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Foreword

Welcome to DAFx-14

It is our great pleasure to welcome you to the 17th International Conference on Digital Audio
Effects, held 01.09.-05.09.2014 in Erlangen, Germany. Playing a leading role in the developement and
market introduction of today’s audio codecs, Erlangen has a long history in perceptual audio coding
and general audio engineering. Since the late 1970s, the Fraunhofer Institute for Integrated Circuits
(IIS) and the Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU) both have continuously con-
tributed to audio engineering with cutting-edge research and are still shaping the future of audio and
multimedia. The fruitful collaboration between IIS and FAU is also reflected by the joint organization
of this year’s edition of the DAFx conference. We are deeply honoured of having the opportunity to
host this event at our institutions.

DAFx-14 has a five day programme full of interesting scientific events. The first part of the
conference (01.09.-02.09.2014), which takes place at the IIS (Tennenlohe), mainly consists of tutorials,
demos, and poster presentations. In particular, we have three tutorials on “Multipitch Analysis of
Music Signals” by Anssi Klapuri, on “Audio Structure Analysis of Music” by Meinard Miiller, and
“Perceptual Audio Coding” by Jiirgen Herre, Sascha Disch, and Bernd Edler. The second part of
the conference (03.09.-05.09.2014) is held at the FAU campus (Siidgeldnde Technische Fakultdt H11)
and comprises the oral presentations and further poster presentations of the peer-reviewed scientific
contributions.

The DAFx program also features three distinguished keynote speakers, who give their talks on
Tuesday, Thursday, and Friday. The first keynote with the title “Improving Time-Frequency Upmix
through Time-Domain Processing” is given by Christof Faller, who is managing director at Illusonic
and teaching at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The second keynote
by Geoffroy Peeters from the Institut de Recherche et Coordination Acoustique/Musique (IRCAM)
in Paris addresses the topic of audio indexing for music analysis and music creativity. The third
keynote by Christian Hoyer, who is the head of the Bubenreutheum museum association, will explain
the historic roots of Frankonian world-class musical instrument building in the Erlangen region and,
alongside, point out a quite surprising relation between the Beatles and Erlangen.

The present volume of the proceedings of DAFx-14 contains the complete manuscripts of all peer-
reviewed papers presented at the conference. A total of 63 papers entered the review process, out
of which 44 contributions were selected for the scientific programme. The mode of presentation was
determined after the accept/reject decision and has no relation to the quality of the papers. From the
44 papers, 23 papers were chosen for oral presentation (organized in six sessions), whereas 21 papers
were chosen for poster presentation (organized in two sessions). Oral presentations have a 20-minute
slot (including setup and questions/answers of the audience), whereas the posters are presented in
a 90-minute poster session as well as during coffee breaks. Furthermore, poster presenters have the
opportunity (in two minutes and two slides) to announce orally their poster during two “Fast Forward”
sessions.

Besides the scientific programme, we also prepared several social events in the evenings, including
a welcome reception on Monday, a concert & reception on Tuesday, a conference banquet with music
on Wednesday, as well as a visit to Nuremberg on Thursday.

We are very proud to present to you the proceedings of DAFx-14. The conference program was
made possible thanks to the hard work of many people including the members of the local organization
team, the reviewers from the DAFx-14 programme committee and the DAFx board members. Special



thanks go to this year’s sponsors - Dolby Germany GmbH, iZotope Inc., Native Instruments GmbH
and Soundtoys Inc. - and also to the supporting institutions - the Fraunhofer Institut Integrated
Circuits (IIS), the Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU) and the International
Audio Laboratories Erlangen (AudioLabs). Last, but not least, the DAFx-14 programme is possible
only thanks to the excellent contributions of our community in response to our call for participation.
The biggest acknowledgment therefore goes to you, the authors, researchers and participants of this
conference.

The DAFx-14 Conference Committee

Sascha Disch (Fraunhofer IIS, General Chair)

Jirgen Herre (FAU, AudioLabs, General Chair)

Rudolf Rabenstein (FAU, LMS, General Chair)

Bernd Edler (FAU, AudioLabs, Scientific Coordinator)
Meinard Miiller (FAU, AudioLabs, Scientific Coordinator)
Stefan Turowski (FAU, AudioLabs, Technical Coordinator)



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Conference Committees

DAFx Board

Daniel Arfib
(CNRS-LMA, Marseille, France)

Nicola Bernardini
(Conservatorio di Musica “Cesare Pollini”,
Padova, Italy)

Francisco Javier Casajts
(ETSI Telecomunicacién - Universidad
Politécnica de Madrid, Spain)

Laurent Daudet
(LAM / IJLRA, Université Pierre et Marie
Curie (Paris VI), France)

Philippe Depalle
(McGill University, Montreal, Canada)

Giovanni De Poli
(CSC, University of Padova, Italy)

Myriam Desainte-Catherine
(SCRIME, Université Bordeaux 1, France)

Markus Erne
(Scopein Research, Aarau, Switzerland)

Gianpaolo Evangelista
(University of Music and Performing Arts
Vienna)

Emmanuel Favreau
(Institut National de I’Audiovisuel - GRM,
Paris, France)

Simon Godsill
(University of Cambridge, UK)

Robert Holdrich
(IEM, Univ. of Music and Performing Arts,
Graz, Austria)

Pierre Hanna
(Université Bordeaux 1, France)

Jean-Marc Jot
(DTS, CA, USA)

Victor Lazzarini
(National University of Ireland, Maynooth,
Ireland)

DAFx-VI

Sylvain Marchand
(LaBRI, Université Bordeaux 1, France)

Damian Murphy
(University of York, UK)

Sgren Nielsen
(SoundFocus, Arhus, Denmark)

Markus Noisternig
(IRCAM, France)

Luis Ortiz Berenguer
(EUIT Telecomunicacién - Universidad
Politécnica de Madrid, Spain)

Geoffroy Peeters
(IRCAM, France)

Rudolf Rabenstein
(University Erlangen-Nuremberg, Erlangen,
Germany)

Davide Rocchesso
(IUAV University of Venice, Department of
Art and Industrial Design, Italy)

Jogran Rudi
(NoTAM, Oslo, Norway)

Mark Sandler
(Queen Mary University of London, UK)

Augusto Sarti
(DEI - Politecnico di Milano, Italy)

Lauri Savioja
(Aalto University, Espoo, Finland)

Xavier Serra
(Universitat Pompeu Fabra, Barcelona,
Spain)

Julius O. Smith
(CCRMA, Stanford University, CA, USA)

Alois Sontacchi
(IEM, Univ. of Music and Performing Arts,
Graz, Austria)

Marco Tagliasacchi
(Politecnico di Milano, Como, Italy)



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Todor Todoroft
(ARTeM, Bruxelles, Belgium)

Jan Tro
(Norwegian University of Science and Tech-
nology, Trondheim, Norway)

Organizing Committee

Sascha Disch
(Fraunhofer IIS, General Chair)

Jiirgen Herre
(FAU, International Audio Laboratories Er-
langen, General Chair)

Rudolf Rabenstein
(FAU, Multimedia Communications and
Signal Processing, General Chair)

Programme Committee, Reviewers

Trevor Agus
(Equipe  Audition, Ecole
supérieure)

normale

Paulo Antonio Andrade Esquef
(National Laboratory of Scientific Comput-

ing)
Federico Avanzini
(University of Padova)

Balazs Bank
(Budapest University of Technology and
Economics)

Gerald Beauregard
(muvee Technologies)

Stefan Bilbao
(University of Edinburgh)

Oyvind Brandtsegg
(Norwegian University of Science and Tech-
nology (NTNU), Trodheim)

DAFx-VII

Vesa Valimaki

(Aalto University, Espoo, Finland)

Udo Zolzer
(Helmut-Schmidt  University, ~Hamburg,
Germany)

Bernd Edler
(FAU, International Audio Laboratories Er-
langen, Scientific Coordinator)

Meinard Miiller
(FAU, International Audio Laboratories Er-
langen, Scientific Coordinator)

Stefan Turowski
(FAU, International Audio Laboratories Er-
langen, Technical Coordinator)

Jean Bresson
(UMR STMS: IRCAM-CNRS-UPMC)

Andres Cabrera
(Queen’s University Belfast)

Marcelo Caetano
(Ircam)

Thibaut Carpentier
(Ircam)

Christophe D’Alessandro
(CNRS-LIMSI)

Bertrand David
(Telecom ParisTech)

Philippe Depalle
(McGill University)

Myriam Desainte-Catherine
(LaBRI, universite de Bordeaux)



Sascha Disch
(Fraunhofer Institut fiir Integrierte Schal-
tungen (IIS), Erlangen)

Bernd Edler

(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), International Audio Lab-
oratories Erlangen)

Gianpaolo Evangelista
(University of Music and Performing Arts
Vienna)

Sebastian Ewert
(Queen Mary University of London)

John ffitch
(University of Bath)

Federico Fontana
(University of Udine)

Volker Gnann
(RWTH Aachen, IENT)

Pierre Hanna
(University of Bordeaux 1)

Jirgen Herre

(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), International Audio Lab-
oratories Erlangen)

Robert Hoeldrich
(University of Music and Performing Arts
Graz)

Andrew Horner

(HKUST)

Jari Kleimola
(Aalto University, Espoo)

Matthieu Kowalski
(Univ Paris-Sud)

John Lato
(NUI Maynooth)

Victor Lazzarini
(NUI Maynooth)

Jonathan Le Roux
(NTT Corporation)

DAFx-VIII

Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Heidi-Maria Lehtonen
(Aalto University)

Tapio Lokki
(Aalto University)

Simon Lui

(MIT)

Tom Lysaght
(NUI Maynooth)

Piotr Majdak
(Acoustics Research Institute, Austrian
Academy of Sciences)

Sylvain Marchand
(University of Bordeaux 1)

Roland Maas
(Friedrich-Alexander University Erlangen-
Nirnberg (FAU))

Rémi Mignot
(Aalto University)

Meinard Mueller

(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), International Audio Lab-
oratories Erlangen)

Damian Murphy
(University of York)

Gautham Mysore
(Advanced Technology Labs, Adobe Sys-
tems Inc.)

Thibaud Necciari
(Acoustics Research Institute)

Sgren Nielsen
(SoundFocus)

Markus Noisternig
(IRCAM)

Jouni Paulus
(Fraunhofer Institut fiir Integrierte Schal-
tungen (IIS), Erlangen)

Geoffroy Peeters
(Ircam - CNRS SMTS)

Laurent Pottier
(UJM-CIEREC)



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Rudolf Rabenstein
(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), Chair of Multimedia Com-

munications)

Lise Regnier
(IRCAM)

Marc Rébillat
(Equipe  Audition, Ecole
Supérieure)

Normale

Sigurd Saue
(Norwegian University of Science and Tech-
nology (NTNU), Trodheim)

Lauri Savioja
(Aalto University School of Science and
Technology)

Alex Southern
(Aalto University)

Fabian-Robert Stoter

(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), International Audio Lab-
oratories Erlangen)

Bob Sturm
(Aalborg University Copenhagen)

Nicolas Sturmel
(GIPSA-Lab)

Clara Suied
(IRBA)

Additional Reviewers

Dominique Fourer
(University of Bordeaux 1)

Jonathan Botts
(Aalto University, Espoo)

DAFx-IX

Sakari Tervo
(Aalto University)

Tony Tew
(University of York)

Joe Timoney
(NUI Maynooth)

Stefan Turowski

(Friedrich-Alexander University Erlangen-
Niirnberg (FAU), International Audio Lab-
oratories Erlangen)

Jan Tro
(Norwegian University of Science and Tech-

nology)

Vesa Valimaki

(Department of Signal Processing and
Acoustics, Aalto University School of Elec-
trical Engineering)

Maarten Van Walstijn
(Queens University Belfast)

Tuomas Virtanen
(Tampere University of Technology)

Rory Walsh
(DKIT Ireland)

Jez Wells
(University of York)

Udo Zoelzer
(Helmut Schmidt University Hamburg)

Jukka Patynen
(Aalto University, Espoo)



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Contents

17t International Conference on Digital Audio Effects (DAFx-14)
Foreword

Conference Committees

Contents

Keynotes

Improving Time-Frequency Upmix through Time-Domain Processing
Christof Faller . . . . . . . . . . e e

Audio Indexing for Music Analysis and Music Creativity
Geoffroy Peeters . . . . . . . . L

The Beatles and Erlangen? Bubenreuth near Erlangen - the Place where the World-Famous
Instruments are Made
Christian Hoyer . . . . . . . . . . . e

Tutorials

Multipitch Analysis of Music Signals
Anssi Klapuri . . . . . . . o e e e e

Audio Structure Analysis of Music
Meinard Miiller . . . . . . .. oL

Perceptual Audio Coding
Jirgen Herre, Bernd Edler, Sascha Disch . . . . . .. ... ... ... ... .......

Perceptual Audio Coding
Sascha Spors, Matthias Geier, Max Schafer . . . ... ... ... ... .........

Reviewed Papers

Poster Session: Sound Processing . . . . . . . .. L L

Finite Difference Schemes on Hexagonal Grids for Thin Linear Plates with Finite Vol-

ume Boundaries

Brian Hamilton and Alberto Torin . . . . . .. .. ... ... .. ........
Prioritized Computation for Numerical Sound Propagation

John Drake, Maxim Likhachev and Alla Safonova . . . .. ... ........
Sinusoidal Synthesis Method using a Force-based Algorithmm

Ryoho Kobayashi . . . . .. . ... . o
A Method of Morphing Spectral Envelopes of the Singing Voice for Use with Backing

Vocals

Matthew Roddy and Jacqueline Walker . . . . . ... ... ... ... .....
Short-Time Time-Reversal on Audio Signals

Hyung-Suk Kim and Julius O. Smith . . . ... ... ... ... ... .....

DAFx-X

IV

VI



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

A Statistical Approach to Automated Offline Dynamic Processing in the Audio Mas-
tering Process
Marcel Hilsamer and Stephan Herzog . . . . . . ... ... ... ... ..... 35
Revisiting Implicit Finite Difference Schemes for Three-Dimensional Room Acoustics
Simulations on GPU

Brian Hamilton and Stefan Bilbao . . . . . . . ... .. ... ... ....... 41
A Preliminary Model for the Synthesis of Source Spaciousness

Darragh Pigott and Jacqueline Walker . . . . . . .. .. .. ... ... 49
Low Frequency Group Delay Equalization of Vented Boxes using Digital Correction

Filters

Stephan Herzog and Marcel Hilsamer . . . . . . .. .. .. ... ... ..... 57
Exploring the Vectored Time Variant Comb Filter

Vesa Norilo . . . . . . . . e 65
Time-Varying Filters for Musical Applications

Aaron Wishnick . . . . . . . . . . e 69

Oral Session: Filters and Effects . . . . . . . .. .. . 7

Perceptual Linear Filters: Low-Order ARMA Approximation for Sound Synthesis

Rémi Mignot and Vesa Valimaki . . . .. ... .. .. ... .. ... ... . 7
Approximations for Online Computation of Redressed Frequency Warped Vocoders

Gianpaolo Evangelista . . . . . . . . . ... 85
Hybrid Reverberation Processor with Perceptual Control

Thibaut Carpentier, Markus Noisternig and Olivier Warusfel . . . .. ... .. 93
Examining the Oscillator Waveform Animation Effect

Joseph Timoney, Victor Lazzarini, Jari Kleimola and Vesa Valimaki . . . . . . 101

Oral Session: Sound Synthesis. . . . . . . . . . . . . . . . . . 108

Multi-Player Microtiming Humanisation using a Multivariate Markov Model

Ryan Stables, Satoshi Endo and Alan Wing . . . . . .. ... ... ... ... 109
Streaming Spectral Processing with Consumer-Level Graphics Processing Units

Victor Lazzarini, John Ffitch, Joseph Timoney and Russell Bradford . . . .. 115
A Two Level Montage Approach to Sound Texture Synthesis with Treatment of Unique

Events

Sean O’Leary and Axel Roebel . . . . . . ... ... ... ... ... ... 123

Fast Signal Reconstruction from Magnitude Spectrogram of Continuous Wavelet Trans-
form Based on Spectrogram Consistency

Tomohiko Nakamura and Hirokazu Kameoka . . . . . ... .. ... ... ... 129

Oral Session: Physical Modeling and Virtual Analog . . . . .. ... ... ... ... .... 136
Numerical Simulation of String/Barrier Collisions: The Fretboard

Stefan Bilbao and Alberto Torin . . . . . .. ... ... ... ... ... 137

An Energy Conserving Finite Difference Scheme for the Simulation of Collisions in
Snare Drums

Alberto Torin, Brian Hamilton and Stefan Bilbao . . . ... ... ... .. .. 145
Physical Modeling of the MXR Phase 90 Guitar Effect Pedal
Felix Eichas, Marco Fink, Martin Holters and Udo Zélzer . . . .. ... .. .. 153

A Physically-Informed, Circuit-Bendable, Digital Model of the Roland TR-808 Bass
Drum Circuit
Kurt James Werner, Jonathan S. Abel and Julius O. Smith . . . ... ... .. 159

DAFx-XI



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Oral Session: Music Analysis and Retrieval . . . . . .. ... ... .. ...
The Modulation Scale Spectrum and its Application to Rhythm-Content Description
Ugo Marchand and Geoffroy Peeters . . . . . . .. ... ... ... .......
Quad-Based Audio Fingerprinting Robust to Time and Frequency Scaling
Reinhard Sonnleitner and Gerhard Widmer . . . . . . .. ... ... ... ...
Score-Informed Tracking and Contextual Analysis of Fundamental Frequency Contours
in Trumpet and Saxophone Jazz Solos
Jakob Abefler, Martin Pfleiderer, Klaus Frieler and Wolf-Georg Zaddach
Real-Time Transcription and Separation of Drum Recordings Based on NMF Decom-
positon
Christian Dittmar and Daniel Gartner . . . . . . . . . .. ... ... .....

Poster Session: Music Analysis and Effects . . . . . . . .. .. ... .. . 0 L.

A Pitch Salience Function Derived from Harmonic Frequency Deviations for Polyphonic

Music Analysis

Alessio Degani, Riccardo Leonardi, Pierangelo Migliorati and Geoffroy Peeters
A Comparison of Extended Source-Filter Models for Musical Signal Reconstruction

Tian Cheng, Simon Dixon and Matthias Mauch . . . . . ... ... ... ...
Onset Time Estimation for the Analysis of Percussive Sounds using Exponentially

Damped Sinusoids

Bertrand Scherrer and Philippe Depalle . . . . . . ... ... .. ... ... ..
Automatic Tablature Transcription of Electric Guitar Recordings by Estimation of

Score- and Instrument-Related Parameters

Christian Kehling, Jakob Abefler, Christian Dittmar and Gerald Schuller
Improving Singing Language Identification through i-Vector Extraction

Anna Kruspe . . . . . . .
Unison Source Separation

Fabian-Robert Stoter, Stefan Bayer and Bernd Edler . . . . . . . .. ... ..
A Very Low Latency Pitch Tracker for Audio to MIDI Conversion

Olivier Derrien . . . . . . . . . . . e e
TSM Toolbox: MATLAB Implementations of Time-Scale Modification Algorithms

Jonathan Driedger and Meinard Miiller . . . . . .. .. .. .. ... .. ..
FreeDSP: A Low-Budget Open-Source Audio-DSP Module

Sebastian Merchel and Ludwig Kormann . . . . . . .. .. .. ... ... ...
Declaratively Programmable Ultra Low-Latency Audio Effects Processing on FPGA

Math Verstraelen, Jan Kuper and Gerard.J.M Smit . . . .. ... .. .. ...

Oral Session: Multipitch Analysis and Source Separation. . . . . . . . .. ... ... ....

Polyphonic Pitch Detection by Iterative Analysis of the Autocorrelation Function
Sebastian Kraft and Udo Zdlzer . . . . . . . . . .. ... ...

Music-Content-Adaptive Robust Principal Component Analysis for a Semantically Con-
sistent Separation of Foreground and Background in Music Audio Signals
Helene Papadopoulos and Daniel PW. Ellis . . . .. ... ... ........

Semi-Blind Audio Source Separation of Linearly Mixed Two-Channel Recordings via
Guided Matching Pursuit
Dimitri Zantalis and Jeremy Wells . . . . . .. .. .. ... L.

Oral Session: Perception and Spatial Audio . . . . . .. ... ... ... ... ...

DAFx-XII

167

167

173

181

187

195

195

203

211

219

227

235

243

249

257

263

271

271

279



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Finite Volume Perspectives on Finite Difference Schemes and Boundary Formulations
for Wave Simulation

Brian Hamilton . . . . . .. .. .. 295
A Cross-Adaptive Dynamic Spectral Panning Technique

Pedro Pestana and Joshua Reiss . . . . . . ... ... ... ... ... .. 303
Low-Delay Error Concealment with Low Computational Overhead for Audio over IP

Applications

Marco Fink and Udo Zolzer . . . . . . . . . ... o 309
Categorisation of Distortion Profiles in Relation to Audio Quality

Alex Wilson and Bruno Fazenda . . . . . .. ... ... ... .. ... ..... 317

Author Index 325

DAFx-XIII



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

DAFx-XIV



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Keynotes

Christof Faller: Improving Time-Frequency Upmix through Time-Domain Pro-
cessing

Abstract Upmix has been broadly used in the professional (broadcast) and consumer (home cinema)
domains, to convert stereo signals to 5.1 surround. Our motivation to add time-domain methods (such
as reverberators, early reflections, equalisers, exciters, and compressors) came originally from the desire
of scalability. At the advent of 3D multi-channel surround, we wanted an upmix that would be scalable
to almost any number of output channels. It became quickly clear, for instance, that ambience signals
to be reproduced with many loudspeakers need to be generated very differently than in a 5.1 upmix.
The initial efforts in adding reverberators were frustrating: while one could hear the potential (amazing
envelopment), difficult items sounded too often too bad. Ultimately, time-domain processing improved
the quality of our upmix beyond scalability. Specifically, 1”1l describe: early reflections for depth in
three dimensions, reverberators for generation of multi-channel ambience signals, equalisation of the
center channel, and the use of exciters to enhance room signals.

Geoffroy Peeters: Audio Indexing for Music Analysis and Music Creativity

Abstract Since the end of the 90’s, audio signal analysis has been used more and more in connection
with machine learning for the development of audio indexing. Omne of the specific types of audio
content targeted by this indexing technologies is music and the corresponding research field named
Music Information Retrieval (MIR). MIR attempt to develop tools for the automatic analysis of music
(score, tempo, chord, key, instrumentation, genre, mood, tag classification).

In this talk, I will review the development of this research field, its connection with other research
fields and the motivation for its development: from the initial search and navigation over large music
collections paradigm (music search engine) to the more recent computational musicology, ethnomusi-
cology and the use of MIR for music creativity.

Christian Hoyer: The Beatles and Erlangen? Bubenreuth near Erlangen - the
Place where the World-Famous Instruments are Made

Abstract Legendary bands, orchestras, stars and virtuosos like Yehudi Menuhin, the Bavarian Ra-
dio Orchestra, Peter Kraus, Elvis, the Beatles and the Rolling Stones - they all were playing Buben-
reuth instruments. In the post-war years, displaced persons from the Sudeten region (Czechoslovakia)
brought musical instrument manufacturing and related industries to the region around Erlangen. The
region is home to one of every tenth German musical instrument manufacturers. Bubenreuth in par-
ticular was transformed from a farming village to a metropolis of German string instrument making.
The community council of Bubenreuth - then a small village of less than 500 inhabitants - decided by
1949 that more than 2.000 people would be resettled there in the following years to come.

Whether it is those learning to play an instrument, musicians in philharmonic orchestras or rock
stars - they all appreciate Franconian violins and guitars. Both small artisan workshops and semi-
industrial manufacturers produce quality products for the home market, but mainly for export. The
viola da gamba-shaped electric bass designed by Walter Hofner in 1956 and played by Sir Paul Mc-
Cartney exemplifies the story of Bubenreuth’s roots in the instrument making tradition of the 17th
century and how it extends to the manufacturing of electric guitars today. A museum was formed in
2009 in order to maintain the cultural heritage of Bubenreuth.

DAFx-1
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Tutorials

Anssi Klapuri: Multipitch Analysis of Music Signals

Abstract Pitch analysis is an essential part of making sense of music signals. Whereas skilled
human musicians perform the task seemingly easily, computational extraction of the note pitches and
expressive nuances from polyphonic music signals has turned out to be hard. This tutorial starts
from the fundamentals of pitch estimation, explaining the basic challenges of the task (robustness to
different sound sources, robustness to polyphony and additive noise, octave ambiguity, inharmonicity,
missing data, time-frequency resolution) and the processing principles and sources of information
that can be used to tackle those challenges. Among the processing principles, we will discuss why
autocorrelation-type estimators (as used in speech processing) do not work for polyphonic data and
how they can be amended; how phase information can be utilized; how timbral information must be
either explicitly modeled or normalized away; etc. Examples pictures and sounds will be presented
in order to illustrate what kind of data we are dealing with and to develop intuition. Towards the
end of the talk, I will describe some state-of-the-art systems by different researchers, and from my
own experience, mention some of the practical challenges that I have encountered when developing
real-time multipitch estimation on mobile devices in last few years.

Meinard Miiller: Audio Structure Analysis of Music

Abstract One of the attributes distinguishing music from other sound sources is the hierarchical
structure in which music is organized. Individual sound events corresponding to individual notes form
larger structures such as motives, phrases, and chords, and these elements again form larger constructs
that determine the overall layout of the composition. One important goal of audio structure analysis
is to divide up a given music recording into temporal segments that correspond to musical parts
and to group these segments into musically meaningful categories. One challenge is that there are
many different criteria for segmenting and structuring music. This results in conceptually different
approaches, which may be loosely categorized in repetition-based, novelty-based, and homogeneity-
based approaches. Furthermore, one has to account for different musical dimensions such as melody,
harmony, rhythm, and timbre. In this tutorial, I will give an overview of current approaches for the
computational analysis of the structure of music recordings, which has been a very active research
problem within the area of music information retrieval. As one example, I present a novel audio
thumbnailing procedure to determine the audio segment that best represents a given music recording.
Furthermore, I show how path and block structures of self-similarity matrices, the most important
tool used in automated structure analysis, can be enhanced and transformed. Finally, I report on a
recent novelty-based segmentation approach that combines homogeneity and repetition principles in
a single representation referred to as structure feature.

