] and were included as they encode amplitude information.
However these features were not highly ranked in this case.

The features found to be most useful are those bins of the PMF
histogram close to extreme values which can detect the presence or
absence of clipping, the gauss feature which can discriminate the
‘clean’ samples from the other groups, and kurtosis and flatness
which can help to isolate the ‘soft’ category. PCA results in Figure
5 show that the three categories are well-defined by these features.

5.2. Production trends

Figure 8 shows the proportion of samples in each year of analysis
which belong to each of the three distortion character categories.
The scattered data is smoothed by local regression using weighted
linear least squares and a second-degree polynomial model method,
with rejection of outliers. As there is an average of ten audio clips
per year, this data can be seen as illustrative rather than conclusive.
From this plot, a number of discussion points are evident.

1. The transition from more dynamic signals to more com-
pressed signals occurs throughout the 1990’s.

2. The percentage of ‘clean’ samples has remained stable since.

3. Recent years have seen a move away from hard clipping,
and towards the use of softer distortions in the final master.

Historical analysis of the gauss feature has shown that values
range from an “early digital” phase to a “modern digital” phase,
via a transition phase [5], referred to earlier as a loudness race.
When distortion character is taken into consideration, a similar
three-stage effect is observed in the clean category.
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Figure 8: Timeline showing changes in production trends and rel-
ative usage of each distortion character

5.3. Differences in perception of each distortion character

While participants rated the quality of the clean samples higher
than both distorted groups, there was no significant difference found
between the two individual distorted groups. There was however,
a difference in the way quality was perceived, as the distribution
of descriptive terms varies between categories. From Figure 7 it
can be seen that the number of words used for the ‘clean’ category
is higher, whereas the word clouds of the other two categories are
dominated by a small number of terms. A discussion of the influ-
ences of these words is provided below.

5.3.1. Distortion

‘Distorted’ was the most frequently occurring word overall. This
indicates it is easily recognised by listeners and is a primary de-
scriptor of quality, or lack therof. Table 4 shows it is used less
than statistically expected by chance alone to describe the ‘clean’
category and more so for both other categories. This indicates that
the three distortion characters do represent different levels of dis-
tortion, as illustrated in Figure 2 and Figure 5.
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5.3.2. Punch and clarity

The adjectives ‘punchy’ and ‘clear’ are two of the most frequently
used terms throughout, however they are used in varying amounts
depending on the distortion character. This suggests the relative
importance of such terms and also how they may be measured ob-
jectively, a task that has been investigated in recent literature [28].

‘Clear’ is used relatively less often for the examples with hard-
clipping, although it is not significant. That the frequency of ‘punch’
is lower for the soft category may simply be a result of other words
being used more frequently. However, objectively, hard clipping
would result in inter-sample peaks in subsequent stages of ampli-
fication and reproduction which could be interpreted as additional
dynamic range, whereas this effect would not be so great for the
‘soft’ category.

5.3.3. Harshness and Fullness

The description ‘full’ was used often but there is little variation in
use across these three groups. This indicates that when participants
used the word to explain why a particular numerical quality rating
was awarded, the decision was not concerned with the distortion
character but other factors. ‘Harsh’ was often used by participants
and there are a number of possible explanations for this.

• Participants’ sensitivity to the headphones used, the response
of which may have sounded unfamiliar to some participants

• This word was used more often for the ‘clean’ category,
which is the dominant distortion character for the older ma-
terial used. Changes in the typical spectrum of music record-
ings since this period may have had an influence [29].

• Additionally, under loudness-normalisation, the more dy-
namic nature of the ‘clean’ samples results in higher peak
volumes and a transient response that some listeners may
be less accustomed to. This is effectively the opposite of
the common complaint among audiophiles that compressed
music sounds flat and lifeless under loudness-normalised
conditions.

5.4. Side-effects of loudness normalisation

This last point came up in post-experiment discussion with some
participants and also in certain words used to describe particular
songs. A smooth jazz sample was described as ‘compressed’ and
‘distorted’ by a number of participants (one using the term ‘over-
compressed’) as, when played at the same perceived loudness as
other samples, it sounded unnaturally loud. Also, as the sample
featured very subtle percussion the crest factor was lower than its
distortion character would suggest. These issues indicate that, with
loudness-normalisation, choosing a playback volume that does not
bias against any one particular distortion character is difficult.

6. CONCLUSIONS

This work has set out to investigate whether commercial music
samples can be categorised according to distortion level and type
and does this categorisation further the understanding of audio
quality in the context of modern commercial music.

It has been seen that the concept of a distortion character, in-
formed by subjective perception, relates to certain objective mea-
sures of the PMF, namely particular regions as dictated by cer-
tain bins of the histogram, as well as summary features such as

the statistical moments. The quantitative and qualitative aspects
of quality ratings varied significantly for the three groups. This
relationship between distortion character and quality ratings can
contribute towards the understanding of quality-perception in the
context of recorded music as well as inform attempts at evaluating
the quality of an unknown audio stream.

6.1. Further work

6.1.1. Application to greater bit depth

These findings apply to digital audio with a bit-depth of 16 bits
and a sampling rate of 44.1kHz. The ratio of quantisation levels to
samples per second is 1.49:1 and this allows the PMF to be suffi-
ciently non-sparse. For 24-bit resolution it would take a sampling
rate of 11.25MHz to achieve the same ratio of quantisation levels
to sampling rate. Thus, many distortion artefacts present in the
16-bit PMF will take a different form in systems with a greater
bit-depth. To the authors knowledge, there have not yet been pub-
lished studies analysing 24 or 32-bit digital audio in this manner,
where even at the highest sampling rates commonly used, the PMF
would be highly sparse. Further work would involve testing the
methods described in this paper on 24-bit audio where discrete
sample level counts are close to zero or equal to zero. The PMF of
32-bit audio, with 232 levels, is likely to be prohibitively large to be
able to study a large dataset of audio samples with the techniques
described. New techniques are currently under trial.

6.1.2. Modelling distortion in mastered music

While clipping is well defined and evident in waveforms of mas-
tered audio, soft distortions vary in their complexity, with varying
dynamic and harmonic stability [30]. Further work is required to
determine whether such analytical models can be used to describe
how soft distortion appears in mastered commercial releases.

6.1.3. Quality-prediction

This study indicates that distortion character may not contribute
greatly to a solely objective model of audio quality but does indi-
cate that subjective elements, such as perceived punch, clarity and
harshness, can provide useful information. Regarding the study of
perceived audio quality in commercial music, the results related to
dynamic range compression will be added to findings in other ar-
eas, such as overall balance of instruments and emotional response
of the listener, to give a wider picture of how we understand audio
quality in this context.
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A. APPENDIX 1 - LIST OF WORDS PROVIDED TO
PARTICIPANTS

Bright, dark, loud, quiet, mellow, clear, clean,
punchy, dull, bland, dense, exciting, weak, strong,
sweet, shiny, fuzzy, wet, dry, distorted, realistic,

spacious, narrow, wide, deep, shallow, aggressive,
light, gentle, cold, hard, synthetic, crunchy, hot,

rough, harsh, smooth, thin, full, airy, big
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