Jiirgen Herre, Bernd Edler, Sascha Disch: Perceptual Audio Coding

Abstract Perceptual audio has been a key ingredient in the multimedia revolution, enabling the
availability of high-quality audio over channels with limited channel capacity, such as the Internet,
broadcasting or wireless services. Today, mp3 and other perceptual audio coding technologies are
ubiquitous in devices, such as CD/DVD players, computers, portable music players and cellular phones.
This tutorial covers the basics of perceptual audio coding, starting with what it means to operate
according to psychoacoustic principles rather than Mean Square Error (MSE). The most relevant
psychoacoustic effects will be briefly reviewed. From the modules of a perceptual audio coder, the
filterbank and strategies for quantization and coding are examined in some detail. Furthermore, we
discuss tools for joint stereo coding of two channels. Alongside, the most common coding artefacts
that originate from violating perceptual transparency criteria will be demonstrated and explained.
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Beyond these concepts, modern perceptual audio coders feature tools that can significantly boost
their performance further at low bitrates, for example, audio bandwidth extension, parametric stereo
or unified speech and audio coding. Some sound examples will be given to illustrate these new advanced
tools. Finally, an overview of today’s state of the art in compression efficiency is given as well as an
outlook of some currently ongoing coding developments.

Sascha Spors, Matthias Geier, Max Schafer: Sound Field Synthesis with the
SoundScape Renderer

Abstract Sound field synthesis with massive-multichannel loudspeaker arrays has been an active
research field for the last few decades. Several rendering methods for multiple loudspeakers have been
developed including Wave Field Synthesis, Ambisonics, and Vector Base Amplitude Panning. Different
loudspeaker installations exist at many institutions throughout Europe. While the their operating
software is often home-made and specific to the particular loudspeaker set-up, there exists also a
versatile open-source software tool for real-time spatial audio reproduction, the SoundScape Renderer
(SSR). It can be adapted to various loudspeaker configurations and provides modules for the most
common rendering methods. For headphone use also spatial sound by binaural synthesis is supported.
The tutorial gives an introduction to the most common sound field rendering methods, presents the
SoundScape Renderer and some of its rendering methods, and allows hands-on experience for a limited
number of participants using the 128 loudspeaker array at the Chair of Multimedia Communications
and Signal Processing (LMS).
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FINITE DIFFERENCE SCHEMES ON HEXAGONAL GRIDS FOR THIN LINEAR PLATES
WITH FINITE VOLUME BOUNDARIES

Brian Hamilton, *

Acoustics and Audio Group,
University of Edinburgh

brian.hamilton@ed.ac.uk

ABSTRACT

The thin plate is a key structure in various musical instruments,
including many percussion instruments and the soundboard of the
piano, and also is the mechanism underlying electromechanical
plate reverberation. As such, it is a suitable candidate for physical
modelling approaches to audio effects and sound synthesis, such
as finite difference methods—though great attention must be paid
to the problem of numerical dispersion, in the interest of reducing
perceptual artefacts. In this paper, we present two finite difference
schemes on hexagonal grids for such a thin plate system. Numerical
dispersion and computational costs are analysed and compared
to the standard 13-point Cartesian scheme. An equivalent finite
volume scheme can be related to the 13-point Cartesian scheme
and a 19-point hexagonal scheme, allowing for fitted boundary
conditions of the clamped type. Theoretical modes for a clamped
circular plate are compared to simulations. It is shown that better
agreement is obtained for the hexagonal scheme than the Cartesian
scheme.

1. INTRODUCTION

The vibration of thin linear plates is a starting point for the mod-
elling and sound synthesis of many musical systems, such as cym-
bals, gongs, stiff membranes, soundboards, and instrument bodies.
Plate vibration is also important for plate reverberation as a digital
audio effect. Among the various approaches adopted for the sim-
ulation of linear plates, modal techniques are an attractive option,
and can be extended to non-linear equations as well [1, 2]. Finite
difference and finite element methods have also been extensively
adopted [3].

In the modelling of plates using finite difference methods, min-
imising numerical dispersion is critical, as it can introduce artefacts,
such as a mistuning of modes and incorrect modal densities [4].
The latter effect is due to a loss of bandwidth in the simulations, giv-
ing rise to sparsity in frequencies leading to the Nyquist frequency.
Numerical dispersion has been, and continues to be, extensively
studied for the second-order wave equation [5, 6], but aside from [7],
this topic has been neglected for the case of linear plates. Research
has instead focused on simulating the non-linear aspects of plate
vibration, which are arguably more interesting pursuits [8].

The regular hexagonal grid is an alternative to the regular Carte-
sian (square) grid in 2-D, and it has been shown to provide compu-
tationally efficient finite difference schemes for the second-order
wave equation [6], mainly due to the isotropy of discrete Laplacians

* This work was supported by the European Research Council, under
grant StG-2011-279068-NESS, and by the Natural Sciences and Engineer-
ing Research Council of Canada.

Alberto Torin,

Acoustics and Audio Group,
University of Edinburgh
a.torin@sms.ed.ac.uk

on the hexagonal grid [9]. It is thus of interest to study discrete
biharmonic operators (bilaplacians) on the hexagonal grid, which,
to our knowledge, have not been used for time-domain plate simula-
tions. Aside from some sparse references found throughout the nu-
merical methods and scientific computing literature [9, 10, 11, 12],
relatively little research has featured the hexagonal discrete bihar-
monics that will be employed in this study.

This paper is organised as follows. In Section 2, the model
equation for the plate is introduced and in Section 3, the hexagonal
finite difference schemes are presented along with von Neumann
stability conditions. In Section 4, numerical dispersion and com-
putational efficiency are analysed. In Section 5, finite volume
formulations are presented to implement boundary conditions, and
stability conditions for the boundary value problem are given in
terms of matrix eigenvalues. Section 6 features circular plate sim-
ulations in order to validate the numerical schemes. Conclusions
and future directions of study are given in Section 7.

2. THIN PLATE VIBRATION

Linear lossless vibrations of plates are governed by the following
equation [13]

2w+ K2A*w =0, o)

where w(t, x) represents the transverse displacement of the plate, ¢
is time and t € RY, x := (z,y) € R? and A is the 2-D Laplacian
operator, A := 92 4 85, and thus A? is the biharmonic operator,
or bilaplacian. The notation 0; denotes partial differentiation with
respect to ¢, and similarly for O, and 9y. k is a constant defined by

Ea?
T 21— ) @

where d is the plate density in kg/m®, a is the thickness in m, E is
Young’s modulus in Pa, and v is the dimensionless Poisson’s ratio.
All of these parameters are positive.

Eq. (1) holds as long as the transverse displacement w is small
in comparison with the thickness a (small deflections regime) [14],
and is the 2-D analogue of the Euler-Bernouilli equation for a beam
[13]. For deflections of the same order of magnitude as a, this
linear equation no longer holds; some simplifying assumptions
on the system must be dropped and a more complicated, non-
linear equation must be taken into account (von Karman-Foppl
equations [15]).
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3. NUMERICAL SCHEME

3.1. Temporal and spatial grids

We discretise time with the temporal grid T := {nk,n € Z"},
where £k is the time-step. Space will be discretised with a spatial
grid G which is either a square (Cartesian) grid: G¢ := hZ? or a
hexagonal grid Gy defined by

1 —1/2
Gy :={hVz e R*,z € Z°}, V:{O \/§§2] 3)

3.2. Difference operators

Let w(t, x) represent an approximation to the solution of interest
w(t,x). A temporal shift operator may be defined as

St = w(t £ k,x), 4)

and a centered time-difference operator can then be written as

1
6tt = p (Sz+ —2 + St_) = 6? + O(kz) . (5)

Let us define the spatial shift operator
Sp,pW = W(t,x + rh) (6)

where r € R?. The simplest discrete Laplacian on the regular
Cartesian grid is then

dos =gz O (e =D =A+003), O

reQc

where Q¢ is the set of four unit vectors in Z?. On the hexagonal
grid we consider the following two discrete Laplacians

_ 2 T 19,0 4
Ona =53 ezﬂ: (sp = 1) = A+ LR°A%+0(RY), @)
relilpg

o2 oy 3 12,2 4
Sira = gr3 > (sen ) =A+ Lh* A+ 00, )

I‘EQ;I

where Qg and Q7; are the sets of six vectors with norms h and V3h
in Gy respectively. These discrete Laplacians on their respective
grids are illustrated in Fig. 1.

- 1)
1 0 0 1
! * ! ‘ ‘e‘ 0 ° 0
wJ

(@) éc,a (©) 265 A

(b) 36w,

Figure 1: Stencil weights for discrete Laplacians, scaled by h>

Now we can construct discrete biharmonics by the composition
of discrete Laplacians in the following manner

Soaz = (0c,a)? = A+ O(h?), (10
Sy az = (Bma)? = A2 1 %hQAS LomYy.

The Cartesian biharmonic d a2 is a stencil that employs 13 points.
The second-order error in (10) is anisotropic so it is not displayed.
The hexagonal biharmonic 6 A2 is a 19-point stencil, and has an
isotropic second-order error term (the triharmonic operator), which
is due to the isotropic second-order error term in d,A.-

Another biharmonic on the hexagonal grid, using only 13 points [
can be written as a linear combination of § g, A and 5}‘17 Al

* 8 *
faz =35 (0fa —0ma) = A+ 0. (12

This discrete biharmonic is different from do A2 and 0 A2 in
that it cannot be decomposed into the composition of two discrete
Laplacians. The three discrete biharmonics are shown on their
respective grids in Fig. 2.

() 365 2

(a) 6C,A2 (C) 1% ;—I’AQ

Figure 2: Stencil weights for discrete biharmonics, scaled by h*

3.3. Finite difference schemes

Combining these operators gives three finite difference schemes
for (1)

Speth + K20p20 =0, (t,x) €eTXG, (13)
with possible choices of a2 € {0¢,a2,01,a2,05 A2} and its
appropriate spatial grid G € {G¢, Gx }. Each scheme has the time
recursion

W = (2 — pPoha)w — W, (14)
where 0T = St+W, W 1= Iik/hQ is a free parameter to be set,
analogous to the Courant number in wave equation schemes, and
622 = K% a2. The recursion begins from the two known (or
approximated) values @(0, x) and @ (k, x) determined from the
initial conditions. Note that this explicit update is parallelisable,
and thus, well-suited to GPU implementations [16].

3.4. Stability analysis

To determine stability conditions, we can take the Z-transform of
(13) to get the following quadratic equation in z € C

z4+pPA—24+2"1=0, (15)

where A = A(¢) is the Fourier symbol of the operator 6> and
€ € R? are the spatial frequencies. For now, we assume that
A (&) has the property A > 0. A stability condition (disallowing
exponential growth) is found from the condition |z| < 1, which
leads to

1% S Hmax = 4/Amax 5 (16)

where Aax := maxg A for the spatial frequencies & € R?. For
the three biharmonics 6 2,0 A2, 6;17 Az (scaled by h*) we have
respectively

Acmax =64, A max =36, A max =48. a7

DAFx-6



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

The first two values are given by previous studies [11], and the
latter can be found by examining A% .. Stability limits for the
schemes in (13) are respectively

W max = V/1/12. (18)

Note that both of the hexagonal schemes give higher pimax than the
Cartesian scheme, which allows for a larger time-step when h is
fixed. On the other hand, if & is fixed to k = 1/ F, as is common in
sound synthesis applications, this implies a smaller minimum grid
spacing (spatial step). Setting h as small as possible is generally a
good choice for numerical dispersion and maximising the temporal
bandwidth in the approximation [4]. However, this also increases
the density of the spatial grid, and the hexagonal grid is already
2/4/3 = 1.15 times more dense than the square grid for the same h.
More will be said about this in Section 4.1.

/LC,max:]-/4; ,U/H,max:]-/'?)y

4. NUMERICAL DISPERSION
The dispersion relation for our plate equation is
w =€), (19)

where w € R represents the temporal frequency in rad/s and |£] is
the wavenumber in rad/m. The plate system is dispersive, as seen
by its phase velocity:

vg = K|€|. (20)

In other words, plane-waves with small wavenumbers travel slower
than plane-waves with large wavenumbers.

In order to analyse numerical dispersion of the finite difference
scheme it helps to define a normalised spatial frequency &, :=
&h and a normalised frequency wy := wk. We can then write
the Fourier symbol for each discrete Laplacian dc,a, dm,a, 07 A,
scaled by h?, as

To(g,) =—2 Y sin’(g, -r/2), (21a)
reQc

Iu(€,) = _g Z sin® (€, -r/2), (21b)
reQpy

Th€)=—5 > sn’E, 1/2). Qo
reQ’;I

This allows us to build Ac, Am, A} as follows

Ac=Te)?, Ap=Tu)*, Ay=8T5—-Tu). (22
Clearly, Ac and Ay are non-negative. Examining A} gives the
same result, but we leave this out for brevity. We can then write the

relative phase velocity as

wi(€5,)
wl€xl? ’

for wy, € (0, 7] and §;, € B, where B is the wavenumber cell of the
grid. For the square grid, B is a square centered at zero with sides
of length 27, whereas for the hexagonal grid, B is the Voronoi cell
(a hexagon) of the lattice spanned by the vectors: (27, 27 /+/3)”
and (0,4 /+/3)T [6]. The relative phase velocity should ideally
be unity everywhere. Figs. 3(a)-(c) display the relative phase ve-
locities of the finite difference schemes with ©t = pimax. Note that

et (§) =

wi(&,) = 2arcsin (%\/7\) , (23)

(a) 13-pt Cartesian  (b) 19-pt hexagonal (c) 13-pt hexagonal

Figure 4: Spatial response to same initial conditions (Gaussian),
demonstrating (an)isotropy. Time-step fixed across schemes. Snap-
shots after 9, 18, 27, and 36 time-steps (top to bottom).

the hexagonal wavenumber cell is slightly bigger than the Carte-
sian wavenumber cell, this is ultimately a result of the denser grid
for the same h. Also, the isotropic characteristic to §; o2 can be
seen in Fig. 3b. Some simulations, without taking boundaries into
account, are presented in Fig. 4 to demonstrate how the directional
dependence of the schemes are reflected in the numerical approx-
imation. The initial conditions (0, x) and w(k,x) are set to a
spatial Gaussian for each case, and the simulations are stopped at
the same time instant. It is clear that the approximation in Fig. 4b
has less directional dependence than the other two.

We would like to compare the dispersion for the Cartesian
scheme to the hexagonal schemes, but this can be difficult since
they are defined in different wavenumber cells. To make for a
better comparison we can use the dispersion relation to reassign
the relative phase velocities to wy and an angle of propagation
0 € [0, 2], giving a function vee (Wi (€,), 0(&,)) where

0(§) = arctan (&, - ¥)/(§ - X)) - 24)

where %, ¥ are the standard unit vectors in R?. Now we have a
single domain on which to compare relative phase velocities for the
Cartesian and hexagonal schemes. These relative phase velocities,
are displayed in Figs. 3(d-e).

It is from this point of view (temporal frequencies) that we
see large variations between the schemes. There are two effects
of numerical dispersion that are prevalent here. The first is that
the high spatial frequencies are compressed into a small band of
temporal frequencies along the worst-case directions (multiples of
/2 for the Cartesian scheme, odd multiples of 7 /6 for hexagonal
schemes). This will cause an unnatural modal density within those
bands of frequencies. The second effect is that the spatial Nyquist
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T
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(a) 13-point Cartesian

(d) 13-point Cartesian

(b) 19-point hexagonal

(e) 19-point hexagonal

1
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(f) 13-point hexagonal

Figure 3: Contour plots of relative phase velocity as a function of &, € B, (§, = (h,&yh)) (top row), and wy, € [0, 7] (radial) and
6 € [0, 2] (bottom row), where o = 7 /4. Contours mark 5% deviations in relative phase velocity.

does not remap to the temporal Nyquist in every direction, creating
directional cutoff frequencies. Thus, above the smallest directional
cutoff frequencies the modal density will be incorrect. These effects
are worst in the Cartesian scheme, while the 19-point hexagonal
scheme experiences the least of these effects.

4.1. Normalising for computational cost

It can be argued that this is still not a fair comparison between
Cartesian and hexagonal schemes, since §; 2 uses 19 spatial
points instead of 13 for 6 a2. Furthermore, for a fixed time-step
(fixed sample rate) and 4 = pmax the hexagonal grid will be
more dense than the Cartesian one. This ultimately leads to more
computation per unit time and space. In principle, it is always
possible to oversample the grid in order to achieve the same levels
of accuracy or simulated bandwidth with the 13-point Cartesian

scheme, so we have to somehow normalise for computational costs.

Three different methods can be adopted to evaluate the finite
difference schemes. First, we will consider the same time-step for
each scheme (no normalisation of computational cost), then we will
normalise for spatiotemporal grid (T x G) densities, and finally
we will consider normalised spatiotemporal densities of addition
operations.

Let the time-step for each scheme be set to k = yk’, where k’
is a constant and x will represent computational cost normalisation
factors with respect to the Cartesian scheme. As such, y is always

setas x = 1 for the Cartesian scheme. When x = 1 for all schemes,
normalisation for computational cost is ignored. On the other hand,
when x is chosen as x = +/4nu with n = 1 for the Cartesian
scheme and 7 = 2/+/3 for the hexagonal schemes, then we have
normalised for density of points in space and time, with respect to
the Cartesian scheme. When x = +/(4/13)ynu, where ~ is the
number of points in the stencil, then the schemes will be normalised
for the density of additions per space and time, with respect to the
Cartesian scheme. We neglect multiplications for brevity.

The relative phase velocities with these normalisations along
the respective worst-case directions are shown in Fig. 5. It can be
seen that, even after normalising for the extra computational costs,
the hexagonal schemes are more efficient at reducing numerical dis-
persion than the Cartesian scheme. In parallel implementations of
finite difference schemes for plates, such as [17], the normalisation
for additions, which are easily parallelised, may not be important
so we ignore this normalisation for the following discussion.

For the plate problem, reducing the time-step results in a
squared increase in the total number of operations (2x increase
in F§ equals 4x computational cost). With this in mind, we can
compare schemes in terms of a relative computational efficiency
to attain a certain accuracy in the relative phase velocity up to a
given frequency, as in [5] for wave equation schemes. For example,
with data taken from Fig. 5, we can calculate that the 19-point and
13-point hexagonal schemes are respectively 2.1 and 1.8 times more
efficient than the 13-point Cartesian scheme for a one-percent rela-
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Figure 5: Relative phase velocity along worst-case direction for three
schemes, with various normalisations for computational cost. The time-
step in each case is set as k = xk’ for k’ fixed, so x = 1 implies no
normalisation (same time-step), x> = 4nu normalises for spatiotemporal
grid densities, and x2 = (4/13)~ynu normalises for spatiotemporal density
of additions. Note, v = 13 for the 13-point hexagonal scheme, so the
X2 = 4nu and x2 = (4/13)~ynu curves overlap.

tive phase velocity error tolerance. Such relative efficiency numbers
could be given for the entire range of phase velocity errors, but it
is unknown how much numerical dispersion is tolerated for audio
applications of this plate model, and whether numerical disper-
sion is perceptually distinguishable from the system’s underlying
dispersion.

Perhaps a more useful comparison is in terms of the global
cutoff frequencies after normalisation, as this gives an idea of the
modal density across the temporal range of frequencies, and thus a
measure of how ‘rich’ the output sound will be. In terms of global
cutoff frequencies, we can calculate that the 19-point and 13-point
hexagonal schemes are respectively 4.3 and 2.8 times more efficient
than the 13-point Cartesian scheme.

5. FINITE VOLUME BOUNDARIES

In this section, we present a finite volume formulation of the 13-
point Cartesian scheme and the 19-point hexagonal scheme, in
order to simplify the implementation of certain boundary conditions.
The 13-point discrete biharmonic on the hexagonal grid does not
decompose into the composition two discrete Laplacians, so it
cannot be easily be interpreted within the following finite volume
framework.

Let V denote a closed 2-D volume and JV its boundary. The
finite grid under consideration can then be written as G := G N V.
We start by rewriting (1) as the system of two equations:

O = KAm, (25a)
orm = —kAv, (25b)

where m = m/(t, x) is the initial moment and v = v(¢, x) is the
initial velocity, which is related to w by:

v = Oww (26)

In this system, the two initial conditions to specify are v(0, x) and
m(0, x). Boundary conditions for the plate can be of the clamped
type:

v=n-Vv=0, xe€V 27
where v = 0 denotes a homogeneous Dirichlet condition and
n - Vv = 0 denotes a homogeneous Neumann boundary condition.
Another set of Dirichlet boundary conditions is the following:

v=m=0, xedV. (28)

This set of conditions may be a simplified form of the “simply
supported” conditions for certain geometries, such as rectangular
plates with Cartesian grids.

Consider a tiling of closed cells C; whose interiors are pairwise
disjoint, and the tiling fills up the volume V, i.e. |J, C; = V. Now
consider one cell surrounding some point x; € G. For now we will
focus on one of the two equations, as they are similar. Integrating
both sides of (25a) over the volume of the cell and applying the
divergence theorem we have:

/ GtvdS:ka/ n-Vmdr, (29)
I ac;

where OC; denotes the boundary of C; and where n is the normal
vector pointing out of the cell at € C;. Now, consider that
this cell has neighbouring cells C; with indices j in the set of
neighbour indices V;. The interiors of cells are pairwise disjoint
but their closures can intersect. Let these intersections be denoted
by Si; := C; N C;; these are the sides of the cell. Furthermore,
let S;») := C; N AV denote the boundary side of the cell. Since
aC;i = (U; Sij) U Si() we can write (29) as

/6tUdS:KZ/H'deT+K/ n-Vmdr, (30)
I Sij S

JEN; i(b)

The last term describes one half of the system at the boundary
and this can be set to zero for Neumann conditions. Let the 2-D
volume (area) of the cell be V; and the length of each side be S;;
and similarly for the boundary side S;(;). We define the first-order
spatial and time differences:

1
Sia 1= :I:E(sti —-1), (31a)
. 1 . .
5ijw]- = h—(wj — U)i), (3”3)
1]

where h;; = ||x; —xX;||. Consider the variables ©; := 0(t+k/2,x;)
and 7, := m(t, x;), representing approximations to v(t+k/2, x;)
and m(t, x;) respectively. Neglecting for now the boundary term,
we can approximate (30) with the following, and (25b) by the same
procedure:

Vidi = kY Sijdijn, (32a)
JEN;

‘/i(st+m¢ = —K Z S”é”ﬁz . (32b)
JEN;

Note that the time differences are centered, since ¥; is staggered in
time. The spatial difference will also be centered about the sides
of the cells for the grids (square and hexagonal) considered here.
Now rearranging for the update equations we have:

L _ .-, kK .
0 = 0; + v Z Sij0ijmi (33a)
JEN;
. N rkk N
=i = 3 Y S, (33b)
JEN;
where 9 := s,_®; and 70} := s;17;. The update does not

change when Neumann conditions are applied because the ne-
glected boundary term would be set to zero. For the clamped
conditions, it then suffices to fix 9; = 0 when S;) > 0. For
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the conditions (28), we also fix 'rhl+ = 0 when S;) > 0. If, on
the other hand, we update both values at the boundaries, then this
implies the non-physical, yet well-posed, boundary conditions:

n-Vm=n-Vo=0, xe€dV. (34)
We include this boundary condition because it arises naturally from
the finite volume framework and it may provide interesting artificial
reverberation.

To establish the link with the finite difference schemes, we will
now consider square and regular hexagonal tilings of V. These
tilings may be locally irregular [18], which means that cells on
the interior are regular polygons from the Voronoi tessellations of
Gc or Gu, but cells that intersect with the boundary of } may be
irregular. Now consider a cell C; with S;;y = 0 and Sj ;) = 0 for
7 € N;. Itis straightforward to show [19] that we can recover the
following discrete Laplacians from the finite volume formulations:

1

A Z Sij0i;0; = 6c,aVi, xi € Ge, (35a)
' jEN;

1

A Z Sij0ij0; = 0m,ali, X € G . (35b)
' jEN;

Then, using the identity 04 0+—0; = &+0;, it follows that Egs. (32a)
and (32b) simplify to the second-order 13-point Cartesian and 19-
point hexagonal schemes respectively in ©;. The variable ﬁ;f can
be recovered from ¥; = 044 W;.

5.1. Matrix formulation and stability

The approximations © and 72 can be written as the NV X 1 vectors
v and m with the values of 9; and 1; for x; € G (N = |G|)
at a particular time ¢. The system (32) can be rewritten in the
matrix-vector form:

6t—-v= kLim, (36a)
otym = —gLov, (36b)

where L; and Ly are N x N matrices corresponding to §a with
Dirichlet conditions possibly imposed. These matrices can be
defined as follows. Consider L to be either L1 or Ls. For each row
¢ of the matrix L, the entries [;; can be written as:

Sij S,
ll/ - V;h” I 1 # .7 I (373')
Li=—Y L. (37b)
i#£j

In order to impose Dirichlet conditions, L. must be modified on
rows pertaining to boundary nodes. To impose the condition v = 0,
we set [;; = 0in L; when Si(b) > 0. Similarly, to impose the
condition m = 0, we set [;; = 0 in Ly when Si(b) > 0. If the
boundary condition is (34), then L, = Lo.

Stability of the system (36) can be checked as follows. Recom-
bining the system into one variable, we have

vi=QI-’B)v —v, (38)

where v¥ := s;2v, B = h'Li Ly, and where I is the N x N
identity matrix. Here, h represents the minimum h;; with j € N;

(i # j)and x; € G . Similarly to the stability analysis pre-
sented for the initial value problem, we have the following “matrix
method” [20] type stability condition

p<4/p(B), 39)

provided that B is positive semi-definite (PSD), and where p(B)
denotes the spectral radius of B. That B is PSD follows from (37)
and Gerschgorin’s theorem [21]. It is assumed that the tiling is
constructed such that p(B) < Amax, and thus 4 = pmax (as given
previously) will be sufficient for stability. Energy methods [19]
should be employed to get a more instructive stability condition for
the finite-volume meshing pre-processing step, but these will be
left for a future study.

6. SIMULATIONS

6.1. Modes of clamped circular plate

In order to validate these schemes, we simulate a clamped circular
plate with tabulated values for the modal frequencies from [22].
The circular plate of interest has a radius of one metre and £ = 20.
The time-step is set to k = 1/F, where Fs = 8000 Hz for the
Cartesian scheme, and F's = 6300 Hz for the hexagonal scheme in
order to (approximately) normalise for the spatiotemporal density
of points. For both schemes we employ a “staircase” approximation
and a “fitted” approximation to the circular domain. These tilings
are shown in Fig. 6.

A normalised Kronecker delta (in space and time) is used as
an excitation for the plate. The spectra of the resulting impulse
responses, for low frequencies, are shown in Fig. 7. It can be
observed that the fitted approximations are better than their staircase
counterparts in both cases (Cartesian and hexagonal). However,
as numerical dispersion is significant in both cases the modes are
misrepresented above 250 Hz. We can also observe that in the
Cartesian case, certain modal frequencies are in numerically split
degenerate mode pairs (e.g. at 220 Hz and 270 Hz). This is a
consequence of anisotropy, and it is clear that the hexagonal scheme
offers an improvement in this respect.

6.2. Modal density and cutoff frequencies

Next we demonstrate the effects of the minimum directional cutoff
frequencies, as discussed in Section 4. In Fig. 8, the same impulse
responses are plotted, but now over the entire range of simulated
temporal frequencies. The minimum cutoff frequencies are denoted
with vertical dashed lines. These refer to 0.33 F for the Cartesian
scheme, and 0.70F for the hexagonal scheme.

For the Cartesian case in Fig. 8a, we can see the sparsity of
modes increases above the (minimum) cutoff frequency, leading
up to the maximum cutoff frequency (the Nyquist). As seen in
Fig. 8b, the hexagonal scheme (normalised for computational cost)
has a higher cutoff frequency and one can notice that the density
of modes near 2000 Hz is greater than in the Cartesian case. With
a 8000 Hz sample rate, in Fig. 8c, the hexagonal scheme provides
aricher spectrum, albeit at a higher computational cost. For these
simulations p was set to fimax and (39) was satisfied.

Finally, we show the hexagonal circular plate with double
Dirichlet conditions (28) and the double Neumann conditions (34).
The spectra that were obtained are shown in Fig. 9. It can be seen
that these conditions provide spectra qualitatively similar to the
clamped conditions.
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Figure 7: Impulse responses and analytical modes (dotted lines) of
clamped circular plate

7. CONCLUSIONS

In this paper, we have presented two finite difference schemes for
thin plate vibration using hexagonal grids. Stability conditions
were presented and numerical dispersion was analysed. It was
shown that better computational efficiency in terms of minimising
numerical dispersion can be achieved using hexagonal grids rather
than Cartesian (square) grids. Equivalent finite volume schemes
were presented for the 13-point Cartesian and 19-point hexagonal
finite difference schemes in order to implement clamped boundary
conditions over irregular geometries. Simulations of clamped circu-
lar plates were presented and it was seen that finite volume grids
that conformed to the domain were more accurate than “staircase”
approximations. Furthermore, modal accuracy was generally better
with the hexagonal scheme for a comparable computational cost
with the Cartesian scheme.

One issue that will be addressed in future work is a more thor-
ough analysis of boundary conditions. The system (25) is but a
simplified version of a more complex system involving bending
and twisting moments [13], which naturally leads to the correct
boundary conditions in the simply supported and free case. This
complete system is arguably more difficult to simulate with unstruc-
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Figure 8: Comparison of spectra, clamped circular plate

tured grids within a finite volume framework, and this constitutes a
major challenge at the moment.

Another interesting direction for future study is the simulation
of non-linear phenomena. Finite difference simulations of von Kér-
mdén equations have been performed in the past over Cartesian grids
[23], but to our knowledge no similar study has been performed
over different grids. Such simulations rely on a discrete version
of the “triple self-adjointness” property of the non-linear operator
[24], which will present new challenges over non-Cartesian grids.

Sound examples and animations from these schemes will be
available at:

http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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ABSTRACT

The finite difference time domain (FDTD) method is commonly
used as a numerically accurate way of propagating sound. How-
ever, it requires extensive computation. We present a simple method
for accelerating FDTD. Specifically, we modify the FDTD update
loop to prioritize computation where it is needed most in order to
faithfully propagate waves through the simulated space. We esti-
mate for each potential cell update its importance to the simulation
output and only update the N most important cells, where NN is de-
pendent on the time available for computation. In this paper, we
explain the algorithm and discuss how it can bring enhanced accu-
racy and dynamism to real-time audio propagation.

1. INTRODUCTION

Faithful propagation of sound through arbitrary environments is a
computationally complex problem. Audio propagation solutions
must be re-evaluated as the source position(s), listener position(s),
and environment geometry change over time. If the recomputation
can be done very quickly, the method might be useful in real-time
applications like virtual environment audio simulations.

In this paper we present a method to accelerate the finite dif-
ference time domain numerical sound propagation method so that
it might be used in real-time applications under broader config-
urations. We prioritize computation where it is needed most to
most accurately propagate a wave, eliminating computation where
it would have little effect on the output.

2. PREVIOUS WORK

Sound propagation can broadly be split into two groups: geometric
methods and numerical methods. Geometric methods often take
advantage of analytic solutions to wave equation problems directly
in terms of the geometry of the environment and assume that sound
waves travel in straight lines. Numerical methods discretize and
solve wave equation problems with numerical analysis.
Geometric methods include such techniques as image methods
[1], ray tracing [2], beam tracing [3], and acoustic energy transfer

This work was supported by NSF Grant 1IS-1018486.

methods [4]. In the early image method presented in [1], virtual
image sources are created from the true sound source to represent
the acoustical contribution of sounds reflected from geometry in
the environment. Similar to graphics research on geometric trac-
ing techniques, ray [2] and beam [3] tracing methods have been
developed for audio propagation. Ray tracing samples an environ-
ment with a multitude of rays reflecting from surfaces. Errors are
introduced in ray tracing methods when samples miss important
features in the environment [5]. Beam tracing methods improve
on this by sampling continuous areas of the environment with each
cast beam and splitting each cast beam where the environment is
discontinuous, such as at the edge of a beam-intersecting wall.
However, it is hard to accurately handle effects like wave diffrac-
tion in arbitrary environments using these methods.

Numerical methods include finite element [6] and finite dif-
ference [7] methods. The finite difference time domain method
(FDTD) is an especially popular numerical method in acoustics,
though originally developed for electricity and magnetism [7]. In
the FDTD method, a finite simulation lattice is overlaid on the en-
vironment to discretize it in space, and the output is computed at
discrete time steps over many iterations. The method naturally
allows the modeling of arbitrary environment configurations and
captures wave phenomena like diffraction. However, it suffers
from high memory and computation time demands, especially as
a simulation’s time or space discretization is refined. We focus on
FDTD in this paper and look at it in greater detail in Section 3.

Several hybrid methods have been developed, merging geo-
metric and numerical methods [8], [9]. Hybrid methods are good
for real-time applications because different wave properties can
be efficiently represented by different methods. A recent example
is the "Wave-Ray Coupling" presented by Yeh et al. 2013 [10],
where a geometric technique handles long-distance wave propa-
gation in a large environment and a numerical method captures
important wave diffraction effects (which the geometric technique
cannot handle) close to the listener position. Acceleration of com-
putationally expensive numerical methods like FDTD is neces-
sary for the numerical components of hybrid methods to function
well in real-time applications. For example, the adaptive rectangu-
lar decomposition method [11] is used instead of plain FDTD in
[10]. Any additional acceleration to the numerical component of a
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hybrid system can critically provide better real-time performance
over a broader range of configurations, e.g. a larger numerical sim-
ulation zone capturing a more complete simulation of diffracted
waves in the environment. This paper offers one such acceleration
technique.

3. BACKGROUND

Sound is a wave phenomena dependent on the wave equation. An-
alytic solutions to the equation exist for simple configurations, but
no complete analytic solutions exist for complex environments.

The FDTD method provides a way to solve the equation in
complex environments in a discrete way. The environment is dis-
cretized in space into a regular grid. The sizes of the grid cells in
each dimension do not have to match but for simplicity they will
be equal here, represented by h. p™ (i, j, k) represents the pressure
at location ¢, j, k at time n. Throughout, we use the speed of sound
c ~ 340m/s.

Following is a brief derivation of an FDTD update equation,
based on the description in [11].

&*p
a2

F(x,t) is a forcing term representing sound inputs. It is zero with-
out inputs.

— Vi = F(z,t) (1)

. 2
V2 represents the 3D Laplacian operator, az2 + ay2 + 6822,

the divergence of the gradient at a point in the pressure field.

The Laplacian operator can be discretized for a grid represen-
tation in many ways[12]. We use the Lo discretization for speed
and simplicity:

VEp" (i, 5. k) &
_6p (Z7 j7 k)+
i (Z_1J7 ) n(7’+17.77k)+
h? (Z]_lk)+p (7'7]+17k)+
p (0,5, k = 1) +p" (0, 5,k + 1)
@

Or more succinctly with K as a Discrete Laplacian Matrix and P
a long vector of all pressure values in the grid:

lap(i, j, k) =

yielding
o’P
Froa ﬁKP = F(t) “)

Discretizing in time with time step At and using the leapfrog in-
tegrator yields the following update equation.

2
Time step size At depends, for the sake of numerical stability
in the simulation, on the grid resolution according to Courant-
Friedrichs-Lewy condition At < %

To model the interface of air and environment surfaces, any of
many absorbing boundary conditions (ABCs) can be used. Please
see [13], based on the original Perfectly Matched Layer (PML)
work [14] for a very helpful derivation of the PML ABC for the
single field parameter "scalar" FDTD context presented above. The
works [15],[16] present the formulation of a simple surface ABC
which also may be used in this context.

4. PRIORITIZED FDTD

Full FDTD simulation demands the evaluation of a large number
of computations. There are many time steps needed, and in each
one, potentially every grid cell representing the simulation space
needs to be updated. Each FDTD time step depends on the previ-
ous time step, but within each time step, every cell update compu-
tation is independent. Also, if one cell is updated, the effect of that
update is only relevant to its neighboring cells whose discretized
Laplacian estimations in the subsequent time step include a term
reading the value of that previously-updated cell. Areas of uniform
pressure remain static until disturbed by impinging waves and also
become static again after those waves pass by. These properties
together allow us to accelerate FDTD by prioritizing computation
where it is needed most and omitting it elsewhere.

We incorporate these properties into one tunable system by
the introduction of a cell update importance function and priori-
tized selection of which updates to execute. We concentrate on
accelerating FDTD impulse response simulation of low frequency
diffracting waves. Higher frequency reflecting components can be
simulated in real time with other methods, together forming a hy-
brid system as in [10]. Our method of acceleration is orthogonal
to other approaches like parallelization, so we believe it can be
applied on top of other methods for further improved results.

4.1. FDTD Setup

We initialize our FDTD simulation grid with a grid cell size, h
appropriate for low frequency waves (e.g. simulation frequency=
1KHz, h < 53%; guided by the Nyquist-Shannon sampling the-
orem). These low frequency waves have a greater tendency to
diffract in a significant way in human-scale environments than do
higher frequency waves.

We focus on the task of recording an impulse response, rather
than continuously propagating an arbitrary source wave. Simu-
lated impulse responses can be efficiently convolved with arbi-
trary source waves after simulation to auralize output. The impulse
response context allows us accelerate computation more than we
could if the source emitted an arbitrary wave. This is true because
with an impulse, more of the pressure field is likely to be static and
unimportant (in front of or behind the impulse wave) at any arbi-
trary time step than if the field were inundated with a continuous
series of waves.

To record an impulse response, we use an input pulse defined
by the following Gaussian function. Its parameters were chosen
to make the pulse peak near the origin and to be short but not so
short that it causes major ringing oscillations when played into the
1KHz grid simulation.

pulseCenterTime = 0.0025
spread = 0.001

_ (t—pulseCenterTime)?
fie) = e

2%spread? 6)
Note that any impulse response recorded from ¢ = 0 using this
impulse must be shifted in time by —pulseCenterTime.

PML ABC zones are placed around the boundaries of the sim-
ulation space. It is suggested in [17] to make the PML thickness
at least 65-70% of the longest wavelength of interest. Because
we primarily focused on the recording of impulse responses and
to aid computation times we use n, = 10, which corresponds
to a "longest wavelength of interest" of 0.65¢/h/10 = 130Hz.
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The profile of our input pulse approximately corresponds to a si-
nusoidal wave section with a frequency around 200Hz, so the PML
thickness is reasonable.

4.2. FDTD Computation

Described below is our method to accelerate FDTD computation
in the context described in Section 4.1.

4.2.1. Importance Function

An importance function, notated as ¢mportance(i, j, k), estimates
the importance of a cell update during simulation. Before the first
FDTD update pass, the ¢mportance function is initialized for ev-
ery cell to zero. At the moment of the start of the input pulse, the
sound source location and its immediate neighbors are given arti-
ficially elevated importance values to seed their evaluation when
they are first important.

In the last moments of a simulation, many regions of the envi-
ronment are so far from the listener position(s) that no wave leav-
ing those regions and traveling at the speed of sound could reach
the listener(s) before the end of the simulation. We include this
in all importance functions by forcing importance to zero when a
cell update can be omitted. Let L represent the listener position in
grid units. Let dur be the duration of the simulation. Omit deter-
mines when a cell update would be made to a cell too far from the
receiver position to possibly have any effect on the output of the
simulation.

Omit(i, j, k,t) = ;

> (dur —t) @)

Idealy, an importance function would look into the future and
determine how much of an effect an update will have on the even-
tual output of the simulation. Since this is not possible to do in
any less time than it would take to run the simulation to that future
time or even in less time than it takes to do a single update, we
approximate the importance function by estimating the effect an
update could have on the immediate region surrounding it in the
following time step. In FDTD simulation, the discretized Lapla-
cian approximation (lap) is the only term in the update equation
(Equation 5, inside K') which interacts with neighboring cells, so
our importance functions incorporate the same values which lap
uses. Importance functions we used take these forms:

importancer (m1) is something like the Laplacian approxi-
mation, but the absolute value of each term is used and all coeffi-
cients are one. It is always non-negative.

lp" (i, 5, k)| +
|pn(i - 17j7 k)' + |pn(i + 17j7 k)‘ +
|pn(i7j - lak)| + |pn(i7j + 17 k‘)‘ +
|pn(i7j7 k — 1)' + |pn(i7.j7k + 1)‘

ml(i7j7 kj) =

0 if Omit(i, j, k, t)
ma (3,4, k) otherwise

importance: (i, 7, k) = {
®)

importances (m2) is something like a gradient magnitude.
my yields the largest magnitude of a difference between any two
nearby pressure values (Nearby(i, j, k) denotes the set of nearby

pressure values and includes the value of the cell itself). It is al-
ways non-negative.

i p”()),J,k()) ¥)

.. _)p 17]7k 7pnl+1j’ ’

Nearby(i, j, k) = P (i, 5 — 1,k)),p"(z i+ 1K),
p " (i, 4,k — 1)), p" (4, ik + 1)

) = _
ma (i, j, k) meNg}f;f;(i’j’k) (p1 — p2)

p2€Nearby(i,j,k)

' o 0 if Omit(i, j, k, t)

importances(i, j, k) = {mg(i,j, k) otherwise

©)

4.2.2. Most Important Cell Retrieval

In every FDTD update pass, a limited number of cells with the
highest importance values are recomputed. To efficently ascer-
tain which cells have the highest importance, we keep a list of
update candidate cells which we call candidates. An average
case O(n) time partial sorting algorithm is used to partially sort
candidates once per time step according to the importance func-
tion. It ensures that the first /V cells in the list have greater im-
portance than all others. Provided their importances are non-zero,
these cells are updated in the usual FDTD manner to finish evalu-
ation of a time step.

The number of cells to recompute, /N, can be estimated ac-
cording to the approximate volume of the pulse wavefront, defined
here by the inner and outer radii, 7; and r,, of an impulse wave in
an open environment. ¢ is the simulation time.

re = c¢-t
ri = c-(t—2-pulseCenterTime)
ApprozWaveVol(t) = %7?7’03 - %WHB (10
N(t) = ApprozWaveVol(t) + h* (11)

4.2.3. Refreshing the Importance Function Efficiently

To avoid unnecessarily evaluating the ¢mportance function for
every cell at every time step, we keep a set of cell references which
we call refreshSet. Once per time step, the importance for
every cell stored in re freshSet is evaluated and all other cells are
ignored. After this, refreshSet is cleared. In a single time step
of FDTD, the importance values of only updated cells and their
immediate neighbors can change. So, whenever a cell is updated in
one time step, the cell and its neighbors are added to re freshSet
for importance re-evaluation before updates at the next time step.

4.2.4. Pseudocode

Some specific implementation details have been simplified, such
as code to avoid duplicate additions to re freshSet and the special
case for PML zones. See Algorithm 1 and UpdateSimState.

5. DISCUSSION

5.1. Analysis

Figure 1 shows how N changes during a simulation. The unshaded
portion shows the amount of computation avoided by our method.
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begin
initialize;
for t = 0...dur at increments of /At do
UpdateSimState;
Force pressure at source cells;
Record IR output at listener cells;
Prepare for next time step;

Algorithm 1: FDTD Outer Loop

begin

initialize;

candidates =List of all sim cells;

for element € refreshSet do

| Refresh importance of element.

refreshSet = (;

N = compute as in Eq. 11;

Partially sort candidates as in 4.2.2;

fori:=1...N do
updateCell(candidatesli]);
refreshSet+ = candidates]i];
refreshSet+ = All neighbors of candidates|i];

Procedure UpdateSimState

The dashed line at the top marks the total number of cells in the
FDTD grid. At the beginning of a simulation, computation is lim-
ited by IV, and at the end of a simulation, it is limited by the Omiit
function. The superimposed curves show the numbers of updates
done on actual runs of our algorithm in our test environments. The
configuration of the environment affects how many updates are
done by affecting the number of zero-importance cells at different
times. Zero-importance cells are not updated even if N is larger
than the number of nonzero-importance cells). Figure 2 is similar
to Figure 1, but the simulation duration is five times longer.

The first profile, Figure 1, demonstrates the context where our
method is most useful: impulse response simulations of limited
duration, such as the numerical simulation component in a hybrid
system like Yeh et al.’s Wave-ray Coupling [10]. However, even in
less ideal situations like Figure 2, our method always saves some
computation at the beginning and end of the simulation and pro-
vides a pricipled approach to restricting computation in the middle
of the simulation too, by limiting V.
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Figure 1: With simulation parameters from our trials in Section 6,
the shaded region is computed, the rest omitted.
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Figure 2: Longer duration simulation worst-case behavior.

If the simulation computes output for a continuous input in-
stead of an impulse response or if multiple source positions are
present, our method can still be used. ApprozW aveV ol would
have to be changed, which would change the shape of the early
portions of Figures 1 and 2 (for lesser performance), but the end
portions of the simulation would remain the same, since the same
distance-based cell omission can be done. Conversely, adding ad-
ditional listener positions affects the later portions of simulation
while not affecting the beginning.

5.2. N Approximation

In an environment with many absorbing surfaces (or areas open
to the simulation boundary PML regions), a tighter bound on the
wavefront volume can be made by observing that if there were no
obstacles in the environment, an expanding spherical wave would
eventually begin to leave the simulation grid. The portions of the
wave which have left the space can be subtracted from the volume
as calculated in 4.2.2.

Our presented approximation for /N, estimating the wave vol-
ume in an empty environment, is not always quite enough to cap-
ture important updates at the front of a wave because the impor-
tance function is only an estimation of true update importance. In
the "worst case" of a completely open environment while the prop-
agated wave forms a spherical shell, we find it helps to inflate the
very tight wavefront volume figure by up to 20% to ensure that im-
portant cells on the leading edge of the wavefront are not missed
in simulation. In our experiment trials, we did not have to inflate
the N value, because absorbers in our environments and the edges
of the simulation space reduced the actual simulated wave volume
below the estimated wave volume before significant deterioration
took place. If, as discussed in the previous paragraph, a tighter
volume bound were used, some inflation might indeed be needed
in all cases.

6. RESULTS

We computed average performance statistics on an Intel i7-860
machine. The code was compiled and linked from C++ source
with the MSVC 2008 compiler. We ran the simulation thirty six
times for our method and thirty six times for plain FDTD. The
trials were divided evenly between six environments which to-
gether stress our algorithm and represent plausible hybrid simula-
tion scenarios: four open artificial environments with various wall
configurations between source and listener, one completely open
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Time Time | Speedup

Prioritized | FDTD | in Time
Open 1.26s 4.29s 3.41
Env. A 1.24s 4.28s 3.44
Env. B 1.04s 4.31s 4.13
Env. C 1.17s 4.27s 3.66
Env. D 1.27s 4.29s 3.38
Building 0.71s 3.59s 5.07

Column

Averages 1.11s 4.17s 3.85

Table 1: Performance results in terms of time.

Updates Updates | Speedup in

Prioritized | FDTD | Cell Updates
Open 15.0% 100% 6.66
Env. A 14.5% 99.1% 6.82
Env. B 12.3% 99.1% 8.05
Env. C 13.7% 99.4% 7.23
Env. D 15.5% 99.5% 6.86
Building 8.2% 80.8% 9.86

Column

Averages 13.1% 96.3% 7.58

Table 2: Performance results in terms of cell updates. "Updates
FDTD" is not always 100% because updates are not made within
environment obstacles.

environment with no walls, and one generated from interior ge-
ometry of a real building. The environment dimensions were all
fixed at 7m X 7m X 2.5m and the simulated duration (0.03s, long
enough to receive all impulse wave diffractions in our trials) was
also equal across all trials. These results are shown in Tables 1,
2, and 3. "Time" columns show average computation times, "Up-
dates" columns show average percentages of updates performed
out of the maximum possible, and "Speedup" columns show the
relative performance of our method over plain FDTD. In all trials,
FDTD updates were not made for cells within solid objects. The
real building environment had the largest number of occluded cells
(around 20%).

As seen in Table 1, our approach improves average simula-
tion speeds by a factor of 3.85. When the real building environ-
ment trial is considered alone, the improvement was over a factor
of 5. Memory usage with our method was around 70% greater
than plain FDTD, to store the candidates list, re freshSet, and
other data to do things like avoid duplicate neighbor additions to
refreshSet efficiently.

Figure 3 shows response waveform comparisons of our method
to full FDTD simulation for three environments, at three different
inflation factors for N and one deflation factor for N. Each plot
has a response from our method overlaid with the full FDTD re-
sponse. The first two environments (Env. C and Env. D respec-
tively in Table 1) are artificial and mostly open, so they exhibit
a mild case of the problem explained in Section 5.2, where N is
close to the actual wave volume and the importance function does
not perfectly indicate which cells must be updated. Mild N infla-
tion helps those results converge. The third environment is the real
building environment and has many reflecting surfaces which the

0.8 1.0 1.2 2.0
N Factor | N Factor | N Factor | N Factor

Open 42967.8 3014.0 271.3 69.7
Env. A 6148.4 517.6 138.7 49.2
Env. B 21.9 3.7 2.9 2.8
Env. C 76.5 5.9 1.9 1.3
Env. D 4343.0 241.8 253 12.7
Building 91.4 39.4 46.0 36.6

Table 3: Sum of squared error between waveform outputs of the
full FDTD and the prioritized method. Compare with Figure 3

other tested environments do not have. Relative computation times
as N inflation factors change are given in the caption of Figure 3.

7. CONCLUSIONS & FUTURE WORK

Our prioritized computation method accelerates FDTD wave prop-
agation. It is especially helpful in the context of a hybrid simula-
tion where a method like FDTD captures the effect of an impulse
wave diffracting in an environment. Our acceleration allows such
an impulse response simulation to be repeated more rapidly, with
better discretization, or larger environment size, to improve real
time results.

Our implementation was not parallelized, but it also does not
prevent the use of parallelization. In fact, preliminary results show
that running our method on a single CPU thread is faster than a
four-way parallel FDTD implementation we tested on four CPU
threads, at least under the trial configurations tested in Section 6. It
is future work for us to parallelize prioritized FDTD computation.

We kept the complete set of simulated cells in the candidates
list, but this list could instead be grown, starting with just the sound
source cell, by appending the contents of re freshSet at each time
step. Old irrelevant cells could likewise be removed over time. If
candidates were made shorter like this or if special considera-
tion were given to the high temporal coherence of candidates,
the running time of the partial sorting algorithm could be reduced.

The partial sorting of candidates creates an overhead over
plain FDTD in the middle of long simulations (like ones with re-
flections which must be simulated), when N approaches the full
volume of the space. In these situations, because we do not change
the pressure field representation, computation can easily be switched
between our method and plain FDTD to avoid the overhead. Com-
putation savings would still be found at the beginning and end of
the simulation time. Alternatively, an upper bound can be placed
on the size of IV to guarantee that performance is always better
than ordinary FDTD while still maintaining simulation quality in
a pricipled way. While potentially deleterious in the "worst case,"
an upper bound like this could ordinarily be used because the wave
volume in a simulation typically does not approach the total envi-
ronment volume.

Finally, future work also includes testing the effectiveness of
prioritized computation in numerical techniques other than FDTD.
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put and the solid lines are the prioritized computation output. The

three waveforms correspond to Env. C, Env. D, and Building, re-
spectively, in Tables 1, 2 and 3.

(a): 20% N deflation (10% shorter computation time than (b), but

quality suffers in some environments)
(b): No N inflation (quality suffers a little in worst-case open en-
vironments — see Section5.2)
(c): 20% N inflation (5% longer computation time than (b))

(d): 100% N inflation (12% longer computation time than (b))
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ABSTRACT

In this paper we propose a synthesis method using a force-based
algorithm to control frequencies of multiple sine waves. In order
to implement this synthesis method, we analyze an existing sound
source using a fast Fourier transform (FFT). Spectral peaks which
have large magnitudes are regarded as heavy partials and assigned
large attractive forces. A few hundred sine waves with stationary
amplitudes are placed in a frequency space on which forces gener-
ated in the analysis phase are applied. The frequencies of the par-
tials gravitate to the nearest peak of the reference spectrum from
the source sound. As more sine waves are combined at the large
peaks, the sound synthesized by the partials gradually transforms
into the reference spectrum. In order to prevent the frequencies
of the partials from gravitating onto localized peaks, each partial
is assigned a repulsive force against all others. Through success-
ful control of these attractive and repulsive forces, roughness and
speed variation of the synthesis can be achieved. Moreover, by
increasing or decreasing the number of partials according to the
total amplitude of the source sound, amplitude envelope following
is achieved.

1. INTRODUCTION

A force-based (or force-directed) algorithm is commonly known
as a graph drawing algorithm [1]. A graph is a common data struc-
ture which is constructed from a set of vertices and edges, where
the edges connect pairs of vertices [2]. The synthesis method pro-
posed in this paper is inspired by this algorithm, and utilizes the
algorithm in order to generate sound.

The motivation of this research is to accomplish a new synthe-
sis method as an application of the sinusoidal partial editing tech-
nique [3, 4]. The basic premise of the synthesis method is placing
multiple sinusoidal waves which have separate frequencies, and
applying a one dimensional force-based algorithm in a frequency
domain to control the frequencies of the waves. This method is
different from general spectral editors such as spectral SPEAR [5]
in that it is not developed for flexible sound editing, but rather for
generating characteristic time-varying sounds between noises and
recorded sound materials.

The goal of this research is to develop a synthesis method
which can generate various sounds from musical tones and noises
with a small number of intuitive parameters. In order to achieve
this goal, we prepare an existing sound to generate attractive forces
and apply them to the force-based algorithm. Strong attractive
forces are assigned to large peaks in the spectrum by analyzing
the reference sound source using the Fourier transform. A user
can vary the similarity of the sound to the reference sound by con-
trolling the forces applied.

All programs presented in this paper are written in Objective-
C and C++ and are executed in Mac OSX.

2. STRUCTURES

The structures used to achieve the synthesis method are described
in this section.

2.1. Analysis of a reference sound source

The first step is the analysis of a reference sound selected by a user.
The reference sound is usually provided as a sound file except for
real-time processing, which is presented in section 3.3. Any valid
sound source is allowed.

The Short-Time Fourier Transform (STFT) analysis [6] is used
for this step, where amplitudes A for each frequency f are detected
by

N-1
X(k) _ Z m(n)672ﬂ'ikn/N (1)
n=0
A(k) = [X(F)] ()
kR
F(k) = =7 6

where x(n) consists of IV samples of a windowed waveform
and R represents the sampling rate.

2.2. Distribution of partials

The synthesis phase for the proposed method begins by generat-
ing partials in a specific range of frequencies. The amplitudes of
the partials are calculated from the number of partials and are un-
changeable. There are two options for determining the number of
partials.

1. The user specifies the number of partials and it does not
change. The synthesized result does not follow the ampli-
tude of the input reference source.

2. The user specifies the maximum number of partials and the
number of active partials is determined in proportion to the
amplitude of the reference sound as (4).

N-1
V = Umaz Z aA(k) 4)
k=0
where « represents a constant number for scaling the ampli-
tude. The active or inactive partials are randomly chosen. In this
step, since the frequencies of the partials are random, an unpitched
sound is typically created.
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2.3. Attractive force

Attractive forces, which are applied to the partials, are generated
from the spectrum detected from the reference sound. A partial is
attracted to neighboring frequency components, where the user can
specify the number of effective frequency components. The force
is inversely proportional to the square of the distance between the
target frequency component and the frequency of the partial

sgn(F (k) — Pr(1))ga A(k)
|F(k) — Py ()]

fPri) = Y )

0<|F(k)—Pj(i)|<T

where fo(Py(i)) represents an attractive force for partial P ()
of which the frequency is Py (%), ga is a constant value to adjust
the strength of the force, and 7 corresponds to the range of the
effective frequency components.

Figure 1 depicts an example of attractive forces which are ap-
plied to a partial. Three peaks of the spectrum are used for calcula-
tion in this figure. A large and close peak such as A has a profound
effect while a distant peak such as C has little effect. As a result,
the effect of peak A is significant, thus this partial shifts to the left
side (lower in the frequency domain).

C

Spectrum of reference sound

A
. Current position of partial
< Force of A
—> Force of B
> Force of C
< Combined force

Figure 1: Attractive forces applied to a partial

2.4. Repulsive force

To avoid congestion of partials at a small peak in the spectrum,
repulsive forces are generated between every pair of partials. The
force is inversely proportional to the square of the distance be-
tween the partials

v owPO-PO g

Fo(P()) = 1P7() — Pr(j)°

Py (j)#Py (i)

where f,.(P(%)) represents a repulsive force for partial P(7).
By using all pairs of partials for the calculation, partials depart
from condensations.

Figure 2 represents repulsive forces between each pair of three
partials. Since the partials repel close partials more strongly, par-
tial B is moved up.

vsA vsB vsC Combined

t o

Current position

A®

B@® ¢ A
c® v

Figure 2: Repulsive forces applied to three partials

When some partials have the same frequencies, the repulsive
forces between these partials are unable to activate and the attrac-
tive forces are always congruent. To separate these partials, two
options which user can select are prepared.

1. Random repulsive forces are applied to each partial which
is placed at the same frequency with other partials.

2. New frequencies, which is unrelated to current status, are
redistributed to the partials.

When some partials have the same frequencies, the repulsive
forces between these partials are not activated and the attractive
forces are always congruent. In order to separate these partials,
there are two options for the user:

1. Random repulsive forces are applied to each partial which
is placed at the same frequency with other partials.

2. New frequencies, which are unrelated to the current status,
are redistributed to the partials.

Since it is infrequent that multiple partials have exactly the
same frequency, the difference in the final synthesized sound qual-
ities is minimal between the aforementioned options.

2.5. Resistance

When the reference sound has a static frequency component, the
partials have the risk of periodic vibration around a spectral peak.
This is because the attractive forces convert back and forth be-
tween potential and kinetic energy. Therefore, the oscillations are
inhibited by implementing resistance.

fP@) = r(fa(P() + f(P(i)) ©)
produces total force f(P(4)) for partial P(4). r is a resistance
value between 0 and 1.
2.6. Synthesis

The forces, which are derived in section 2.5, are applied to partials
at every frame by addition of the forces
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FITTTT

Figure 3: An example result of the synthesis (the horizontal axis is time and the vertical axis is frequency). “A” is the reference sound
(Horn; from OHz to 2,000Hz), while “B” and “C” are the synthesized sounds which consist of 1000 partials. The attractive force (ga) for

“B” is 0.3, and gr for “C” is 5.

Ps(n,i) = Ps(n—1,1) + f(P(n — 1,4)) ()

where n represents the current time frame.
The sound synthesis is accomplished using a common oscilla-
tor bank synthesis technique [7, 8] which is realized by

y(n) = Z Acos[2m Py (n, i)n + ¢i] )
Vi

where A represents a constant amplitude for each partial, and
an initial phase ¢; is randomly distributed.

An example of the synthesis result is depicted in Figure 3. A
is generated from a horn sound; B and C are the synthesis results
which consist of 1000 partials. The beginning of the synthesized
sound starts with an unpitched noise at the left in the figure and the
pitched tone is constructed gradually.

It is also possible to use the inverse Fourier transform for both
simplified and/or real-time calculation which is proposed in the
section 3.3.

3. APPLICATIONS

In this section, we present some applications for this synthesis
method.

3.1. Dynamic control of parameters

This synthesis method can generate various sounds by adjusting
the parameters. In particular, the coefficients for attractive force
ga, repulsive force g., and resistance r are important for control-
ling the similarity to the reference sound and the quickness of tran-
sitions.

It is possible for users to control these parameters by preparing
time-varying functions. These functions are written in files which
the synthesis program reads in order to synthesize the sound.

Attractive force

Repulsive force

N N N .

Figure 4: An example of the force functions used to generate rhyth-
mic sound.

For instance, periodic changes in timbre are generated by us-
ing the functions depicted in Figure 4, where a rhythm structure
is created. Control of the resistance value is effective to gener-
ate and remove vibrations. Moreover, various effects are realized
by applying these forces to the amplitudes of the reference sound
without preparing function files.

3.2. Timbre morphing

Timbre morphing is a technique used to create a new sound by
combining multiple sounds and transforming the timbres gradu-
ally [9]. Sinusoidal modeling, which is used for the synthesis
method in this paper, is utilized in some cases of timbre morphing
[10, 11]. This synthesis method does not analyze the multidirec-
tional features of the reference sound and it is therefore difficult to
generate a high-quality and well-defined result. However, uncom-
plicated timbre morphing is accomplished by using this synthesis
method.

A sound file which consists of several segments from separate
sound sources is required to accomplish timbre morphing, using
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the file as a reference. Each particle for this synthesis method
varies continuously; therefore, the generated timbre transforms
gradually at the transition of the reference sounds.

By decreasing the attractive force and increasing the repulsive
force at the transition, the synthesized sound converges to the de-
sired sound, and a smooth morphing result is achieved.

3.3. Real-time processing

The synthesis method proposed in this paper generates a wide va-
riety of sounds and controls them through a small number of pa-
rameters; therefore, this method has the potential for realizing a
novel and intuitive user interface for generating sounds. At this
time, it is difficult for off-the-shelf personal computers to gener-
ate high-quality results in real time due to the large calculations
required.

By implementing the ideas below, real-time processing is ac-
complished in computationally limited environments.

1. Decreasing the frame rate(e.g. 30fps)

2. Using a Graphics Processing Unit (GPU)

3. Decreasing the number of partials (e.g. 200)
4. Using the IFFT for synthesis

GPUs are able to realize fast parallel processing; hence it is ef-
fective to calculate the frequencies of many partials using them. In
this research, the GLSL (OpenGL Shading Language) is used [12,
13].

The IFFT (inverse fast Fourier transform) is a common syn-
thesis method which is used for decreasing the calculation time.
In addition to this, the calculation volume is reduced by decreasing
the FFT size and frame rate. However, deteriorations in resolution
in both the time and frequency domains are observed, meaning the
generated sound also has a loss in quality.

4. CONCLUSION

In this paper, structures and applications of a new synthesis method,
which is constructed using sinusoidal editing and a force-based al-
gorithm, were proposed. Although this method is a complicated
tool at this time, examples of productive features are indicated.

The following two points are considered important for the fu-
ture prospects of this research:

1. Development of real-time processing and an intuitive and
interactive user interface.

2. Adoption of advanced physical laws.

As mentioned in section 3, this method has the potential to re-
alize various sound synthesis. However, it is difficult to utilize this
method for musical performances and real-time and/or interactive
compositions due to the large volume of calculations required.

This method also has the possibility to involve various phys-
ical laws, for instance, recent research results of fluid mechanics
indicate large potentials for controlling a vast amount of particles
and streams. The synthesis method presented in this paper has al-
ready accomplished the creation of a wide variety of sounds using
a simple force-based model. It is proposed that more powerful,
flexible, and intuitive synthesis methods can be realized by utiliz-
ing advanced models.
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ABSTRACT

The voice morphing process presented in this paper is based on the
observation that, in many styles of music, it is often desirable for
a backing vocalist to blend his or her timbre with that of the lead
vocalist when the two voices are singing the same phonetic mate-
rial concurrently. This paper proposes a novel application of recent
morphing research for use with a source backing vocal and a target
lead vocal. The function of the process is to alter the timbre of the
backing vocal using spectral envelope information extracted from
both vocal signals to achieve varying degrees of blending. Sev-
eral original features are proposed for the unique usage context,
including the use of LSFs as voice morphing parameters, and an
original control algorithm that performs crossfades between syn-
thesized and unsynthesized audio on the basis of voiced/unvoiced
decisions.

1. INTRODUCTION

Sound morphing is a term that has been used to describe a wide
range of processes and, as of yet, there is no consensus on a stan-
dard definition for the term due to variations in usage contexts,
goals and methods. Despite the disparities in definitions, Caetano
[1] remarks that, in most applications, the aim of morphing can
be defined as “obtaining a sound that is perceptually intermediate
between two (or more), such that our goal becomes to hybridize
perceptually salient features of sounds related to timbre dimen-
sions.” The goal of achieving perceptually intermediate timbres is
complicated by the multidimensional nature of timbre perception
[2]. Classifications of the dimensions associated with timbre [3, 4]
usually distinguish between features derived from the temporal en-
velope of the sound (e.g temporal centroid, log-attack time), and
features derived from the spectral envelope of sounds (e.g spectral
centroid, spectral tilt).

When attempting to achieve perceptually intermediate spec-
tral features between sounds, many morphing systems adopt si-
nusoidal models in which the partials of a sound are represented
as a sum of sinusoids that, in the case of musical sounds, are of-
ten quasi-harmonically related. A common strategy in morphing
systems is to establish correspondences between the partials of
two sounds and to interpolate the frequency and amplitude val-
ues [5, 6]. Methods based on this approach do not account for
resonance peaks or formants that are delineated by the contour of
the sound’s spectral envelope. Consequently, the resulting inter-
mediate spectral envelopes often display undesirable timbral be-
havior in which formant peaks are smoothed rather than shifted in
frequency. Therefore, when hybridizing the non-temporal dimen-
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sions of timbre the challenge is finding parameterizations of the
spectral envelope that can be interpolated to create perceptually
linear shifts in timbre. Some spectral envelope parameterizations
that have been proposed are: linear prediction coefficients (LPC)
[71, cepstral coefficients (CC) [8], reflection coefficients (RC) [7],
and line spectral frequencies (LSF) [9].

Different parameterizations of the spectral envelopes of musi-
cal instrument sounds were recently compared at IRCAM [10] us-
ing spectral shape features as timbral measures to determine which
representations provided the most linear shift in peaks and spectral
shape. They found that, of the parameterizations surveyed, LSFs
provided the most perceptually linear morphs. This supports pre-
vious proposals [9, 11] for the use of LSFs as good parameters
for formant modification. In the morphing process introduced be-
low, this research is used in conjunction with research into the for-
mant behavior of singers that has indicated that individual singers
will sometimes alter the formant structures of vowels to blend in
or stand out in an ensemble situation. Goodwin [12] found that
singers in choirs lowered the intensity of their second and third
formants, and sometimes shifted the formants down in frequency
to blend better. Ternstrom [13] concluded that singers in barber-
shop quartets spread out the spacings of their formants to stand out
for intonation purposes.

This paper presents a novel voice morphing process that is in-
tended to be used as a studio tool to blend a backing vocal with a
lead vocal. The process uses the spectral envelope of a lead vocal-
ist to alter the spectral envelope of the backing vocalist on a frame
by frame basis while preserving pitch information. The morphing
process is built upon the observation that it is common in many
music styles for a backing vocalist to sing the same phonetic mate-
rial concurrently with the lead vocalist. Given this specific context,
the formants of the two signals will be similar, and differences in
the spectral envelopes can be attributed to differences in either the
singer’s pronunciation or the timbral characteristics of the individ-
ual’s voice. It can be aesthetically desirable in this situation for
vocalists to blend their timbre with other vocalists [12, 13]. In this
context, if the spectral envelope of the backing vocalist is morphed
with that of the lead vocalist, and the morphing method creates a
perceptually linear morph, the formants that define phonetic infor-
mation will remain intelligible and only the envelope information
that affects the singer’s individual timbre will be altered. Further-
more, since perceptually intermediary timbres between the two can
be achieved using LSFs, the process can be used as a subtle effect.

This proposed morphing process could be useful in studio sit-
uations where the lead vocalist and a backing vocalist have con-
trasting timbres. In this scenario, the current common practice to
achieve a blended timbre is to multitrack the lead vocalist perform-
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ing both the lead and backing parts. In this situation, the timbral
results are limited to either being perceptually blended (when the
lead vocalist records both parts) or perceptually distinct (when the
backing vocalist records their part). The proposed morphing pro-
cess allows for a larger variety of combined vocal textures by cre-
ating gradations in the amount of blending between the two voices.
The combined texture created by the two voices can be perceptu-
ally blended, perceptually distinct or any gradation in between the
two depending on the LSF settings that are used.

The objectives of this voice morphing process differ from those
of most morphing processes since the objective is not to achieve
the target vocal sound, but rather to use its spectral envelope to
modify the timbre of the source vocal, preserving its original har-
monic structure and hence its fundamental frequency. The objec-
tives of this morphing process share some similarities with those
discussed in [14], in which features from two voices are combined
to create a hybrid voice that retains one voice’s pitch information.

The proposed morphing process falls within the bounds of
some definitions of cross-synthesis in which an “effect takes two
sound inputs and generates a third one which is a combination of
the two input sounds. The idea is to combine two sounds by spec-
trally shaping the first sound by the second one and preserving the
pitch of the first sound.” [15] If this definition is adopted then
the proposed process would be defined as cross-synthesis with a
preliminary morphing stage in which the spectral envelope of the
second sound is altered using envelope features extracted from the
first sound.

In the next section the signal model used to morph the en-
velopes is described and an overview of the structure of an analy-
sis/synthesis system that implements the process is presented. In
section 3 the calculation of the LSF spectral envelope parameteri-
zation is discussed. In section 4 an original control algorithm that
performs crossfades between the synthesized audio and the unsyn-
thesized backing vocal audio is discussed. In section 5 a subjective
discussion of the sonic results and the limitations of the process are
presented as well as our conclusions.

2. SIGNAL MODEL AND THE STRUCTURE OF THE
PROCESS

2.1. Source-filter signal model

This morphing process uses spectral modeling synthesis (SMS),
as described by Xavier Serra [16], to synthesize a morphed ver-
sion of a backing vocal signal. SMS models a sound z(t), by
splitting it into two components, a sinusoidal component x, (),
and a stochastic residual component x(¢). The sinusoidal compo-
nent models the quasi-harmonic element of sounds by first detect-
ing spectral peaks according to a quadratic peak-picking algorithm
[17], followed by a refinement of these peaks on the basis of har-
monic content. This harmonic component of the sound is modeled
as a sum of sinusoids using:

K(t)

on(t) = ar(t) explign(t)] M

k=0

where a(t) and ¢y, (t) are the amplitude and phase of the k™ har-
monic. The residual component is modeled by subtracting the har-
monic component from the original signal. The residual is then
synthesized using noise passed through a time-varying filter. When
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Figure 1: Flow chart diagram of the morphing process. Dashed
lines represent the flow of extracted data. Solid lines represent the
Sflow of audio.

using SMS to synthesize the human voice, the residual generally
models unvoiced sounds such as consonants and aspiration noise.

The synthesis strategy adopted in this morphing process dif-
fers from traditional SMS in its use of a source-filter model which
considers the amplitudes of the harmonics separately from the har-
monics themselves. This model, proposed in [18], divides the har-
monic component of a sound into an excitation source, in which
the amplitudes of the harmonics are set to unity (ax = 1), and a
time-varying filter given by:

H(f,t) = [H(f,t)] exp[j(f, )] )
where |H(f,t)| is the amplitude, and ¢ (f,t) is the phase of the
system. The time-varying filter is derived using spectral envelope
estimation methods described in section 3. The model for the rep-
resentation of the harmonic element is then given by:

K(t)

yn(t) = > [HIt, fu ()] expli(o(t) + ()] G)

k=0

where fi(t) = kfo(t), ¢r(t) is the excitation phase, and [ fx (t)]
is the instantaneous phase of the k™ harmonic. As such, the time-
varying filter models the curve of the spectral envelope according
to the formant structure and individual timbral characteristics of
the singer. This approach, which was originally proposed for mu-
sical instruments, is adopted for the singing voice instead of tradi-
tional source-filter models, such as linear predictive coding, since
it offers greater flexibility for timbral manipulation.

2.2. Process Structure

This morphing process belongs to the class of audio effects dis-
cussed by Verfaille er al. [19] known as external-adaptive audio
effects. External-adaptive effects use features extracted from an
external secondary input signal as control information to modify
a primary input signal. In the case of this morphing process, fea-
tures used to control the source-filter model described above are
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extracted from the lead vocalist’s signal (z1.) to alter the backing
vocalist’s signal (xp,) on a frame-by-frame basis. The structure
of the process (shown in Fig. 1) can be divided into four stages: an
analysis stage, a morphing stage, a synthesis stage, and a control
stage.

During the analysis stage the spectral envelopes of the har-
monic components of both the lead and backing vocal frames are
estimated and parameterized as LSFs using a process described
in section 3. The residual envelopes are extracted by subtracting
their harmonic components from their respective magnitude spec-
tra. Decimation is then used to create line-segment representations
of the residual envelopes. Voiced/unvoiced information is also ex-
tracted from the two vocals using a two way mismatch (TWM)
algorithm [20]. In addition to the three features listed above that
are extracted from both voices, two additional features, the fre-
quencies of harmonics and phase information, are extracted from
the backing vocal. These two features are used, unaltered, during
the synthesis process. By using the original phase and harmonic
structures, the pitch information of the backing vocalist’s audio is
preserved and only its timbral qualities are altered.

During the morphing stage of the process, the parametric rep-
resentations of both the harmonic and residual envelopes (LSFs
and line segments, respectively) are morphed using:

M(a) = aSpy + [1 — a]SBe 0<a<l1 )
where S1., and Sp, are arrays containing the spectral envelope pa-
rameters of the lead and backing vocals respectively. The variable
« is the morph factor that controls the amount of timbral blending.
The morphed parameters are input into the SMS system during
the synthesis stage of the process along with the original harmonic
frequencies and phase information of the backing vocalist. The
final control stage of the process (described in section 4) uses the
voiced/unvoiced information extracted during the analysis stage to
perform crossfades between audio produced by the SMS system
and the original unvoiced backing vocal audio.

The overall structure of the effect, and the unique control al-
gorithm (discussed in section 4) were designed with the intention
of laying the ground-work for a real-time SMS implementation. A
possible real-time effect could be implemented using a side-chain
to input the lead vocal signal. A similar real-time SMS application
has been discussed in [21].

3. MORPHING USING LINE SPECTRAL FREQUENCIES

The chosen method of calculating LSFs begins with the magni-
tudes of the harmonic component of x;, which are derived us-
ing the peak-picking algorithm. The harmonic component is first

squared and then interpolated to create the power spectrum | X (w)|?.

An inverse-Fourier transform is performed on the power spectrum
to calculate autocorrelation coefficients (754 (7)) according to the
Wiener-Khinchin theorem:

e (1) = FH{|X (w)[*} (&)

The first p autocorrelation coefficients are used to calculate p linear
prediction coefficients using Levinson-Durbin recursion to solve
the normal equations:

P

Zakrm(ifk)zrm(i) i=1,...,p. (©6)

k=1
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Figure 2: Spectral envelopes demonstrating the effect of morphing
sung [a] vowels using LSFs (overlaid in dashed lines). The hy-
brid envelope shows the resulting formant shift behavior when a
morphing factor (a) of 0.5 is used.

LSFs are then derived from the linear prediction coefficients (a)
by considering the coefficients as a filter representing the reso-
nances of the vocal tract. Based on the interconnected tube model
of the vocal tract, two polynomials are created that correspond to a
complete closure and a complete opening at the source end of the
interconnected tubes [22]. The polynomials are generated from
the linear prediction coefficients by adding an extra feedback term
that is either positive or negative, modeling energy reflection at a
completely closed glottis or a completely open glottis respectively.
The roots of these polynomials are the LSFs. A thorough expla-
nation of the process of calculating LSFs from linear prediction
coefficients, as well as the reverse process, is given in [22].

In the line spectral domain, the LSFs from the backing vocal
are morphed with the LSFs from the lead vocals using equation
(4). An example of morphed LSFs and the hybrid spectrum cre-
ated using this process are shown in Fig. 2. The figure shows a
clear shift in the amplitudes and central frequencies of the of the
third and fourth formants, demonstrating the good interpolation
characteristics discussed in [9, 11, 10]. These morphed LSFs are
then converted into the linear prediction coefficients that constitute
the all-pole filter H|fx(t)] discussed in section 2.1. Using

1
1437 a(n)exp[—jwrnTs]
where wy, = 27 fi, and T is the sampling interval, the linear pre-
diction filter is evaluated at the individual harmonic frequencies.

Hwg] =

()

4. CROSSFADE ALGORITHM

An important feature of this morphing process is a control algo-
rithm that performs crossfades (shown in Fig. 3) between the
original unvoiced consonants of the backing vocal and morphed
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Figure 3: The synthesized harmonic plus stochastic audio (top fig-
ure), the unsynthesized original audio (bottom figure), with their
respective crossfade gain values. Crossfades with an exponential
value of 2 and a fade length of 2 windows (2048 samples) were
used.

voiced sounds. This reconstruction algorithm for the morphing
process uses the voiced/unvoiced classifications for the frame plus
a fade position inherited from the previous frame. The crossfades
are performed by indexing tables created with user-defined expo-
nential curves. The fades are designed to be at unity gain and the
number of samples needed to complete a fade is specified by the
user in window lengths. In the experiments discussed below in
section 5, the hop size of 256 samples is taken into account when
performing the crossfades by applying the indexed gain amount to
only 256 samples at a time. The length of the fade was set to 3072
samples with an analysis window-length of 1024 samples and a
sampling frequency of 44100 Hz.

The crossfades address a number of issues that are unique to
the application context. Firstly, although the morphing process
is designed to operate under the condition that both voices are
singing the same phonetic material concurrently, there will almost
always be discrepancies in the timing of the two voices. To avoid
the spectral envelope of a consonant being imposed on the har-
monic structure of a vowel, or vice versa, the algorithm checks
whether either of the two voices contain unvoiced sounds in their
corresponding frames. If so, the algorithm either fades towards the
original unsynthesized audio or it remains with the unsynthesized
audio at full gain, depending on the initial position of the fade.
An equally important reason for using a crossfading system is that
the transients of consonants synthesized using the filtered noise of
SMS are considered to lack realism due to a loss of sharpness in
their attack [17, 23]. A reason for performing a gradual crossfade
is to make up for inaccuracies in voiced/unvoiced decisions made
by the TWM algorithm during the analysis stage. These inaccu-
racies can be observed in Fig. 3 by the presence of jagged lines
during either steady state voiced sections or during transitions.
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Figure 4: Demonstration of the vowel spectra of a phoneme ([a])
created when the target lead vocal has either a lower (a) or higher
(b) fundamental frequency relative to the backing vocalist. In (a)
the lead vocalist has a lower fundamental ( fo = 147 Hz) and the
backing vocalist has a higher fundamental ( fo = 497 Hz). In (b)
the fundamental frequencies are swapped.

They represent decisions that change quickly over the course of
a small number of frames. They are usually a single voiced frame
surrounded by unvoiced frames, or vice versa. The use of grad-
ual transitions masks the overall impact that these isolated voicing
classifications have.

5. DISCUSSION

5.1. Informal Testing

The effectiveness of the two principal features of this morphing
process (the use of LSFs and the reinsertion of unvoiced conso-
nants using crossfades) were informally tested by comparing the
morphing process with a second SMS-based morphing process
[24] that uses synthesized unvoiced segments and morphs voiced
segments using simple interpolation of the spectral envelopes cre-
ated by the harmonic components. From a five second recording
of a backing vocal, two sets of processed backing vocals were cre-
ated: one using the morphing process presented here, and another
using the second envelope interpolation process used for compar-
ison. In each of the sets, the backing vocal was synthesized using
the morphing factors: a = 0, 0.5, 1.0. To assess the realism of
the resulting audio, the two sets were first played independent of
their corresponding lead vocal. Subsequently, the same processed
backing vocals were played in conjunction with their correspond-
ing lead vocal to informally assess the level of perceptual blending.

An initial observation was that the realism contributed by the
reintroduction of the original unvoiced consonants using the cross-
fade algorithm was significant when compared with the envelope
interpolation process without the reinsertion of consonants. Sim-
ilar to what was found by [17, 23], the use of SMS to model un-
voiced segments was considered to result in consonants that lacked
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definition due to being modeled by the noise residual. A drawback
of the use of the crossfades was that, as « increased, there were
noticeable artifacts that appeared during the transitions between
synthesized and unsynthesized audio. These artifacts are due to
the differences between the two spectral envelopes that are percep-
tually highlighted by rapid changes. The effect of these artifacts
can be reduced by increasing the length of the crossfade. When
considering the realism contributed by the LSFs, as the o value
was increased, the resulting voiced sounds of the LSF-based mor-
phing process remained defined and realistic, due to the linear shift
in timbral features. In contrast, the voiced segments synthesized
using the second SMS morphing process lacked definition at o =
0.5, due to the peak smoothing behavior that occurs during the in-
terpolation of envelopes. When the two sets of processed backing
vocals were played in conjunction with the lead vocal it was con-
sidered that the formant shift behavior due to the use of LSFs in-
creased the level of perceptual blend between the two voices as the
« value was increased. With the second SMS morphing process,
this was not always the case due to the peak smoothing behavior.

5.2. Limitation

One of the limitations of the morphing process presented here is
that it cannot be used to effectively blend backing vocals that have
a lower fundamental than their corresponding lead vocals. This is
due to the envelope-sampling behavior of harmonics. As shown
in Fig. 4, the harmonics sample the vowel envelope at frequen-
cies that are approximately integer multiples of the fundamental.
Given the case of a backing vocal with a lower fundamental than
the lead vocal, the lead vocal vowel envelope will not be sampled
at a high enough rate for the backing vocalist to accurately recre-
ate the formants of the vowel. In addition, the harmonics of the
backing vocal that are at lower frequencies than the fundamental
of the lead vocal cannot be designated appropriate amplitude val-
ues since there is no vowel envelope information at frequencies
below the fundamental.

5.3. Conclusion

The voice morphing process presented in this paper uses LSFs to
modify the timbral characteristics of a backing vocal, including
the frequencies and strengths of formants, to achieve different lev-
els of blending with a target lead vocal. In choral situations, for-
mant modification by singers has been observed in which formant
strengths have been lowered and centre frequencies slightly shifted
for the purpose of blending [12]. Although the actions of a choral
singer and the timbral modifications produced by this process cre-
ate different results, both are motivated by the objective of produc-
ing a homogeneity of timbre through modification of the spectral
envelope. For this reason, this process is proposed as a potentially
valuable artistic tool for blending two voices.
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ABSTRACT

We present an analysis of short-time time-reversal on audio sig-
nals. Based on our analysis, we define parameters that can be used
to control the digital effect and explain the effect each parameter
has on the output. We further study the case of 50% overlap-add,
then use this for a real-time implementation. Depending on the
window length, the effect can modify the output sound variously,
from adding overtones to adding reverse echoes. We suggest ex-
ample use cases and digital effects setups for usage in sound design
and recording.

1. INTRODUCTION

Overlap-add (OLA) methods are widely used in digital audio ef-

fects. Examples include time stretching, pitch shifting, phase vocoder,

and more complex effects based on the short-time Fourier trans-
form (STFT). [1,2,3,4,5,6,7, 8]. In this paper, we explore a spe-
cial case of OLA effects termed short-time time-reversal (STTR)
— reversal of overlapping short time intervals.

Time reversal is widely used in many fields including acous-
tics, ultrasound, underwater communications, and biomedical en-
gineering as a method for focusing propagated signals ([9, 10]).
Contrarily, it does not seem to be a noticeable topic in the digital
audio effects literature. The application of time reversal in audio
effects is generally not covered because the system becomes non-
causal. For short time intervals, however, it is possible to add a
short delay to the output, a buffering period similar to that of de-
lay line effects, to alleviate non-causality. It is worth noting that
though STTR is linear, it is not time invariant.

Time reversal audio effects are available on the market. Grain
Reverser, a Max for Live plugin, and Reverse Grain from Native
Instruments are examples. These audio effects are designed to be
temporal not spectral. As we will examine in later sections, time
reversal of shorter time intervals, 30 ms or less, with overlap-add
creates complex spectral and temporal effects and opens new pos-
sibilities for sound design. However, due to the nature of the effect
it may be hard to control and may create unexpected and unpleas-
ant results. We shed light on this through Fourier analysis.

The remainder of this paper is structured as follows. We math-
ematically define STTR and look at the Fourier analysis of STTR
(§2), cover the parameters of STTR and examine the effects of
each parameter (§3), explore a special case with 50% OLA (§4),
look at a real-time implementation of the 50% OLA case (§5), and
discuss observations using the implementation (§6).

Julius O. Smith

CCRMA,
Stanford University
Stanford, CA, USA
josl@ccrma.stanford.edu

2. FOURIER ANALYSIS

In this section, we define STTR and perform a Fourier transform
to study its effects in the frequency domain.

2.1. Short-Time Time-Reversal

Let z(t) be the input signal and w(¢) be the window function of
length L with constant overlap-add for step size R: (Equation 2.1)

e}

Z w(t—mR) =1 2.0

m=—o0

The STTR signal y(t) is formed by the following steps.
Step 1. Window the input signal z(t) with w(t — mR).
Step 2. Reverse the signal under the window:

(a) Move the windowed signal to the origin.

(b) Reverse the windowed signal.

(¢) Move it back to the original position.
Step 3. Sum the reversed signals.
Following the steps we get

y(t)= > a(~t+2mR)w(t —mR). (2.2)

m=-—o0

Note that without the time reversal, the time shifts for z(¢) from
Step 2 would cancel out.

2.2. General Derivation

The Fourier transform of y(t) becomes

[e%s}

Y(f)= >

m=-—o0

e—27rimeRX(_f) % e—QWimeW(f). 2.3)

We can expand the convolution in equation (2.3) and use the Fourier
transform of an impulse train to simplify Y (f) to

Y(f):% i X(f—%)W(%—%). (2.4)

k=—o00

For a detailed derivation of equation (2.4), see the Appendix.
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Figure 1: A visualization of equation (2.5), the STTR output for a
single sinusoid, for fo < fTR (1a) and fo > fr (1b). The dotted
vertical lines mark multiples of fr. In la, the dashed lines show
the magnitude |W (fi£2)] for frequency f:f. Compared to the win-
dow function spectrum |W (f)|, the impulse functions need to be
scaled by i.

2.3. Single Sinusoid Input

From a quick glance equation (2.4) may not intuitively make sense.
We can gain insight into the effect of STTR in the frequency do-
main by looking at the simple case of a single sinusoid.

For a single sinusoid z(t) = cos(27 fot), equation (2.4) be-
comes,

V()= 55 0 (WS - £

k=—o0

WA~ f;)} @5)

where fr = &, fif = kfr £ foand fif* = kfr £ 2fo.

At each integer multiple of frequency fr, we get two peaks
at offsets + fo, a weighted copy or “reflection” of the original fre-
quency spectrum (f7 ). The weights are given by not the corre-
sponding sample of the window spectrum but that at offsets 2 fo,
twice the frequency offsets ( fkﬂ). Figure 1 visualizes equation
(2.5) for two cases, fo < fr/2and fo > fr. When fo < fr/2
finding the correct weights for each peak at f| ,j[ is trivial. It quickly
gets complicated when fo > fr (Figure 1b). Adjacent peaks are
not from the same reflection, i.e. f; is not the closest peak to f;".
The weights for each peaks are from even further away points.
Furthermore, the original frequency fo is not necessarily the peak
with the greatest amplitude.

Figure 2b shows the spectrogram of the STTR output for a
linear sine sweep for a short window length. The pattern on this
figure can be explained by equation (2.5). We cover the parameters
of STTR and the observed effects of each parameter in §3.

2.4. Gaussian White Noise

We look at the discrete STTR to analyze the output for Gaussian
white noise. Let z[n] be an uncorrelated Gaussian white noise pro-
cess and y[n] the output after STTR. Since all samples of y[n] are
linear combinations of z[n], we know that they are also Gaussian
random variables.

We now look at the covariance matrix to verify if all samples
in y[n] are uncorrelated. We first look at the case of 50% OLA
(R = L/2), then extend this to the generalized case. For a given
section along the alignment of half the window length, like one
slot in Figure 3, the output will be the weighted linear sum of the
surrounding time slots. Let X be a 3R x 1 random vector with the
values of z[n] forn = [mR, (m+3)R), the span of 2 overlapping
windows, and Y be a R x 1 random vector with the values of y[n]
forn = [(m + 1)R, (m + 2)R), where the two windows overlap.
We can formulate Y as follows,

Y=(A 0 B)X

where
A_,_{w[j] i=R—-1-7;
Y710 otherwise,
and
Bhi{’w[j-i-R] i=R—1—j;
Y10 otherwise.

That is, A and B are cross diagonal matrices with the split window
components of w[n] for each overlapping component from the cor-
responding parts of z[n]. Since the covariance matrix of X, Vx is
the identity matrix I, the covariance matrix of Y is

A
Vw=(A 0 B)I| 0
B

= AAT + BBT  (2.6)

Since A and B are cross diagonal matrices, Vy is a diagonal
matrix and thus all elements of Y are uncorrelated. We can gen-
eralize equation (2.6) to any overlap ratio by splitting w[n] onto
more cross diagonal matrices. This holds true regardless of the
window type. The values of the main diagonal, however, will not
be constant (V3 # I) but will be dependent on w(n] and the over-
lap ratio. This means the window type and overlap ratio will be
imprinted on the variance for each sample within a given slot. See
[11] for an analysis of the effects of OLA on noise.

3. PARAMETERS

Equation (2.5) gives us insight into the parameters that can be used
to change the audible effects of STTR. First we can change the
window type as well as the length of the window L. Also, we can
change R, the step size.

3.1. Window Type

The window type defines the shape of the function W ( f). This af-
fects the weights of the overtones. Choosing a window with high
sidelobe levels, e.g., a rectangular window, will in general increase
the power of the overtones. By smoothly changing the window
shape it is possible to shape the overtones. Compared to the side-
lobe levels, the mainlobe width has a subtle effect of spreading the
peak energy, i.e., the frequency with maximum power over a num-
ber of sinusoid peaks. It is worth noting that the peak frequency is
not necessarily the original sinusoid frequency (Figure 1b).
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Figure 2: Spectrogram plots showing the effect of STTR window length for 50% overlap-add. The sampling frequency for all signals in
this figure is 20 kHz. Figure 2a shows the spectrogram of the input signal, a 10 second linear sine sweep from 0 Hz to 10 kHz. For short
window lengths the “reflected” overtones of the signal are visible (2b). As the window length and hop size increase, the reflections are
pulled in closer to the main diagonal, decreasing the visibility of STTR on the spectrogram (2c). Further increasing the window length, the

time reversal structure becomes visible (2d).

3.2. Step Size

For short window lengths, the step size R changes the reflection
frequencies kfr. Decreasing R will increase spacing between
overtones fr = 1/R. The step size will also change the overtone
weights as can be seen in Figure 1. We can regulate the overtone
weights in regard to the window length by defining the overlap
ratio « = R/L and using this as a parameter instead of R.

3.3. Window Length

The window length L determines the width of the window spec-
trum W (f). As L increases the width of W (f) decreases, even-
tually resembling an impulse function. At the same time the time
reversal effect becomes more audible due to the longer durations
that become reversed.

Figure 2 shows the spectrograms of STTR on a linear sine
sweep from 0 Hz to 10kHz with different window lengths. For
shorter window lengths (2b), we see the overtones explained in
§2.3. For window lengths around 30 ms (2c), the width of W (f)
decreases to the point that the reflections disappear on the spec-
trogram. However, STTR affects the timbre adding roughness or
shimmer to the sine sweep. At longer lengths, window lengths
beyond 100 ms (2d), we see the overlapping reverse sweeps.

3.4. Relation between Parameters

Though we cover the effects of each parameter separately, it must
be noted that they are not independent. The spectrum W (f) de-
pends on both the window type and the window length. The weights
of each overtone depend on both W ( f) and R.

Furthermore, the step size R must be chosen so that equation
(2.1) holds. R cannot be an arbitrary value and is dependent on
the type of window as well as its length. When the window side-
lobe level is negligible above some frequency f., all step-sizes
R < fs/f. will yield substantially constant overlap-add, where
fs denotes the sampling rate [1, 7].

We can reduce the complexity by fixing the overlap ratio, c.
For a fixed «, the window length becomes the parameter that changes
the effect of STTR most, since R = L. In the following sections
we cover the case where a = 0.5 (50% OLA).

4. SPECIAL CASE STUDY: 50% OLA

Here we examine a case for a fixed 50% overlap ratio (o« = 0.5).
The price of fixing « is to lose the freedom of changing the weights
of the overtones. However, it simplifies the process of designing a
window function.

For a window function to work for 50% OLA, it must satisfy
the following constraints.

1. Non-negative w(t) is assumed to be non-negative:
w(t) >0

2. Symmetry As with most window functions, we expect w(t) to
be even:
w(t) = w(-t)

3. Constant OLA From equation (2.1) with C' = 1and R = £,
w(t) +w(§ +t> =1.

From the constraints above, we find that we can choose any
shape for the interval t = —%, —%), a quarter of the window,
with the only constraint being w(£%) = 1. This opens possi-
bilities for designing various windows to create different overtone
weights, including linear mixtures of known constant OLA win-

dows.

5. IMPLEMENTATION

In this section we cover an audio plug-in implementation of 50%
OLA STTR. Figure 3 shows the timing relations between the input
buffer and the output buffer. This can be implemented efficiently
using a single delay line and two output taps. In general, for an
arbitrary overlap ratio o, we need [ 1] taps. The length of the
delay line is 2Lnq4, Where Li,qq is the longest allowed window
length. This is constant regardless of the step size. We can also
add another output tap on the delay line to delay the input signal
to match that of the STTR signal.
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Input Buffer

Figure 3: Relation between input signal and output signal for 50%
OLA STTR. It shows two overlapping windows and the corre-
sponding read and write directions. We can see that the first sample
of a windowed input signal will be the last to be rendered to the
output, two window lengths later.

We implemented 50% OLA STTR as an audio plugin with
JUCE!. For practical purposes, we exposed the parameters, win-
dow length, window shape and wet/dry mix. The window length
parameter is on a log scale ranging from 0.1 ms to 0.5 s. The win-
dow shape parameter, ranging from 0 to 1, mixes a rectangular
window with a Hann window with O being the rectangular window
and 1 being the Hann window. The wet/dry mix weighs the output
of STTR with the original signal. This is particularly useful for
taming the harshness of STTR caused by the overtones. We will
look at some example uses in §6.2.

6. OBSERVATIONS

Implementation of an audio plug-in allows the real-time explo-
ration of the digital audio effect. In this section, we test various
input signals and present the findings. We cover the perceptual
qualities of STTR and suggest example use cases.

6.1. Perceptual Effects of STTR Depending on Window Length

In §2, we covered the effects of window length on a single sinusoid
and Gaussian white noise. Here we will make a qualitative assess-
ment on the effects of STTR on more complex audio signals.

For window lengths of less than 1 ms, STTR creates many reg-
ularly spaced overtones. This causes the output to sound harsh,
metallic and aliased, but with no stretching of the original frequen-
cies. The effects are mostly spectral with almost no effect in the
time domain.

For window lengths between 1 ms and 30 ms, we start hearing
deflections in the transitions, that is, the pitch, like that of a singing
voice, starts moving in a different direction than the original signal.
Tonal sounds start sounding detuned.

From 30 ms to 100 ms, the sounds start to flutter. STTR starts
having a temporal effect. For sounds like guitar, it adds a shim-
mering effect, similar to a mixture of chorus and reverb.

Beyond 100 ms, we hear the time reversal. Mixing some of
the input signal makes it a reverse echo effect. Due to the delay
in the implementation, when mixed with the input signal the delay

Mttp://www. juce.com

becomes noticeable at larger window sizes, which also contributes
to the timbre.

6.2. Example Usage

Based on the observations in the previous section we have found
example use cases for our implementation of 50% OLA STTR.?

One obvious use is to set a long window length, mix the out-
put with the dry signal and use it to create a reverse echo effect.
This works particularly well with arpeggiated instruments such as
guitars or pianos.

STTR can be used to change the direction of pitch by setting
the window length around 1 ms and 30 ms. Since this extends the
spectrum, it is recommended to add a low pass filter to reduce the
extreme overtones. This can be used on pitched sounds such as a
speech or a car accelerating to make versions with different pitch
trajectories.

STTR can also be used to extend the spectrum and add sparkle
when set to very short window lengths. For this use, it is recom-
mended to use a low pass filter or band pass filter as an input stage
to control the aliasing effects and also a low pass filter on the out-
put stage to reduce extreme overtones.

7. CONCLUSION

We have presented STTR, a novel digital audio effect for manip-
ulating an input signal both spectrally and temporally. Despite its
simple implementation, one delay line and a few output taps, it is
possible to achieve a variety of effects by changing the window
length. STTR opens up new methods for designing and manip-
ulating sounds. We conclude this paper by examining possible
extensions of STTR.

We examined the case of 50% OLA STTR and found the de-
grees of freedom for designing window functions to shape the
overtone. It is worth looking further into the effects of the shape of
the window function on the timbre and find window design princi-
pals for 50% OLA STTR.

Another aspect to further investigate is the effect of time vary-
ing window lengths. We hypothesize that for short window lengths,
the effect will be similar to a chorus effect (time varying comb
filters), yet the spectral peaks will move in alternating directions
which may cause a different perceptual effect. We have yet to see
what the effect will be at longer window lengths.

Pitch synchronous STTR is also a promising direction to ex-
plore. At short window lengths, STTR expands the spectrum of an
input signal. Together with a pitch tracker, it may be possible to
harmonize a musical signal tonally or atonally. This can also be
used to bend the direction of pitch by taking advantage of the fact
that we have overtones moving in both directions.
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9. APPENDIX: DERIVATION OF EQUATION (2.4)
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On the third line, we use the Fourier transform of an impulse train,
the Dirac comb function III7(¢).

[eS]

HIT(t): Z 5(t—kT):% Z o2mikt/T
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ABSTRACT

Mastering audio is a complicated yet important step in music pro-
duction. It is used for many purposes, an important one is to ensure
a typical loudness for a piece of music within its genre. In order to
automate this step we use a statistical model of the dynamic sec-
tion. To allow a statistical approach we need to introduce some
modifications to the compressor’s side-chain or more precisely to
its ballistics. We then develop an offline framework to determine
compressor parameters for the music at hand such that the signal’s
statistic properties meet certain target properties, namely statistical
central moments, which for example can be chosen genre specific.
Finally the overall system is tested with songs which are available
to us as unmastered, professionally mastered, and only compressed
versions.

1. INTRODUCTION

Mastering audio is a complex task which requires an experienced
sound designer. There is a huge amount of literature giving ex-
perience-based tips to sound designers on how to master mastering
music. One of the best-known and most cited examples would be
Bob Katz’ "Mastering audio” [1].

An alternative approach to set the compressor parameters is
the use of presets coming with today’s software mastering tools
like compressors and limiters. The drawback of these presets is,
that they do not take into account the properties of the piece of
music at hand, therefore a satisfying result can not be guaranteed.

Recently Giannoulis et. al. [2] proposed an automation of the
compressors parameters based on the input signal’s temporal be-
havior with only a single user controlled parameter, namely the
compressor’s threshold. Vickers [3] presented a method to auto-
mate a compressor based on the input signal statistics. His ap-
proach still has the need of the user controlled parameter thresh-
old, as well as two target parameters, one to define the input-output
relation and one to set a make-up gain, and of course the ballistics
of the compressor.

We will present a new way to determine the control settings of
the compressor depending on the material at hand and statistical
determined target parameters without the need of any adjustments
by the user. This will be done by means of the input signal statistics
and an arbitrary reference, which could be the typical statistics of
its genre. The statistical properties of music have been investigated
in various ways. See for example [4], [5] and [6] which can be used
as a starting point for more information on genre specific statistical
properties, [7] gives an overview of statistical features which can
be used to describe a compressor’s behaviour.

Stephan Herzog,

Department of Digital Signal Processing
University of Kaiserslautern
Kaiserslautern, Germany
herzogleit.uni-kl.de

In Section 2 we describe a classical compressor and its param-
eters. Section 3 introduces the statistical model of the dynamic
section and defines some modification concerning the ballistics
and signal feature detector of the compressor. This is used in Sec-
tion 4 to present an offline procedure to estimate the compressor
parameters needed to match certain target central moments based
on the properties of the music at hand. This procedure will be eval-
uated in Section 5. Finally, Section 6 will summarise the proposed
framework and its result and suggest fields of further research.

2. COMPRESSOR CONTROLS

There are countless compressor topologies, but all of them are us-
ing a signal path and a control path, the so called side-chain. This
side-chain is typically realised in a feedforward structure. The
principle block diagram is shown in Fig. 1, with the side-chain
usually working on levels and consisting of four basic blocks

e asignal feature detector, like the Root Mean Square (RMS)
or Peak detector to control the compressor based on the sig-
nal feature to be altered,

e the gain calculation based on an arbitrary input-output rela-
tionship, given as a characteristic curve,

e the ballistics, a gain smoothing stage with different time
constants for rising and falling edges to reduce non-linear
distortion on transient signals

e and finally the so called make-up gain, an increase of the
calculated gain by a constant.

We will first describe these blocks in detail before we will discuss
their contribution to the statistical model of the compressor. In the
following we assume normalised pieces of music as input signals.

2.1. Signal feature detector

Classic analog compressors (or digital realisations of it) use ei-
ther Peak or short time RMS detectors to control the compressor’s
characteristic [8]. This is done because of the simple realisation,
not the musical or psychoacoustical meaning of these measures.
With digital signal processing we can use arbitrary measures, like
for example a complex loudness model with signal level depen-
dent spectral weighting or a simplified model like in [3]. In order
to keep the presented method a general framework we will use the
term C, for the input feature used in the side-chain. Analysing
the compressors output y using the same detector yields the corre-
sponding output feature C,.

DAFx-35



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

delay

detector| _Cx

Cxﬁ

ballistic @ delog

make-up

Figure 1: principle block diagram of a compressor with suggested extensions (grey).

2.2. Characteristic curve

The classical compressor characteristic is given by two parameters,
namely the threshold (7") and the ratio (R). For levels below 1" the
gain is 1, above T the slope of the characteristic is determined by
the reciprocal of R. Fig. 2 illustrates the classical characteristic
with 7' = —30 dB and R = 3 : 1 (solid) and the same character-
istic with a make-up gain of M = 20 dB (dashed).
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Figure 2: classical characteristic curve of a compressor with
(red,dashed) and without (green, solid) make-up gain.

2.3. Attack and release times, the ballistics

The gain calculated based on the signal feature and the character-
istic curve is usually smoothed to reduce non-linear distortion on
transient signals and to suppress gain ripples produced by low fre-
quencies. This is realised with different time constants for rising
and falling gains, the attack time 7, and the release time 7, re-
spectively. The user needs to select the attack and release times
carefully which complicates the use of a compressor.

Katz [1] gives the following typical ranges: attack times rang-
ing between 50 ms and 300 ms, common value 100 ms, release
times lying between 50 ms and 500 ms, common value range be-
tween 150 ms and 250 ms. These values should be set suitable for
the music’s temporal behaviour, or in Katz’ words: "it’s counter-
productive to go against the natural dynamics of music” .

Due to the ballistics, the gain reduction or the actual compres-
sion depends not only on the input signal’s characteristic level C
but also on its temporal characteristics.

2.4. Make-up gain

The make-up gain is an added constant (sometimes signal depen-
dent and time-varying as e.g. in [9]) to raise the system’s output
gain. We will use this block to normalise the chosen signal char-
acteristic. This means we do not want to reduce the maximum of
C, (say the RMS value), instead we want to amplify the lower
(RMS) parts of the signal. In other words the make-up gain should
bring the maximum output value to the maximum input value, for
example 0 dBFS. This leads to

1
M:—T(1—§>. M

In Fig. 2 the dashed line shows the characteristic curve with a
make-up gain according to equation (1) applied.

3. STATISTICAL MODEL OF A COMPRESSOR

The description of a compressor by means of signal statistics has
recently been proposed by Shuttleworth [7]. He uses different sig-
nal features, i.e. inflection points as a peak measure, short and long
term RMS as well as their partition into several frequency bands,
to investigate the effects of a compressor by its Probability Density
Function (PDF).

The statistic properties of any signal s is completely charac-
terised by its PDF fs. It is obvious that the compressor generates
an output y with a PDF depending on the input’s PDF and the com-
pressor parameters. This holds of course for the PDF of any signal
feature C,, (e.g. the RMS levels) used in the side-chain, namely
fe, and fc, respectively, with

fe, = glfc,,T,R,M] . ®)

The influence of each block of the side-chain on fc,, is now dis-
cussed to find an analytic expression for the function g.

The detector determines the signal feature to be altered. The
static characteristic curve of the compressor is mainly responsible
for the transformation of the PDF. This usually leads to a non-
linear relation between input and output PDF that can be expressed
analytically. The make-up gain just shifts the PDF by M and is

DAFx-36



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

therefore a simple linear transformation. The ballistics however
lead to a transformation which depends not only on the level of the
input’s signal feature C, but also on its temporal characteristics
and thus can not be modelled appropriately in a statistical manner
directly. Fig. 3 illustrates this effect in the time domain.

0dB
-10 dB
-20 dB

-30 dB

01 02 03 04 05 06 07 08 09 1 1.1 12 t(s)

Figure 3: Illustration of the ballistics in the time-domain, red
(solid lines) areas are above T' but not fully compressed due to
Ta = 100ms, green (dashed lines) areas are below T' but partly
compressed due to T, = 200ms.

The red/green areas show the regions above/below threshold
in which the gain does not follow the static characteristic due to
the attack/release time. Their sizes are a direct measure for the
variation from the static characteristic. By comparing the first red
and green areas with the second ones it can be stated, that the faster
the signal’s feature cross the threshold the larger these areas are.

The ballistics behave like different low pass filters for descend-
ing and ascending gains with corner frequencies inverse propor-
tional to the attack and release time and thus can not follow fast
changes in C,. The effect therefore can be lowered by simply
adapting the attack and release time on the signal variation in time.
We propose the use of automated ballistics based on recent re-
search by Giannoulis et. al. [2]. In the following we will give a
brief summary of their automated ballistics, extend their approach
and show a computational efficient way to realise the proposed au-
tomation.

3.1. Auto ballistics

Giannoulis et. al. proposed an algorithm to ease the adjustment of
the compressor parameters for the user. They automated the attack
and release time based on the so called Spectral Flux (SF) of the
input signal, which is a common tool for note onset detection. It
sums the bins of the input short time spectrum in which the energy
raises (positive half-wave rectifier) from one block to another, nor-
malised by the total signal energy. This measure will be low for
steady state signals and will show peaks for abrupt changes in pitch
or transient level increase.

The basic concept of this approach is to use short response
times for material consisting of strong transients and longer time
constants for signals with constant levels over time. Giannoulis et.
al. set the attack and release time inversely proportional to the SF.
Listening tests with both, professionals and amateurs showed good
results for this signal dependent automation of the ballistics [2].

This method seems a promising starting point to automate the
ballistics in a musical sense as well as to lower the time depen-
dency of the PDF transformation as described before. To do so, we
will need to extend this approach to satisfy the following two con-
ditions: First falling transients to automate the release time sepa-
rately need to be included, whereas changes in pitch without sig-

nificant changes in signal level should to be excluded in the mea-
sure. Second the measure should correlate strongly with the slope
of level increase respectively decrease. Finally we will discuss the
use of this measure with an arbitrary signal feature detector.

In [2] the SF alters the attack time as well as the release time
which leads to good musical performance. Following this ap-
proach and taking into account that falling transients, i.e. an abrupt
end of a sound, should alter the release time of a compressor, we
propose to denote SF, as it is a measure for increasing energy or
onset, by SF* and extend it by SF~ which sums falling energy
bins (negative half-wave rectifier) or in other words is a measure
for note offsets or falling transients.

By adding SF and SF~ to SFZ the change of a note without
a significant change in loudness will no longer be detected. A
positive value will show an abrupt raise in signal level which can
be used to scale the attack time of the compressor. A negative
value indicates an abrupt fall in signal level and can therefore be
used to scale the release time.

Following [2], for our simulations' we used a N = 1024 sam-
ple Fast Fourier Transformation (FFT) with a hann window and
an overlap of N/2 to produce a value every 512th input sample
(hop size h = 512) or every block k. Windowing the data prior to
the FFT is important in order to reduce so called end-effects and
therefore smooth the spectrum and thus the SF.

Fig. 4 (b)? illustrates ST, SF~ and SFZ for a sine-wave with
abrupt changing level and frequency. It is clearly visible, that SF-
is a good measure to detect rising and falling transients in signal
level.

In order to reduce the computational effort we will realise a
similar measure in the time domain. As the introduced SF2 ba-
sically indicates the differences in signal energy between two ad-
jacent blocks we can also use the differentiation of the length V
RMS value of the windowed® input signal # calculated with a mov-
ing averager, namely

N-1 N-1
Apumslk] = | Y #2[kh +i]— #2[(k—1Dh+1i. 3)
=0 =0

Fig. 4 (c) illustrates this measure. It can be seen that the pro-
posed measure is similar to SFX. Tt even correlates more with
the amount of signal energy increase respectively decrease. This
is not surprising since SF was introduced to detect note onsets and
not their levels, hence due to the normalisation by the block energy
every change in level will be detected almost equally.

Aprwmg satisfies the required modifications, namely positive
values are proportional to the slope of rising transients, negative
values are proportional to the slope of falling transients and changes
in frequency are ignored. Using this measure to scale the ballistics
of the compressor guarantees a signal dependent attack and release
time which will smooth the gain accordingly to the temporal be-
haviour of the input signal.

The use of any signal feature detector other than RMS leads to
the need of a different measure as the characteristic and of course

'With a sampling rate of fs = 48kHz.

2The chosen test signal is equivalent to that in [2] for a better compara-
bility of the results.

3Windowing in time domain calculations seems unusual, but the reduc-
tion of end-effects will help to suppress the RMS error due to the difference
between integration time and the unknown signal’s period. This leads to
smoother, less oscillating results. A correction factor must be applied. For
an overview of different windows and their correction factors see [10].
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Figure 4: (a) input signal, sine-wave with abrupt changing am-
plitude and frequency. (b) SFT (red, dashed), SF~ (green, dash-
dotted) and their sum (blue, solid) with an FFT length of N =
1024 using a hann window and 50% overlap. (c) Arwms with
block length N = 1024 using a hann window and 50% overlap.

the ballistics will not work on the RMS values anymore. Therefore
we will introduce the general measure

Ac, [k] = C [kh] = Cs [(k — 1)h] Q)

with again windowed input data z.
In order to achieve approximately equal areas shown in Fig. 3,

the actual attack and release times should be calculated block-wise
by

Talk] = Tamas (1 —2max {0, Ac, [k]})
Tr[k] = Trpmae (1 +2min {0, Ac, [K]}) .

The maximum attack and release times should be set accordingly
to typical values as given in Section 2.3, for example 7q,,,, =
100ms and 7+.,,,,, = 200ms.

Using this automation, we can simplify the temporal charac-
teristic-dependent, non-linear characteristic of the compressor to a
temporal characteristic-independent system with kindly smoothed
non-linearity and therefore a statistical analysis becomes accept-
able. The smoothing is because of the now signal dependent bal-
listics, or in other words signal independent error areas in Fig. 3
and is ignored in the following parameter estimation process as it
would not modify the needed parameters significantly.

4. AUTOMATED COMPRESSOR USING THE STATISTIC
MODEL

We assume similar statistic properties for pieces of mastered music
within a specific genre. This assumption is based on genre-specific
instrumentation and arrangements as well as a similar overall sound
and loudness as sound designers usually let themselves be inspired
by currently popular productions within the same genre. This leads
to genre-specific PDFs for the RMS levels [5].

As a compressor can alter the PDF of an input signal, if the
transformation of the input PDF fc, to the output fc, is known
analytically, one could invert this transformation and thus the proper
parameters needed to meet a genre specific target PDF could be
determined explicitly.

The input signal feature distribution is given by fc, and can
be approximated by the histogram of the levels of the detector’s
output. This distribution will be altered by the compressor, more
precisely its characteristic. We will now formulate analytic expres-
sions for this alteration with the use of a PDF transformation.

4.1. Transformation of the PDF due to a compressor and its
inversion

A compressor with a characteristic curve based on threshold and
ratio alters the detected signal characteristic (without taking the
ballistic into account) to the output distribution

fo = Rfc,[Cx = RCy],
T feu [Co = Cy — M],

Co 2T, Cy 2

5
C: <T, Cy < ©)

v

We now know how the compressor modifies the input PDF.
With a genre typical target PDF, which could be the mean of a sta-
tistical relevant number of analysed mastered songs within a genre
we can try to minimise the difference between this target PDF and
fc, by adjusting R and T'. An exact match in general is not pos-
sible as equation (5) does not arbitrarily modifies the input PDF.
However it is possible to match certain (central or standardised)
moments of the target PDF for example its mean and variance.
Hence we will now analyse the transformation of these moments
due to the compressor.

The ¢-th central moment 1; , is transformed to

T
iy = / (M + Co — pay)" fo,dCs

+/(ffm,y) fe,dC
T

With the help of equation (6) it is possible to determine the
central moments of the output of the compressor based on its input
and parameters R and 7T'. As the parameter 71" is part of the integral
limits it is not possible to directly invert equation (6) to determine
R and T to match certain target moments p; ;. In addition the
input signal PDF fc_ is not known as an analytic expression and
needs to be approximated by a histogram.

We define the cumulative sums over the product of C, and the
histogram fcz for all possible thresholds 7" as

(6)

T

mlTl= Y Ul @)
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This vector is an approximation for the ¢-th non central moment of

T
the compressor input [ C! fo, dC, and can be used to evaluate
— 00
the output central moments using simple vector additions. We will
need two target moments to determine the two parameters R and
T, in the following we will use the first two, namely the mean and
variance.
The mean value is then approximated by

iy = MmolT) + ma[T) 4 2 (mal0] = ma(T]) )

and the variance to

pa.y =M>mo[T] + 2Mmy[T) + ma[T)
m2[0] — m2 [T _ ®

+ R2 1,y »

with m;[0] representing the i-th moment with 7" = 0dB, or in
other words of the whole histogram of C,,.
By rearranging equation (8) to solve for R we obtain the vector

T?TLO[T} — m1[T] + M1,z
Tmol[T] — ma[T] + pae

Ry, [T] = 10)
containing the values for R which are needed to meet the target
mean value.

By evaluating equation (9) at the points determined in (10) we
obtain a vector containing all output variances p2y, [R,, [T]] for
each parameter combination. Then the minimum of the squared
difference of the variance p2, of the output and its target po ¢
determines the desired parameters 7s; and Res:. In cases were an
exact match in both moments is not possible with the use of just
a compressor, this approach will lead to an exact match in mean
i1,y and a minimum squared error in variance po . To ensure
an exact match in variance and a minimum error in mean for all
cases, equation (9) should be rearranged to solve for R,,, [T], then
the minimum squared difference between 111, and the target mean
p1,¢ determines the desired parameters. The described procedure
of course can easily be expanded to higher central moments or
even standardised moments like the skewness or the kurtosis.

R, can contain negative values, as for higher thresholds, de-
pending on the input signal and the target mean value, it will be-
come impossible to match it with the make-up gain not letting C,
exceed 0 dBFS. Then a negative ratio R and therefore a negative
slope of the characteristic above 7" will cause C), to exceed 0 dBFS
around C; = T and still meet 0 dBFS for C; = 0 dBFs. This of
course is not what we desire, so we will only use the range with
positive values for R, to evaluate fi2 .

4.2. Limiter to suppress overshoots due to attack time

Even though the make-up gain M is defined to meet 0dB at the
output for a 0dB input, the non-zero attack time produces peaks of
very short duration exceeding OdB. In order to prevent the output
signal from clipping these peaks have to be eliminated. This can
be done with what is typically called a brick-wall limiter.

The use of such a limiter in the mastering process is a typical
procedure as it can be used to make the piece of music at hand
louder without changing its sound significantly. As distortion of
short duration are nearly inaudible even gain reductions of several
dB are possible for short peaks as long as the limiter’s attack and
release time are short enough [1]. We therefore propose the use

of a limiter with very short attack and release time and a so called
look ahead, an infinite ratio and a threshold set near to 0 dB. Our
simulations show good results using 7; , = 0.5 ms, 7, = 50 ms
and 7} = —0.1 dB in terms of no clipping and no significant deto-
riation in the matching of the target mean and variance*. The lim-
iter is shown as the last block of the framework in Fig. 1.

5. SIMULATION RESULTS

To evaluate the proposed automated compressor we first tested the
method to determine the parameters R and 7" described in Section
4.1. Then we used the proposed automatic compressor with songs
which are available to us in unmastered and professional mastered
versions® in two scenarios: first to match the mean and variance
of unmastered songs to those of the same songs processed with a
classic compressor and second to match the mean and variance of
these songs to those of the corresponding mastered version. Fi-
nally the results were validated in an informal listening test. For
all simulations we solved the mean value for R to choose R and T’
to achieve the minimum squared error in variance.

By using a compressor with the proposed auto ballistics it
should be possible to exactly reconstruct the chosen parameters R
and T from the input and output PDF with the described parameter
estimation method from section 4.1. In order to test this method
we processed songs with a compressor employing the described
windowed RMS detector and automatic ballistics using randomly
chosen parameters R,.; and T,.s. The resulting versions were
used to calculate the target moments for the parameter estimation
process. The estimated parameters R.s; and 7.+ were identical
(with small variations due to the chosen histogram density) to the
ones employed for generating the reference signal, as expected.

The complete automatic compressor was tested in the first sce-
nario by using unmastered songs processed with a classic compres-
sor, more precisely the one coming with Apple’s Logic Pro, using
typical settings according to [1] and with the build-in limiter acti-
vated, as the reference signal. Then the raw unmastered versions
were processed with the framework and the moments of its output
were compared to those of the reference signal. The results are
shown in Table 1.

| [ song 1 [ song 2 [ song 3 [ song 4 [ song 5 ‘

f1: | —10.57 | —14.47 | —9.25 | —18.47 | —21.89
f1. | —12.55 | —16.95 | —12.36 | —19.55 | —26.76
i1y | —10.60 | —14.50 | —9.29 | —18.47 | —21.90
1y | —10.87 | —15.01 | —9.80 | —19.15 | —23.13

f2: | 14.60 | 3522 | 2028 | 4846 | 90.71
o, | 21.20 | 47.05 | 31.27 | 51.78 | 91.29
fia, | 17.18 | 37.93 | 25.24 | 49.01 | 91.12
lzy, | 1712 | 37.90 | 24.96 | 49.01 | 91.10

Table 1: Mean and variance values of input signals, their targets
calculated from the compressed signals, the output moments with-
out ([1,y, p2,y) and with limiter ([ ,y,, 2,y )-

It can clearly be seen, that the overall system shows a good
matching of the mean values j1,,, for each song. The variance of
the output p2 , is kindly higher than its target, which is due to

4A small decrease in both, mean and variance, will occur (see Table 1).
5Song 1 - 3 from [11] and song 4 and 5 from the album "Mind Meets
Matter’ by Claude Pauly.
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the ballistics, leading to higher levels during attack and lower lev-
els during release than modelled. This effect is of short duration
and was therefore not audible in our tests. Furthermore this effect
could be reduced by introducing an additive correction term to the
target’s variance, depending on 7,,,, and 7, ... The discussed
kind reduction of the moments due to the usage of the limiter is
also clearly visible. This good overall matching is achieved al-
though the parameters R and 7" of the automated compressor dif-
fer from those used to create the reference, which is not surprising
as Logic’s compressor and the automatic compressor employ dif-
ferent signal feature detectors.

In the second scenario we matched the unmastered versions
to the mastered versions of the same songs. As mentioned be-
fore an exact match of the PDFs is not possible. This is mainly
due to the possibly excessive use of a limiter (see Fig. 5 around
—4dB), and in this case, in addition, the possible use of an equal-
izer and/or a multi-band compressor during the professional mas-
tering process, as these effects can not be modelled by just a com-
pressor. However the statistical moments of the output meet the
targets in all our simulations very well (comparable to the results
in Table 1). As an example, Fig. 5 shows the PDF of one of
the songs for its unmastered and mastered version as well as the
output of the automatic compressor. The target moments were
pi,e = —9.89dB, p2 ¢+ = 16.80, the resulting compressor param-
eters 7' = —16.5 dB and R = 1.281 and the resulting moments at
the output were p1,, = —9.92dB and p2, = 19.20 before and
H1,y, = —10.28 dB and p2 , = 18.96 after limiting.
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Figure 5: PDF of the RMS values of the input (blue, solid), the
output (green, dash-dotted) and the target (red, dashed).

Finally, in order to evaluate the overall performance of the sys-
tem we validated the results in an informal listening test, compar-
ing the target wave file with the automatic compressor’s output. In
all examples there was no significant change in the overall loud-
ness between both versions, which is not surprisingly due to the
use of an RMS detector in combination with the relative exact
match in its mean. In addition, no pumping or any other audi-
ble distortions were present, which indicates a good working au-
tomation of the ballistics. Finally the overall sound of the songs
processed with the automatic compressor, besides some spectral
differences compared to the mastered versions due to the use of
an equalizer or multi-band compressor, was similar to that of their
targets.

6. CONCLUSION

We presented a method to determine the parameters R and 1" for
a compressor to ensure its output, based on the piece of music at
hand, to meet certain target moments. The only modifications to
a classic compressor needed for this statistical approach in mas-
tering audio was automating the ballistics in the compressor and
the use of a simple brick-wall limiter to eliminate overshoots due
to the ballistics. In total this leads to a framework to automate the
audio mastering process. With the use of target moments which
differ significantly between different genres the proposed frame-
work is able to match these moments and therefore a genre specific
loudness and sound automatically.

Further research should focus on the identification of the most
significant statistical moments to use as targets. In addition the
framework can easily be extended to an automated multiband com-
pressor by using several paths with different bandpass filters and an
instance of the proposed compressor in parallel, which will help to
take a genre typical spectral distribution during automated master-
ing into account. A useful starting point for getting proper multi-
band target moments or even PDFs can be [4] or [7].
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SIMULATIONS ON GPU

Brian Hamilton,” Stefan Bilbao,

Acoustics and Audio Group,
University of Edinburgh
first.lastname@ed.ac.uk

ABSTRACT

Implicit finite difference schemes for the 3-D wave equation using
a 27-point stencil on the cubic grid are presented, for use in room
acoustics modelling and artificial reverberation. The system of
equations that arises from the implicit formulation is solved us-
ing the Jacobi iterative method. Numerical dispersion is analysed
and computational efficiency is compared to second-order accurate
27-point explicit schemes. Timing results from GPU implemen-
tations demonstrate that the proposed algorithms scale over their
explicit counterparts as expected: by a factor of M + 2, where
M is a fixed number of Jacobi iterations (eight can be sufficient
in single precision). Thus, the accuracy of the approximation can
be improved over explicit counterparts with only a linear increase
in computational costs, rather than the quartic (in operations) and
cubic (in memory) increases incurred when oversampling the grid.
These implicit schemes are advantageous in situations where less
than 1% dispersion error is desired.

1. INTRODUCTION

Room acoustics simulations are important for the purposes of au-
ralization and artificial reverberation. There are many models and
techniques used in room acoustics simulations; see [1, 2] for a re-
view. One popular starting point for room acoustics modelling is the
second-order scalar wave equation with impedance boundary con-
ditions [3]. This model problem can be discretised with finite differ-
ence (FD) operators on regular spatial grids, and solutions can be ap-
proximated through explicit (leapfrog) time integration [4] at a sam-
ple rate of choice (e.g. 44.1 kHz). Explicit time-stepping FD meth-
ods have been used extensively in the literature for simulating room
acoustics [9, 6, 7] in various equivalent formulations [8, 9, 10, 11].
FD methods can be computationally expensive for large 3-D
spaces due to the fact that the solution is approximated for the
entire domain at each time-step. Furthermore, numerical dispersion
affects the approximation, to a large degree, in high frequencies.
This may require that the spatial grid be oversampled, which in-
curs cubic increases in memory usage and quartic increases in the
operation count. Explicit schemes are well-suited to implementa-
tion on graphics processing units (GPU), allowing for real-time
low-frequency [12] and offline full-bandwidth applications [13].
Numerical dispersion can be improved by employing implicit
generalisations of explicit schemes [14, 15], however, implicit
schemes require a linear system to be solved at each time-step.
This extra burden at each time-step can be alleviated somewhat

* This work was supported by the European Research Council,
under grant StG-2011-279068-NESS, and by the Natural Sciences and
Engineering Research Council of Canada.

Craig J. Webb,

Oxford e-Research Centre
University of Oxford
craig.webbl@oerc.ox.ac.uk

when the implicit scheme allows for an alternating direction im-
plicit (ADI) decomposition [16, 15], since the overall system in
3-D ADI schemes can be decomposed into three tridiagonal sys-
tems that can be solved efficiently with the Thomas algorithm [16].
However, the Thomas algorithm is serial in nature, so it is not easily
parallelised. Furthermore, the formulation of impedance boundary
conditions that are compatible with the ADI decomposition and the
Thomas algorithm seems to be an open problem [7]. On the other
hand, simple iterative methods [17] can be employed to tackle the
implicit system, free from ADI constraints. The Jacobi method is
a simple iterative method whose iterations reduce to sparse matrix-
vector multiplications (SpMV) that are easily parallelised on a GPU.
The purpose of this paper is then to revisit implicit schemes in the
context of the Jacobi method and identify schemes that are suitable
for room acoustics applications and GPU implementations.

This paper is laid out as follows. The model problem is in-
troduced in Section 2, followed by the implicit finite difference
schemes in Section 3 and conditions for stability in Section 4. The
Jacobi method is described in Section 5, and optimal parameters
for the implicit schemes are chosen in Section 6. Numerical dis-
persion and computational efficiency are analysed in Section 7. In
Section 8, numerical experiments are conducted in order to validate
the implicit schemes, check convergence rates for the Jacobi solve,
and test the stability of the proposed schemes in finite precision
arithmetic. Section 9 presents timing results from CUDA imple-
mentations of the implicit schemes on an Nvidia Tesla K20 GPU
card, followed by conclusions and future work in Section 10.

2. MODEL PROBLEM

2.1. Initial and boundary value problem
The 3-D wave equation can be written as
OV := 9; ¥ — *AV =0. )

Here, ¢ is time and t € RT, = := (z,y, z) € R3, cis the wave
speed, assumed to be a constant, and A is the 3-D Laplacian op-
erator, A := 92 + 65 + 2. The box symbol (CJ) represents the
d’ Alembert operator and the scalar field U = W (¢, ) represents the
acoustic velocity potential [3]. Two initial conditions, ¥(0, ) and
0:¥ (0, ), are required to complete the initial value problem (IVP).

For the boundary value problem (BVP), let VV denote a closed
3-D volume and 9V its boundary. Frequency-independent lossy

boundaries can be written as
n-V¥ =(y/c)0:¥, xedV, 2)

where v represents the specific acoustic admittance with v € R,
v > 0 and where mn is the outward normal vector at € € 9.
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These become first-order absorbing boundary conditions of the
Engquist-Majda type for v = 1. When v = 0 the condition (2) is
a homogeneous Neumann (lossless) boundary condition.

3. AN IMPLICIT FINITE DIFFERENCE SCHEME

3.1. Discretising time and space

Time can be discretised by restricting ¢ to the grid of points T :=
{nk,n € Z+}, where k is the time-step, and the spatial domain can
be discretised using a cubic grid: G := hZ3. The finite spatial grid
to consider can then be written as G := G N V. For the purposes of
this paper, the closed volume of interest will be a box-shaped room.
Furthermore, it will be assumed, for convenience and comparison
with published literature [7], that the “boundary nodes” of the grid
are precisely on the boundary OV.

3.2. Difference operators

Let u(t, ), which will be restricted to T x G or T x G, represent
an approximation to the solution of interest ¥ (¢, ). A time-shift
operator may be defined as

eru:=u(ttk,x), 3)

and the following abbreviation will be employed throughout this

paper: u¥ := u(t £ k, ). Centered time-difference operators can
be written as
5t» = (€t+ — et,)/(Qk) = 815 + O(k2) s (43.)
(Stt = (6t+ -2 + et,)/k2 = 8,52 + O(kj2) . (4b)

A parameterised 27-point discrete Laplacian (stencil) can be defined
on the cubic grid as

— 6oy . _ 2
Sau = Zq: ARE > (u(t, z+vh)—u(t,x)) = Au+O(h?),

vEQ,
(5)
where ¢ € {1,2,3}, Qq := {z € Z* : ||z||® = ¢}, where | Q]
denotes the cardinality of the set 4, and o := (1, a2, a3) € R,
> 4 @ = lisrequired for consistency. The 27-point stencil vectors
are displayed in Fig. 1.

3.3. Difference scheme for IVP
An implicit finite difference scheme for (1) can now be written as

Spu = (14 Bh*6a) Suu—c®sau=0, (t,z) € TxG, (6)

where 8 € R is a free parameter. The scheme is consistent since
dpu — Ou as h — 0 for a fixed Courant number \ := ck/h.
Starting from the two known (or approximated) values u(0, ) and
u(k, ) determined by the initial conditions, the unknown variable
uT is related to the two previous states by

(L+B0K)ut = (A\* +2B)d% +2)u — (L + BoR)u", (7)

where 6% := h?6a. The unknown variable cannot be isolated
algebraically unless 8 = 0, in which case the scheme is explicit.
For 8 # 0 the scheme is implicit, and a linear system of equations
must be solved at each time-step. This family of implicit schemes
generalises the 27-point compact explicit schemes analysed in [7].
The operator 6% expressed in a similar notation to that used in [7]
can be found in the Appendix.

Figure 1: Stencil vectors for da: €21 (black), Q2 (red), 23 (blue)

3.4. Matrix update for BVP

Imposing the boundary condition (2) reduces (7) to a finite sys-
tem of equations which can be written as a matrix update. The
approximation for the BVP at a particular time ¢ can be written as
the N x 1 vector u with the values of u for x € G (N = |G]).
Similarly, u® is a vector of u™® values. The operator J; in the lossy
case (2) can be discretised with ¢;. and the spatial derivatives are
approximated with centered spatial differences, following [7]. The
update equation in matrix form becomes

(YAQ+I+BL)u" = (A2 +28)L+2I)u+(yAQ—I—BL)u",

®)
where L is the N x NN Laplacian matrix corresponding to 6’ with
discretised Neumann conditions, I is the N x N identity matrix,
and Q is a non-negative diagonal matrix. Constructions for the
matrices L and Q are given in the Appendix. This matrix up-
date encapsulates the point-wise explicit updates presented in [7]
for interior, wall, edge, and corner nodes, in the special case of
frequency-independent boundaries.

4. NUMERICAL STABILITY

4.1. Stability for the IVP

First we consider stability conditions for the initial value problem.
The recursion in (7) must be numerically stable for ||u — ¥||;, — 0
as h — 0 (for X fixed) by the Lax-Richtmyer theorem, where || f||1
denotes the spatial L*-norm of f() on G or G. Stability condi-
tions for (7) can be found by taking the Z-transform in time and the
Fourier transform in space [18]. After some cancellation we obtain
the following quadratic in z € C:

(1 —4BA)z +4AN° +2B8) =2+ (1 —4BA)z"" =0, (9)

where A is the Fourier symbol of the operator — iég. Solving for
the roots of the quadratic (9) it can be shown [8] that |z| < 1 as
long as
4NN +2B) -2
1—4pA

given that A is non-negative, which is satisfied when

<2, 10)

— 201 < a2 <201 +1. 1n
Condition (10) then simplifies to the following

1 1
A< Amax =
4Amax ’ - Amax

B < —458,  (12)

where Amax = maxe A for the spatial frequencies £ € R3. We
can extract Amax from previous studies [8] since this must reduce
to the explicit case when 5 = 0. We have then

Amax = maX(l, 2001 + a2, 20001 — ag + 1) . (]3)

DAFx-42



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Note, the stability conditions allow linear growth in the solution,
but this is valid since linear growth is permitted in the underlying
system [18].

4.2. Stability for the BVP

Stability conditions for the lossless boundary value problem are
straightforward to obtain using the matrix method [18]. Using the
ansatz u = z¢, where ¢ is an eigenvector of L, we get, analogous
to (9), the following quadratic in z with matrix coefficients:

2(1+BL)p— (N +28)L+2D)p+ 2 (I+BL)p = 0. (14)

This can be reduced to a set of decoupled scalar equations, and
thus, we can obtain a sufficient condition for stability in terms of
the spectrum of L. Comparing with (9) we can see that (12) is
sufficient for stability as long as L < 0 (negative semi-definite)
and p(L) < 4Amax, where p(L) denotes the spectral radius of L.
The first condition on L is easily verified using Gerschgorin’s the-
orem [17]. That the condition p(L) < 4Amax is satisfied, with L
as defined in the Appendix, follows from stability in the explicit
case [7].

A matrix-type stability analysis becomes more difficult after
including the additional matrix Q, with v > 0 for lossy boundaries,
because the matrix coefficients of the resulting quadratic equation
no longer commute. It is possible to show, through the use of en-
ergy techniques [19, 10] or by investigating reflection coefficients
at the boundaries [7], that the lossy case is stable as long as the
lossless case is stable and the boundaries remain passive (v > 0).
A detailed proof is left out for brevity.

5. SOLVING THE LINEAR SYSTEM

5.1. Jacobi method

To solve the linear system of equations with the Jacobi method we
first write (8) in the form Ax = b, where

A=(\Q+I+4L), x=u", (15a)
b= (A +26)L+2Du+ (yAQ —I—FL)u” . (I15b)

Next, we use the matrix splitting A = D — N where D is a diag-
onal matrix with just the main diagonal of A. Starting from any
initial guess x° (a good choice is x° = u), the Jacobi iterative
solve proceeds with

X" =Hx"+Vb, (16)

where H = D~ !N is the iteration matrix (sparse), b’ = D~ 'b
and where the superscript n on X" denotes the nth iteration (n > 0).
Note that b’ only needs to be computed once per time-step. The
entire iterative solve can be accomplished with only four states
stored in memory since the space in memory that is used to store
u~ can be overwritten after b’ has been calculated. This Jacobi
solve requires two SpMVs to compute b’ and M subsequent Sp-
MVs, where M is the number of iterations. Thus, the increase in
operations over the explicit case is a factor of M + 2. The memory
increase over the explicit case is a factor of two.

The iterative solve can be halted when the following condition
on the relative error is satisfied:

b — Ax" "],

<E, |b|s>0, (17)
IIblln

where E is some threshold, such as IEEE 754 single precision
machine epsilon, £, = 1.2 x 10~7, or double precision machine ep-
silon, g4 = 2.2 x 10~ %, Calculating the relative residual requires
one additional SpMV per iteration, as well as the calculation of two
discrete norms.

It is worth pointing out that while we use a matrix represen-
tation to illustrate the iterative method, a practical implementa-
tion does not require construction or storage of the matrices in-
volved. For practical implementations, one can ‘unroll’ each SpMV
into a (parallelisable) for-loop, as in the explicit case [13]. In
fact, the explicit case is expressed by a single Jacobi iteration
(8 =0 = H = 0). The matrices involved are sparse and have en-
tries that are mostly constant or zero along the diagonals, and the
non-zero entries change only for boundary nodes. The storage of
these constants is negligible. Point-wise updates can be extracted
from the matrices in the Appendix, or derived from the explicit case
in [7], so they are left out for brevity.

5.2. Convergence of the Jacobi method

The Jacobi iterations will converge from any initial guess x° as
long as the matrix A is diagonally dominant [17]. For a diagonally
dominant A, in the lossless case, we require that

1-68y % EGZM. (18)
q q q q

If we assume that oy > O then this reduces to

1
18] < 3 (19)

and in the general case | 3| has to be sufficiently small. By exam-
ining L it can be seen that the rows pertaining to boundary nodes
will not change (19). This is also left out for brevity.

It can be shown that with each iteration the residual decreases
by a factor of approximately 1/p(H) [17], and using Gerschgorin’s
theorem the following bound on p(H) can be obtained:

6Zq%|50‘q|

p(H)<T, YT:i= ——F29 —
1—652‘1%%

(20)

Thus, we can neglect the residual calculation and fix the number of
iterations to M = [—log,y(E)/n] or M = |—log,o(E)/n],
where 7 := —log,,(T). The parameter 7 represents, approxi-
mately, the number of additional digits of relative accuracy obtained
with each iteration.

6. ISOTROPIC AND FOURTH-ORDER SCHEMES

To reduce the space of free parameters let us introduce some addi-
tional constraints. In the interest of isotropic error we can impose
the following constraint

az =4/3 —2a1, 21
with which we get
h? o 4
oau = Au + EA u+ O(h"). (22)

The error will be isotropic (direction-independent) up to the O(h*)
term since the (isotropic) biharmonic operator A? appears in the
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O(h?) term. Through the use of modified equation methods [14],
it is straightforward to arrive at the condition

A =1-128, (23)
to have a fourth-order local truncation error for the IVP
dqu = Ou + O(h*). (24)

Under the isotropy constraint (21) the stability condition (12) re-
duces to

V3/A— 4B 1/12 < ay < 5/12
Arnax,,B,c)q -

V3/(1200 — 1) =43 5/12<

)

(25)
and the constraints (11) and (19) reduce the parameter space of
stable fourth-order schemes to the following

1/12 < oy < 5/12, (26)

with A = 1/5/8 =~ 0.79 and 8 = 1/32. Finally, we can optimise
a1 with respect to 7. Using (20) it can be shown that

1 € [logy(19/3),log4(7)] ~ [0.802, 0.845],

for the region defined in (26). The optimal value, n = 0.845, is
given by a1 = 1/3, which corresponds to a scheme with a 19-point
stencil (a3 = 0).

7. NUMERICAL DISPERSION

At this point, we can analyse the numerical dispersion of the
schemes that are suitable candidates for the Jacobi iterative solve.
To further reduce the space of free parameters, we will restrict our
attention to two cases: oy = 1/3 and o1 = 5/12. The former
leads to an isotropic 19-point stencil, and the latter is an isotropic
27-point stencil. The resulting finite difference schemes are implicit
generalisations of the “IISO1” and “IISO2” (interpolated isotropic)
explicit schemes [15, 7].

In order to analyse dispersion it helps to define a normalised
spatial frequency &, := £h and a normalised temporal frequency
wy, := wk. We can then write A(&,) as

WHEDD ;’;jfd D sin*(€nv/2), @)

vEQ,

and the relative numerical wave speed (ideally unity), also known
as the dispersion coefficient, is defined as

,  wr(&y,) := 2arcsin ()\(Afl - 45)*%) 7

(28)
for wy € (0,7] and &, € B, where B is the wavenumber cell of
the grid, which is a cube centered at zero with sides of length 27.
Furthermore, by inverting the dispersion relation (in the region
where it is surjective) we can plot the numerical wave speed as a
function of spherical coordinates, where the radial coordinate rep-
resents the temporal frequency wy and where the two polar angles
represent a plane-wave direction of propagation in R* [15]. The
wave speed errors can be seen in Fig. 2a for the schemes a; = 1/3
and B € {0,1/32} along the axial (center to face-center of B),
side diagonal (center to edge-center), and diagonal (center to ver-
tex) directions; these are the directions in which the extreme cases
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Figure 2: Numerical dispersion for various schemes

are generally found [7]. Fig. 2b shows the dispersion coefficient
along the same directions for the scheme with oy = 5/ 12 and
B € {0,1/32}. It can be seen from these figures that the fourth-
order implicit schemes give improvements over their second-order
explicit counterparts in each direction.

The fourth-order condition (23) can also be ignored in order
to find a scheme optimised for some fixed amount of dispersion
error that can be tolerated, where dispersion error is defined as
|1 —v| x 100%. For example, the parameter 3 = 0.0465 is a good
choice for a 1% dispersion error tolerance. The dispersion errors
fora; = 1/3 and 8 € {1/32,0.0465} are shown in Fig. 2c. More
optimised parameters will be given shortly. Note, the relative wave
speeds are plotted only up to a 5% or 10% dispersion error for the
purposes of showing detail. The minimum directional cutoff fre-
quencies, above which the modal density will be incorrect, are not
seen in the figures, but they are listed in Table 1 (wg cuwotr). The cut-
off frequencies for the implicit schemes are near to wy cutofr for the
IISO1 (or IISO2) explicit scheme, which is (2/3)7 rad/sample [7].

7.1. Relative computational efficiency

One can achieve any level of accuracy in the dispersion error up
to any desired temporal frequency (in Hz) with any (convergent)
scheme simply by reducing the spatial-step (for a fixed Courant
number), due to consistency with the model equation. Of course,
oversampling the grid incurs cubic increases in memory usage and
quartic increases in the operation count, so this quickly becomes
an impossible strategy for simulating large spaces. Nevertheless,
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Figure 3: Relative computational efficiencies for various implicit schemes
with & € {1/3,5/12} and explicit schemes, with the simplest scheme
(SLF) as reference. Table 1 lists relative comparisons where IISO1 and
FCC explicit schemes are reference schemes, also taking into account
Jacobi iterations.

this strategy exists, so we must take into account some measures
of computational costs in order to determine whether these im-
plicit schemes are more or less effective than their simpler explicit
counterparts with oversampled grids. First we will consider the
spatiotemporal density of points required to achieve a certain dis-
persion error globally, and then we will include additional costs
from the iterative solve.

As in [20, 7, 21], we start by investigating the relative compu-
tational efficiency (RCE), which is defined as the spatiotemporal
density of points (T x G) necessary to keep the dispersion error be-
low some tolerance level, relative to that required by some reference
scheme [20]. Thus, the RCE of a scheme, with some chosen refer-
ence scheme, is dimensionless and is a function of the dispersion er-
ror tolerance. As in [15, 7] we use the simplest explicit scheme [4],
also known as the “standard leapfrog” (SLF), as a reference. The
RCE:s for the cases a; € {1/3,5/12} with various choices of 3 are
shown in Fig. 3 for a 0.01-10% dispersion error tolerance. Along
the axial directions, the schemes with oy € {1/3,5/12} have
the same dispersion (worst-case), so the RCEs for the implicit
schemes with oy = 5/12 are the same as those with oy = 1/3.
The explicit ISO2 (a1 = 5/12, 8 = 0) scheme is also equivalent
to IISO1 (a1 = 1/3, 8 = 0) in terms of its RCE.

Also included in Fig. 3 are the 13-point face-centered cubic
(FCC) explicit scheme (a; = 0, 2 = 1) (on its native grid [21])
and the 27-point “interpolated wideband” (IWB) explicit scheme
(a1 = 1/4, a2 = 1/2), for comparison with existing literature [7,
21]." As can be seen in Fig. 3, the implicit schemes have higher
RCEs than their explicit counterparts and, in particular, the fourth-
order scheme (3 = 0.03125) becomes exponentially (linear on a
log scale) more efficient, relative to the second-order schemes, as
the dispersion error tolerance approaches zero.

Now taking into account the additional iterations that are nec-
essary for the Jacobi solve, the implicit schemes should be advan-
tageous if the RCE for some desired dispersion error tolerance is

11t is worth pointing out that the implicit generalisations of the FCC and
IWB explicit schemes were investigated, but they did not offer significant
improvements over the explicit cases. This can be traced to the lack of an
isotropic error term in their discrete Laplacians.

Table 1: Dispersion error tolerance levels where implicit schemes are
more computationally efficient than the FCC and IISO1 (or IISO2) explicit
schemes, taking into account Jacobi solve with M = [—log,y(E)/n].
Also shown are the minimum directional cutoff frequencies, wy, cutoff in
rad/sample.

a; € {1/3,5/12}

more eff. than FCC | more eff. than IISO1

n Weenoff | =6 | E=¢eq | E=¢5| EE=¢q
0.04650 | 0.641 | 0.6267 | <1.1% — <1.3% -
0.04345 | 0.677 | 0.6297 | <0.98% — <1.2% | <0.73%

0.04040 | 0.715 | 0.6327 | <0.92% | <0.56% | <1.1% | <0.67%
0.03735 | 0.755 | 0.6357 | <0.79% | <0.48% | <0.98% | <0.58%
0.03430 | 0.799 | 0.6387 | <0.70% | <0.37% | <0.88% | <0.48%
0.03125 | 0.845 | 0.6417 | <0.53% | <0.28% | <0.70% | <0.36%

greater than [— log,,(E)/n] + 2 (the residual check is neglected).
Table 1 lists the dispersion error tolerances below which the im-
plicit schemes with a = 1/3 are more efficient than the FCC and
IISO1 (or IISO2) explicit schemes, in terms of point-wise updates
required for the iterative solve to converge in single and double
precision. As can be seen in the table, one can choose 3 to give an
implicit scheme that is more efficient than the FCC explicit scheme
for any dispersion error tolerance that is less than 1.1%. In double
precision, the implicit schemes become more favourable when the
dispersion error tolerance is less than 0.56%.

Using the same techniques, we could compare the schemes in
terms of the spatial grid densities, leading to memory costs required
for some dispersion error tolerance level. This relative comparison
is similar to what appears in Fig. 3, but the vertical axis would
represent the relative efficiency in terms of spatial grid density, and
it would be scaled by a factor of 3/4 (on a log scale) to reflect the
cubic increase in grid density versus the quartic increase in opera-
tions with oversampling of the grid. As such, we simply summarise
the main result. In terms of the extra memory storage required for
the Jacobi solve (two extra states), the implicit schemes become
more efficient than the explicit FCC and IISO1 schemes when the
dispersion error tolerance is <3.8% (vs. FCC) or <5.3% (vs. IISO1).

8. NUMERICAL EXPERIMENTS

8.1. Modal frequencies of cubic domain

The known analytical modes of a cubic-shaped room with lossless
boundaries provide a simple validation test that can also illustrate
some advantages of the implicit schemes. To this end, the low-
frequency response of a cubic domain with v = 0 and with dimen-
sions (11 m)® was simulated using the scheme with oy = 1/3 in
explicit (8 = 0) and implicit forms (8 = 1/32). The first two
time-steps, (0, ) and u(k, ), were set to a spatial Gaussian with
mean (1 m, 2 m, 3 m) (the domain is centered about the origin) and
variance 1 m?. The Courant number was set to Amayx respectively
for both schemes and ¢ = 340 m/s. To normalise for computational
costs (total number of operations), the implicit scheme with M = 5
iterations used a coarse grid of size 12x12x12, whereas the explicit
scheme used a finer grid of size 21x21x21. The outputs were read
at the grid points (4,6,3) and (8,12,6) for the implicit and explicit
schemes respectively (counting from one). Spectra of the outputs
from these simulations are shown in Fig. 4. As can be seen, the
implicit scheme results in a better agreement with the analytical
modal frequencies, despite having a coarser spatial grid.
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Figure 4: Comparison of low frequency responses for cubic room using
IISO1 explicit scheme (a1 =1/3,8 =0) with grid size 21x21x21,
and fourth-order implicit scheme (a1 = 1/3, 8 = 1/32) with grid size
12x12x12 and M = 5. Dotted lines denote theoretical modal frequencies.

8.2. Relative residual with fixed number of iterations

It is also worth investigating the relative residual over time using
a fixed number of Jacobi iterations. Using the same test case, the
relative residuals obtained from conducting simulations with var-
ious choices of M are plotted in Fig. 5. As can be seen, the relative
residuals (jagged lines) remain smaller in magnitude than the ex-
pected residuals with magnitude 10~°-%4>* (dashed lines). In this
test case, the limits of single and double precision are effectively
reached with seven and 17 iterations respectively.

8.3. Stability in finite precision arithmetic

The stability conditions derived in Section 4 may not be sufficient
in practical situations due to unavoidable finite precision effects
(round-off error). Single precision may be preferred to double pre-
cision since GPU cards tend to have a better peak performance
for single precision arithmetic than double, and single precision
variables use half of the memory space on the GPU card. How-
ever, round-off error in single precision has been known to cause
late-time instabilities (after O(10%) time-steps) with even the sim-
plest of explicit schemes (SLF) [22], while such instabilities are
rarely seen in double precision. A typical room impulse response
at 44.1 kHz will require O(10°) time-steps to be calculated, so it is
important to ensure the long-time stability of these schemes in sin-
gle precision. These round-off effects have been analysed using the
spectral properties of the one-step recursion (state space) matrix in
the explicit 27-point schemes [23]. Here, we consider the usual two-
step recursion, which does not necessarily encapsulate all round-off
errors, but focuses on the spectrum of the Laplacian matrix.

As described in Section 4.2, the two conditions: p(L) < 4Amax
and L < 0, along with (12), lead to stability of the explicit/implicit
schemes. In practice, it is possible that these conditions will not
hold in the presence of round-off errors. However, measures can
be taken to protect against any consequent instabilities (exponen-
tial growth). Linear growth is possible at the stability limit, but
such growth is undesirable for room impulse responses. Setting
the Courant number slightly below its limit: A = (1 — p) Amax, for
0 < p < 1 prevents such growth (1 = le-4 is a good choice), as
well as any exponential growth near the Nyquist caused by round-
off errors [23]. To buffer against a violation of the second condition,
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Figure 5: Relative residual from implicit scheme (a1 = 1/3,8 = 1/32)
after M iterations for simulation of cubic domain. Dashed lines denote ex-
pected residual, 10~0-845M _ Jagged lines are measured relative residuals.
Machine epsilon for single and double precision are marked by arrows.

we can replace L with L — o1, for 0 < ¢ < 1, since it follows
from Gerschgorin’s theorem that L — oI < 0 for o sufficiently
large. This also causes a shift of modal frequencies, but the effect
is negligible for ¢ < w/c, and & should be on the order of 10~".

To test these counter-measures, the IISO1 explicit scheme
(a1 = 1/3) and its fourth-order implicit counterpart (3 = 1/32,
M = 8) were excited with a Kronecker delta (in space and time) on
a grid of size 26x10x10, and run for 10° time-steps. The excitation
was also DC-filtered [24] to eliminate any unwanted, yet valid,
linear drift in the solution.

In Fig. 6a, an exponential drift (DC instability [23]) can be
seen; this is caused by round-off error in single precision and is to
be corrected through the use of the o parameter. Fig. 6b shows the
effect using a small o, approximately 2¢, to correct such an insta-
bility (note the scaling on the horizontal axes in Figs. 6a and 6b).
The use of o > 0 is not necessary in double precision (at least for
O(10°%) time-steps), as seen in Fig. 6¢ with o = 0. Figs. 6d-6f
show the fourth-order implicit counterparts using eight iterations.
In double precision the implicit scheme is stable for 10° time-steps
with M = 8 and o = 0 (Fig. 6f). Lossy boundaries (v = le-5) are
employed in Figs. 6g-6h, which results in a decay in the responses.

It is important to point out a low-frequency amplitude mod-
ulation in Figs. 6b, 6e, and 6g. This is due to the DC mode
(w = 0) being shifted by the effect of o non-zero. A similar effect
arises when a so-called “hard source” is used as an excitation [25].
Here, the oscillation has a normalised frequency of approximately
V/om rad/sample. The value of o that will be required in single
precision should scale with the duration of the simulation. Thus, for
a typical room impulse response, o should scale with the sample
rate, and this low-frequency oscillation should remain inaudible.
If desired, the artefact can be removed by applying another DC
blocking filter [24] to the output, as seen in Fig. 6h.

9. SIMULATIONS ON GPU

In this section, we present timing results from a basic CUDA im-
plementation of the implicit schemes on a single Nvidia Tesla K20
GPU card. The goal here is not to present speed-ups over single-
thread CPU codes, since significant speed-ups have been reported
for 27-point explicit schemes in various studies [12, 13, 26, 22].
The interest here is simply to compare GPU implementations of the
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Table 2: Timing results from computation of 2000 time-steps on a Tesla K20 GPU card for explicit schemes and implicit schemes using M Jacobi iterations
and the compute time increase (CTI) for each implicit scheme over its respective explicit counterpart. The CTIs are expected to be (M + 2) due to the
additional SpM Vs required by the implicit schemes.

explicit implicit, M = 8 implicit, M = 12
[N (Nz, Ny, N-) precision time (s) time (s) CTI time (s) CTI
19-point (640,480,480) single 50 453 9.06 635 12.7
19-point (960,640,480) single 100 894 8.94 1254 12.5
27-point (640,480,480) single 75 608 8.11 846 11.3
27-point (960,640,480) single 148 1201 8.11 1676 11.3
19-point (640,480,480) double 79 801 10.1 1112 14.1
27-point (640,480,480) double 89 910 10.2 1242 14.0
4 05 0% proximately as expected. These variations from the M + 2 increase
2 are due to cache effects and memory bandwidth bottlenecks.
0 0
0
o5 s 10. CONCLUSIONS AND FUTURE WORK
) 5000 10000 15000 O 5 10 o 5 10
time-steps time-steps X 105 time-steps X 105 . .
@) SP.o =0 (b) SP, & = 2.4e-T (©DP,o =0 In this study, we have presented 19- and 27-point fourth-order ac-
10 05 05 curate and optimised implicit finite difference schemes for the 3-D
wave equation with frequency-independent lossy boundaries on a
5—_‘/ 0 0 box-shaped domain. These schemes can be solved using the Jacobi
0 . method with a convergence rate of nearly one digit of relative ac-
o5 s curacy per iteration. Numerical dispersion was analysed and it was
"0 5000 10000 15000 O 5 1 "o 5 10 found that the implicit schemes, taking into account the iterative
time-steps time-steps 103 time-steps 13 . .
@ SP.o =0 () SP.o = 2.4e.7 (ODP.o =0 solve, become more computationally efficient than second-order
05 05 05 explicit counterparts for situations where the amount of dispersion
error that can be tolerated is less than 1%, and exponentially more
. . . efficient as this tolerance level approaches zero. These schemes
were shown to be stable in finite precision arithmetic for as many
as 10° time-steps in double precision, as well as in single precision
-0.5 -0.5 -0.5 . . . . ..
5 10 o 5 0 o 5 10 at the cost of introducing inaudible artefacts. Timing results were
ime-stEe  x10° e e x10° me-stes - x10f resented from CUDA implementations run on an Nvidia Tesla
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Figure 6: Responses from cubic box obtained using explicit/implicit
schemes with a1 = 1/3 in single precision (SP) and double precision
(DP), with A = 0.9999)\,ax in each case. Implicit schemes use M = 8
iterations. Note that o is not used in double precision. A DC blocking filter
was applied to the output in Fig. 6h.

explicit schemes and their implicit counterparts for a fixed number
of Jacobi iterations. Specific details on the GPU implementation
will be left out for brevity, but the implementation is similar in
nature to those found in [26, 22]. However, it is important to note
that the memory bandwidth was maximised by making use of the
read-only data cache in the Nvidia Kepler GPU architecture.

Table 2 lists the timing results from computing 2000 time-steps
for 19-point and 27-point explicit schemes (the choice of « is not
important here) and their implicit counterparts (the choice of 8 > 0
is not important) with a fixed number of iterations M € {8,12}.
Two different grid sizes were used and the simulations were run in
both single and double precision. Results for the larger grid size
are only given in single precision due to memory limitations on the
GPU card (5 GB).

We expect the implicit schemes to take M + 2 times as long as
their explicit counterparts due to the extra SpMVs (not taking into
account the extra memory bandwidth required). As can be seen in
Table 2, the implicit schemes are 10-20% faster than expected in
single precision. Meanwhile, in double precision they behave ap-

K20 GPU card. It was found that the compute times for the implicit
schemes scaled as expected with the additional SpM Vs required.

Future work will investigate further generalisations for these
implicit schemes. The first is to consider a more general form for the
implicit scheme where different sets of o parameters are used for
the implicit and explicit discrete Laplacian operators, as in [14], pro-
viding more free parameters to optimise in order to further minimise
numerical dispersion. Another generalisation is to include viscother-
mal effects, which are necessary for a more detailed model of sound
propagation in air [3]. A third generalisation would be to consider
these schemes in an unstructured finite volume framework (allowing
for the modelling of irregular geometries) with more general (com-
plex) impedance boundary conditions, as in the explicit case [10].

More advanced iterative techniques that are amenable to par-
allel implementations (Krylov subspace methods) could also be
considered; many of which are known, for certain problems, to
converge in fewer iterations than the Jacobi method [17]. However,
preliminary tests with the system (15), using the myriad iterative
methods provided in MATLAB, indicate that while such advanced
techniques can converge in fewer iterations, they do not offer sub-
stantial improvements in compute times. Ultimately, this is because
they require more computation within each iteration (additional
SpMVs and residual checks), not to mention additional storage.
Finally, an important area of research will be to determine the mini-
mum number of Jacobi iterations required to simultaneously ensure
that the residual is inaudible and that stability is maintained for the
duration of a given simulation.
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Comparative sound examples for the implicit and explicit coun-
terpart schemes will be available for listening at:
http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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12. APPENDIX

12.1. 27-point discrete Laplacian
Using a notation similar to [7] we have:
SR = Ozo+0yy+02:1a(0000yy+0n002z+0yy0z2) +b(Juadyy0:2)
where a = (a2 + 2a3) /4, b = @z /4, and
Ozat = u(t, @ + ezh) — 2u(t, ) + u(t,x — ezh)

with the standard unit vector in the z-direction e;. The operators
0yy and J. are similarly defined.

12.2. 3-D Laplacian matrix with Neumann conditions

The Laplacian matrix corresponding to the centered Neumann con-
ditions from [7] can be constructed as follows. The 1-D Laplacian
matrix with centered Neumann conditions is:

—2 2
1 —2 1

Dy =

1 -2 1
2 —2

Let I v represent the NV x N identity matrix. Consider a 3-D grid
with dimensions N, X Ny X N, and let it be decomposed into a
vector, first into z-planes, then y-rows and z-columns. We construct
the matrices

Dys :=1In, ® In, ® Dn,,
Dy, :=1In, ® Dy, ®In,,
D..: =Dy, ® Iy, ®1n,,
where ® denotes the Kronecker product. The Laplacian matrix of
interest can then be written as
L=D,,+D,, +D..
+a(D..Dyy + DuwD.. + Dy, D..) + b(D.. Dy, D).

12.3. Loss matrix

The matrix Q can be constructed as follows. Let qx be the vector:
(1,0,...,0,1)T of length N. We construct the matrices

Q. =1y, ®1Iy, ®an,,

Q, :=1In, ®an, ®1n,,

Q::=an, @Iy, ®In, .
Then we have Q = Q. + Qy + Q..
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ABSTRACT

We present here a basic model for the synthesis of source spa-
ciousness over loudspeaker arrays. This model is based on two
experiments carried out to quantify the contribution of early re-
flections and reverberation to the perception of source spacious-
ness.

1. INTRODUCTION

The subject of spatial audio covers a vast and wide-ranging array
of topics from psychology, acoustics, engineering, mathematics,
and computer science. The varied contributions from these dif-
ferent fields make for a fascinating and challenging path towards
understanding. One challenge that arises is the exact definition of
any particular concept. Our primary concern is the synthesis of
circumstances under which a certain perceptual attribute of a re-
produced sound field arises in the listener. In particular we are
interested in source spaciousness i.e. the perceived extent of a
sound source in three dimensions.

Spaciousness has been the subject of experiments and studies in
the past and there is much to learn from the work of [1]-[4]. One
of the drawbacks of the term spaciousness is its use as an every-
day term as a descriptor for the sense of space. The lack of a
clear definition can lead to ambiguity in discussions about per-
ceptual attributes such as source spaciousness. There are places
in the literature where spaciousness is discussed but not defined,
and others where a definition is offered which do not correspond
to definitions found elsewhere. With this in mind we offer here a
concise definition of source spaciousness to remove any possible
ambiguity for the purposes of the experiments described below.

1.1. Definitions

In the scientific disciplines of acoustics and psychophysics there
is a tendency to define spaciousness in terms of its physical cor-
relates [5]. In some cases the term spaciousness is used as a syn-
onym for Auditory Source Width (ASW) [6]. Griesinger opts for
a more intuitive definition of spaciousness to mean the impres-
sion of a large and enveloping space [7].

Since we are using the definition to relate a concept to a group of
potentially inexperienced listeners, we have opted for a more de-
scriptive definition that describes the perceptual attributes of the
sound as the three dimensional extent of the perceived source.

Source spaciousness is the perceived extent of a sound source
in three dimensions. It can be expressed as a combination of

Dr. Jacqueline Walker,

ECE,
University of Limerick,
Limerick, Ireland
jacqueline.walker@ul.ie

source width, source depth, and source height. Width describes
the extent of the perceived source from left to right, depth de-
scribes the source extent from front to back, and height is the ex-
tent from bottom to top.

This definition accommodates an extension of the sound source
such that the boundaries of the source can expand to include the
listener “within” the sound. Such a situation may lead to the need
for terms such as source envelopment and source engulfment as
special cases of listener envelopment (LEV) [2] and engulfment

[8].

With the range of definitions used for the term spaciousness we
have to tread carefully and state that we are referring to the work
of others only in as much as it reflects on the work presented
here, that is to say, we are using the definition of source spa-
ciousness provided above even when we refer to the results of
others who may themselves be using the term spaciousness to
mean something else.

1.2. Past Experiments/Results

In the area of concert hall acoustics, source spaciousness is treat-
ed as a contributing component of an all-encompassing perceptu-
al attribute referred to as Spatial Impression [1], [9]-[11]. The
three dimensional nature of a sound image is described in [5] as
the subjective effect of early reflections. “As the lateral reflec-
tion level is increased, the source appears to broaden and the

»

music gains body and fullness”.

The importance of the frequency content of early reflections to
source spaciousness is reported in [5] to the degree that it con-
tributes to the source broadening of the image, with the effect
being most prominent around the 1kHz range. Blauert and Lin-
demann reported on the effect of various frequencies had on both
the width and depth of a perceived auditory image [1]. Early re-
flections made up of primarily low frequencies were attributed to
the cause of an increase in depth while the presence of higher
frequencies resulted in the lateral expansion of the image.

Since the introduction of elevated speakers into the standard re-
production systems is a relatively new development, experiments
covering the perception of height as a perceptual attribute are
fewer in number relative to the number of experiments dealing
with width and depth.

1.3. Research Question

We know from [1] and [5] that a certain amount of source
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spaciousness is determined by the presence of early lateral reflec-
tions and low frequency reverberation. We also know that the
degree to which each dimension of source spaciousness is affect-
ed by a lateral reflection is dependent on the frequency content of
the reflection(s). We present here a preliminary model to imple-
ment these ideas for a system that can synthesize and control the
perception of source spaciousness. The purpose of the following
experiments is to (a) quantify the contribution of early reflections
and low frequency reverb to the perception of source spacious-
ness and (b) to quantify the contribution of unique frequency
bands to the perception of width, depth and height independently.

2. EXPERIMENTAL SETUP

The experiment was carried out in the Spatialization and Audito-
ry Display Environment (SpADE) at the University of Limerick.
A description of the acoustic performance of that space can be
found in [12]. Many of the features of the experiments are similar
to those found in [1].

Figure 1: schematic of the experimental setup

2.1. Hardware & Software

The speaker setup consisted of 5 Genelec 8030 active near-field
monitors positioned 2m from the listening position at angles of
0°, £45° and +90°. The direct sound was fed through the centre
loudspeaker at 0° along with a reverb signal. The delayed lateral
reflections were played back through the speakers to the side
with the delayed reverb signal. The parameters of each test signal
being examined in each part of the experiment are outlined be-
low.

A reverb signal was created using an EMT 140ST with the reverb
time set to 1.75s. This reverb signal was processed with a low
pass filter and then mixed with the dry anechoic signal with a
delay of 75ms.

Signal processing was applied to the source material in the
Max/MSP audio environment. The DSP consisted of gain con-
trol, digital delays and 4™-order 24db/oct Chebyshev filters (low-
pass and band pass). Each test signal was recorded to disk for use
during the experiment to avoid any potential problems with run-

ning the signal processing “live”. The average Sound Pressure
Level (SPL) at the listening area for each of the sound fields pre-
sented was 76dB +2dB.

2.2. Test Signals

The test signals were generated from an anechoic recording of
Glinka’s Overture, Russlan and Ludmilla, from the Denon Ane-
choic Orchestral Music Recording CD. The left channel was ex-
tracted from the stereo recording and used as source material for
both experiments. The spectrum of the opening 15 seconds used
for the experiment is shown in Fig 1. Each experiment consists of
a direct signal played back from the front loud speaker, along
with 2 simulated reflections played back over the left and right
loud speakers with an applied delay of 20ms and 30ms respec-
tively. In experiment 1 the speakers at angles +45° were used
while in experiment 2 the speakers at +90° were used along with
the frontal speaker.

45

40 /
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50 80 200 500 1250 3150 8k
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Figure 2: spectrum of the test signal used

2.3. Set1

The parameters for the set of 15 signals in Set 1 are outlined be-
low in Tables 1 & 2. The actual values for each variable were
chosen on the basis of their inclusion in [1] where the emphasis
was placed on “naturalness” for choosing the parameters outlined
below. The sound fields were then arranged into pairs, making
105 pairs for comparison by the participants in the experiment.

Table 1: variable values for experiment 1

Cutoff frequency of low
pass filtered reverb fg

Step +1: 900 Hz
Step 0: 650 Hz
Step -1: 400 Hz
Step +1: -12 db.

Level of low pass fil-

tered reverb relative to Step 0: -14 db.
direct sound NT Step -1: -18 db.
Level of early lateral Step +1: -3 db.
reflections relative to Step 0: -5.6 db.
direct sound S Step -1: -13 db.
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Table 2: Variable values for each test signal in Experiment 1

Test Signal A B C D E G J L M N (0] P
Parameter S 1 1 1 1 1 0 0 0 0 -1 -1 -1 -1 -1
Settings fg 1 -1 1 0 0 -1 1 -1 -1 0 0 -1 -1

NT 1 0 -1 -1 1 0 1 -1 1 -1 1 0 0 0 -1

While listening to a pair, it was possible to switch between the
sound fields freely, and repetition was allowed. In the first part of
the experiment, the subjects were asked to compare the sound
fields of the pair and make a judgment as to which was more
spacious. Judgments of “no difference” were allowed. Their re-
sponses were submitted via a touch screen tablet device via OSC
and saved in Max/MSP as a text file.

2.4. Set2

The parameters for the filters applied to the simulated early re-
flections of part 2 of the experiment are outlined in Table 3. The-
se sound fields were arranged in pairs resulting in 65 pairs for
comparison. For each pair, the subject was asked to make a
judgment as to which sound field was (a) wider (b) deeper, and
(c) taller of the two. Their responses were in the form of a judg-
ment plus a rating between 1-6 depending on the degree to which
one was wider/deeper/taller than the other in each pair. Judg-
ments of ‘no difference” were allowed and a rating of 0 was ap-
plied to all such responses. During playback it was possible to
switch freely between the two sound fields of the pair and repeti-
tion was allowed.

Table 3: variable values for experiment 2

Test Signal Bandwidth
1 50 Hz - 80 Hz
2 50 Hz — 200 Hz
3 50 Hz - 500 Hz
4 50 Hz - 1250 Hz
5 50 Hz-3150 Hz
6 50 Hz - 8000 Hz
7 80 Hz — 20 kHz
200 Hz — 20kHz
9 500 Hz — 20 kHz
10 1250 Hz — 20 kHz
11 3150 Hz — 20 kHz
12 8000 Hz — 20 kHz

2.5. Test Subjects

There were 18 participants in total ranging in age between 19 -
28 years old. All were post-graduate students who were studying

courses with a strong emphasis on audio and music. Each report-
ed to have normal hearing.

2.6. Pre-Experiment Examples

Prior to the experiment a brief training session was carried out
where each subject was presented with several example sound
fields with varying degrees of source spaciousness. The defini-
tion of source spaciousness was defined as described above and
subjects were allowed to make their own judgments of source
spaciousness of the example sound fields.

3. RESULTS

3.1. Experiment 1

The participant’s responses to part 1 of the experiment were rec-
orded as source spaciousness scores. For each pair under consid-
eration, a 1 was assigned to the sound field judged to be more
spacious and a -1 assigned to the sound field judged less spa-
cious. In cases where the elements of the pair were considered to
be equally spacious, a value of zero was assigned to both. Using
this scoring scheme we can construct a ranking of spaciousness
from the data, see Figure 3. The ranking clearly shows the test
signals grouped into 3 clusters, each representing a different val-
ue for the variable S: level of early reflections.
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Figure 3: spaciousness scores for experiment 1

The existence of a strong relationship between the variable S and
the source spaciousness score can be established by visually
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Table 4: Regression model for source spaciousness

Model Unstandardized Coefficients Standardized Co- t Sig.
efficients
B Std. Error Beta
(Constant) 12.780 .994 12.851 .000
1 Reflections Level 1.668 .031 944 54.005 .000
Reverb Filter Cutoff .004 .001 .095 5.408 .000
Reverb Level 202 .053 .067 3.843 .000

a. Dependent Variable: Score

inspecting the chart in Figure 3 and the contents of Table 2. A
standard multiple regression was performed between the spa-
ciousness score for each sound field as the dependent variable
and the variables S, fg and NT as the independent variables.

An analysis of the effect of the variables fg and NT on source
spaciousness revealed little correlation between either variable
and the score variable (correlation of .23 & .01 respectively). We
also found that the contributions to the end score of the inde-
pendent variables fg and NT were quite small (Standardized Co-
efficients of 0.09 and 0.06 respectively). It was proposed that the
filter cut-off frequency had influence over the perceived source
spaciousness only in as much as it affected the overall energy in
the reverberation signal. A new variable was introduced that was
the measured peak RMS level of the reverberation signal. Three
level groups were identified, and the sound fields were given a
new variable with value of -30db, -35db, or -45db according to
the measured reverb level R.

This proved to slightly decrease the overall apparent contribution
of the reverb signal to the perception of source spaciousness in
the analysis. Although the difference is minor it leaves the ques-
tion open as to whether there is an effect on source spaciousness
by varying the frequency of a low cut filter applied to the reverb
signal.

The number of cases submitted to analysis was 270, which is a
sufficient amount to qualify as suitable for regression analysis
[13]. No outliers were found with criteria for Mahalanobis dis-
tance set to p < 0.001.

Table 4 shows the unstandardized and standardized coefficients
for the analysis along with the t value and significance levels.
The R, R?, and adjusted R? values for the model are 0.96, 0.92
and 0.92 respectively. This high value for R? signifies how dom-
inant the level of early reflections is in determining source spa-
ciousness.

As expected, the primary contributing variable for the spacious-
ness score is the level of the early reflections. The variation of
the reverb signal does have and effect on the result but its signifi-
cance is negligible in comparison to that of S. When we control
for S we found that the effect of the reverb signal on the score
was dependent on S. At extreme levels of S, the contribution was
minimized, presumably because of the dominance of S. However
the effect on the result caused by the reverb became more pro-
nounced when S was in the middle of its range. This effect in-
creased by a factor of 3 compared to its effect at the higher and
lower values for S.

3.2. Experiment 2

The focus of the second experiment was on quantifying the con-
tribution of various frequency bands to each of the three dimen-
sions of source spaciousness i.e. source width, source depth and
source height. Participants were asked to judge which test signal
gave the impression of a wider, deeper and taller source. Compil-
ing the scores in a similar way as we did in experiment 1, the
ranking for each dimension is shown in Figures 4,5, & 6.
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Figure 5: depth scores: Error Bars 95% CI
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Table 5: Regression model for width score

Model Unstandardized Coefficients Standardized Co- t Sig.
efficients
B Std. Error Beta
(Constant) .583 .186 3.135 .002
fb_200_500 1.819 279 .294 6.518 .000
1 fb_500_1250 1.500 322 242 4.654 .000
fb 1250 3150 1.278 322 .206 3.964 .000
fb_3150_8000 2.056 322 332 6.377 .000
fb_8000 20k 1.597 279 258 5.722 .000

a. Dependent Variable: Width Score

As there is little energy in the source material between 50 Hz and
80 Hz, we cannot conclude much about the effect of energy in
that region on the source spaciousness. Looking at Figure 4 we
can see that all frequency components contribute to the perceived
width of the source. Figure 5 indicates that the depth of the per-
ceived source is determined by frequencies below 500 Hz. The
presence of energy at frequencies above 500 Hz adds nothing to
the perception of depth and may in fact reduce the effect.

The perceived height of the source is determined according to the
presence of frequencies above 1250 Hz. The frequencies between
1250 and 8000 Hz contribute the most to the perception of height
in the experimental setup. When the higher frequencies (>1250)
are present, the addition of any energy in the range below
1250Hz has little effect on the perception of height. However in
the absence of energy in the upper range of the frequency spec-
trum, the lower frequencies may increase the height of the per-
ceived source.
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Figure 6: height scores.: Error Bars 95% CI.

3.3. Models of Width, Depth, and Height.

The variables defining the test signals in experiment 2 were cod-
ed into non-overlapping frequency bands. If a frequency band is
present as a reflection in a signal it is assigned a value of 1, oth-
erwise it is 0. To determine the contributions from each frequen-
cy band to the perception of width depth and height we employed
a standard multiple regression with the scores as the dependent

variable and the frequency band variables of the early reflections
as the independent variables.

After some exploratory analysis we found that the maximum
number of independent variables contributing to the perceptual
attribute source width is 5. With 216 cases submitted to the re-
gression, the criterion for ratio of cases to independent variables
is satisfied. No outliers were found.

The amount of variation in the width score is accounted for by
the five frequency bands is shown in Table 5. The frequency
range below 200Hz did not make any significant contribution to
the width score. The model in Table 5 accounts for 81% of the
variance in width score.

The variation in depth score is accounted for by the two frequen-
cy bands that make up the range between 80 Hz to 500 Hz. The
coefficients for the depth regression are shown in table 6. The
contribution of these frequency bands accounts for 39% of the
total variation in depth score.

The results of the regression analysis with height as the depend-
ent variable are summarized in Table 7.

We have found that the frequency content of the early reflections
accompanying a direct signal have a significant influence on the
perception of source spaciousness in terms of the width, depth
and height of the perceived source. This confirms the results
found in [1] and [5] although there is some disagreement over the
exact frequency band which can be said to influence each of the
dimensions.

4. SOURCE SPACIOUSNESS MODEL

Based on the results of the experiments presented above, we have
devised an equation to represent a linear model of source spa-
ciousness.

n
SS = Z(awi + ag, +ap)G; + la,G, (D)
i=1

where G; and G, are the gain of the i** frequency band of the
simulated early reflections and the reverb signal respectively.
Qy,> Ag;> and ay, are the regression coefficients from the linear
approximations for perceived width, depth, and, height respec-
tively. I, is the scaling factor applied to the effect of the reverb
due to the value of S. a,. is the reverb coefficient from the regres-
sion applied to the result of experiment 1.
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Table 6: Regression model for depth score

Model Unstandardized Coefficients Standardized Co- t Sig.
efficients
B Std. Error Beta

(Constant) 2.352 237 9.934 .000

1 fb 80 200 1.889 428 317 4.410 .000

fb 200 500 2.167 428 364 5.059 .000

a. Dependent Variable: Depth Score

Table 7: Regression model for height score

Model Unstandardized Coefficients Standardized Co- t Sig.

efficients
B Std. Error Beta

(Constant) 1.863 244 7.635 .000

1 fb 1250 3150 1.896 423 343 4.485 .000

fb 3150 8000 1.250 .535 226 2.338 .020

fb 8000 20k .590 423 107 1.396 .164

a. Dependent Variable: Height Score

The first term of (1) represents the contribution of early reflec-
tions while the second term accounts for the reverberation signal.
Although we found there to be minimal effect of the reverb sig-
nal on the perception of source spaciousness, we kept this term in
the equation to allow for potential future developments involving
a reverb signal.

The overall content of the model is based on experiment 1 while
the details of the filters applied to the early reflections to control
for perceived width, height and depth independently is derived
from the results of experiment 2. According to our findings,
source spaciousness is a three dimensional spatial attribute that
can be described in terms of width, depth, and height.

5. CONCLUSION AND FUTURE WORK

We have presented here a preliminary model for source spa-
ciousness that is to serve as a starting point for the development
of a more comprehensive study of this perceptual attribute. While
changes in the width are well accounted for by the variables in-
cluded in the experiments, the other two dimensions are less af-
fected. Future experiments could potentially seek to get a more
detailed picture at how the frequency spectrum of early reflec-
tions affects the perceptual attribute. The inclusion of elevated
loudspeakers for the simulation of source height will also be in-
vestigated.
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ABSTRACT

In this paper methods to determine the group delay of vented boxes
and techniques for the design of filters for group delay equaliza-
tion are presented. First the transfer function and the related group
delay are explained. Then it is shown how the group delay can
be computed or approximated for a certain alignment of the box.
Furthermore it is shown how to derive the required parameters of
the transfer function from a simple electrical measurement of the
box, which allows the determination of the group delay without
knowledge of the box design parameters. Two strategies for the
design and implementation of digital correction filters are shown
where one approach allows for a real-time adjustability of the de-
lay. Finally, the performance with a real speaker is evaluated.

1. INTRODUCTION

Vented boxes have been in use for a long time. Their theory was
described the first time to a great extent by Thiele in [1] and [2].
Later Small refined the theory further [3]-[4]. Both authors pro-
vided a mathematical description of a vented loudspeaker that al-
lowed for a systematic design and an assessment of the transfer
characteristics, which was not the case before. Later on, Bullock
[5] streamlined the design procedure and made the data provided
by Thiele and Small more practically usable.

The advantage of vented boxes w.r.t. closed or dipole speakers
is their enhanced bass response. Their drawback is an increased
group delay at low frequencies, which among other effects, can
lead to the perception of a "muddy", "boomy" or "slow" bass.
These deficiencies at low frequencies are not the only phase errors
of loudspeakers. In general, modern speakers are multi-way sys-
tems and the multiple ways are separated by a crossover, which
can be implemented as a passive, an active analogue or an active
digital system. Ideally, the output of the paths add up to a constant
frequency response. A crossover is made of filters which provide
the desired frequency division, but also introduce unwanted phase
shifts and hence group delay errors. Additionally, the placement
of the speakers relative to each other can introduce time-alignment
errors. The significance and audibility of these phase or group de-
lay errors is subject to ongoing research and discussions, see [6],
[71, [8], [9] for example. Time-alignment correction using group
delay equalization is proposed by [10] and [11]. For example [12]
and [13] propose the correction of phase distortion with allpass fil-
ters.

Most of the present work deals with higher frequencies and equal-
ization in the low-frequency region is rarely discussed. Linkwitz
[14] states that it is not a trivial task, since a lot of delay is needed
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at higher frequencies of the spectrum. The authors of [15] focus
on the phase correction at higher frequencies and remind that the
low frequency sound is not perceived independently of the charac-
teristics of the listening room. This is of course true but not limited
to the low frequency range and a loudspeaker as ideal as possible
is desirable.

In this paper we will focus on the equalization of group delay er-
rors that are introduced by the driver-enclosure-system in the low-
frequency range.

2. FUNDAMENTALS OF VENTED BOXES

A vented box is a loudspeaker enclosure with an additional open-
ing called a vent or port, which is usually made of a tube.

The behaviour of a vented box can be described as a fourth order
highpass system. The box itself is a resonator with the air in the
box volume acting as a spring and the air in the port behaving as a
mass, which together are a resonating mass-spring-system. Such a
system is also known as a Helmholtz resonator.

The resonator helps the chassis to reproduce low frequency bass
but has the disadvantage that the onset and offset of its oscillation
is somewhat delayed to the driver signal. At the box resonance fre-
quency the sound output is nearly solely coming from the port and
thus has the group delay of the resonator. For frequencies higher
than the port resonance frequency, the sound output from the driver
and the port are mixed and at higher frequencies the sound from
the driver dominates. Fig.1 illustrates the typical behaviour of a
vented box derived from a LTspice simulation [16]. The group de-
lay in this example exhibits a maximum of about 18 ms slightly
below the port resonance frequency of about 34 Hz.

2.1. Transfer function of a vented box

The sound pressure frequency response of a vented box can be ex-
pressed by the general system function of a fourth order highpass:

Gy(s) = <£)

e () re(5) Fo(5) ()
wo wo wo wo

There are also higher order systems possible that make use of ad-
ditional electrical filters to shape the low-end frequency response.
These assisted designs are not considered here, since they are quite
unusual. The coefficients of the system function G, (s) are related
to the design parameters of the vented speaker and are defined by

ey

DAFx-57



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

100 T 50

90 H40

SPL/dB

1
10' 10° 10°
Frequency / Hz

Figure 1: Spice simulation of vented box showing magnitude (—)
and group delay (- -) responses of the driver (blue), the port (red)
and the combined output (black).
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a = Vus/Vp is the system compliance ratio. It describes the ra-
tio of the compliance of the air in the box Vg to the compliance
of the low-frequency driver V,s. h = fp/fs is the tuning ratio,
which is the ratio of the free-air resonance of the driver fs to the
resonance frequency of the box f,. Both o and h are determined
in the box design process to meet specific requirements. @Q); is
the quality factor of the enclosure and depends on the construction
of the box with regard to losses and air tightness. For a medium
sized box with slight damping at the inner walls (); = 7 can be
assumed. (s is the total quality factor of the driver including
mechanical and electrical characteristics and additionally resistive
contributions from the crossover [17].

Depending on the values of the coefficients, the response of a box
is classified as a certain alignment. The choice of an alignment de-
pends on the desired frequency response and thus has an influence
on group delay at low frequencies. Not all alignments are possible
with all drivers depending on their parameters.

The alignment is usually derived from the magnitude squared func-
tion setting s = jw and & = w/wo, where wy is the corner fre-
quency of the highpass as

a8

|G (jw)|”

_ 5
YA Aot Ao ras O

with
As = a3 —2as (6)

A1:a§—2a2, A2:2—|—a§—2a1a3,

The box design parameters are then computed from A;, A2 and
As.

2.2. B4 alignment (fourth order Butterworth)

For this alignment the transfer function corresponds to that of a
fourth order Butterworth highpass. It is characterized by A; =
As = A3 = 0. The transfer function of a fourth order Butterworth
highpass is

84

Ba(s) = (M
(824 V2 =25 +1)(s2 + V2 ++v25+1)

If we are interested in the group delay response of a Butterworth
highpass we can look at the slightly more simple transfer function
of a Butterworth lowpass which has the same group delay charac-
teristics. Replacing s as in the previous section it can be expressed
as

1
Barp(jw) = .
1P(w) = 15613 75 — 341407 — 2.613 j07 7 07

®)
The general expression for the phase of the fourth order Butter-
worth lowpass filter is then

2.6131 & — 2.6131 &°
= —arct
f = —arctan ( o' — 3414207 + 1 ) ©)
from which the group delay can be calculated as 7, = —dS3/dw.

The general expression for the group delay of a fourth order But-
terworth filter (highpass or lowpass) can be found in eq. (20) in
the appendix.

As can be seen in Fig.1, the maximum group delay occurs roughly
at the cabinet resonance frequency. The group delay at resonance
frequency is easily obtained by setting w = wp as

_3.695517  0.58816

o 7 (10)

Tmaz =~ T(w = wo)

Hence, the approximate group delay maximum for a B4 alignment
of interest can be determined quite simply. Another point of the
group delay response can be estimated. The limit for w — 0 is
2.6131  0.4159
74(0) = P .
0 fo

)

With the knowledge of these two points of a group delay response,
it is already possible to design a group delay equalizer. However, it
has to be known that the box has a B4 alignment and the value fj is
needed. Furthermore, the B4 alignment is only usable for drivers
with Q:s = 0.4, hence not all vented loudspeakers are designed
using a B4 alignment.

2.3. Other alignments

Beside the B4 alignment there also exist further alignments like
QB3 (quasi third order Butterworth), (S)C4 ((sub) fourth order
Chebychev) and some more [18]. Their transfer functions include
further design parameters that can be chosen to obtain desired re-
sponse characteristics. Hence the determination of the group delay
function for these type of filters is not possible in general.
Furthermore, a vented box is usually designed using one of these
known alignments, but this is not strictly necessary, since the coef-
ficients of the transfer function G, (s) can be set to any desired
value as long as the design parameters as box size, tuning fre-
quency and driver parameters allow.

Consequently, a more general approach is required to be able to
equalize every loudspeaker.
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3. DETERMINATION OF LOUDSPEAKER GROUP
DELAY

If the alignment of the box is not known or the box is not designed
corresponding to one of the known alignments, the parameters of
the transfer function G, (s) can be determined by a measurement.

3.1. Acoustic measurement

The frequency response of any speaker can of course be measured
by an acoustical measurement using an appropriate test system.
However such a measurement requires a suitable (measurement-)
microphone, a microphone preamp and software for signal gener-
ation and analysis. Such equipment is not always available, e.g. in
a home environment.

Furthermore the results of an acoustical measurement depend heav-
ily on the measurement room. Noise, reflections and standing
waves can have a big influence on the results. Especially noise
and reflections can cause peaks or ripple in the magnitude as well
as in the phase response. Since the group delay is the derivative of
the phase w.r.t. frequency, these unwanted disturbances influence
the group delay measurement significantly.

3.2. Impedance measurement

The low-frequency behaviour of a loudspeaker can also be deter-
mined with an electrical impedance measurement [2]. In this case
only a sine-generator, a voltmeter and an amperemeter are neces-
sary. In many cases it should be possible to use standard multime-
ters, since even simple ones are dedicated to make measurements
at 50 Hz and hence in the low audio frequency range. Furthermore,
only the frequencies of three extreme values of the impedance re-
sponse are needed, not the impedance values themselves. We have
compared high-precision TRMS (HP 34401A) and simple non-
TRMS multimeters without significant differences in this appli-
cation.

From an impedance measurement the system compliance ratio c,
the tuning factor h and Q)5 of the driver can be computed. With the
knowledge of these values and an assumption for the box quality
factor QQ;, the transfer function G, (s) and thus the low-frequency
transfer characteristic of the loudspeaker is completely defined. In
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Figure 2: Impedance curve of a vented box

Fig.2 a typical impedance for a vented box can be seen. There
are three frequencies of interest where f; is the enclosure reso-
nance frequency and a minimum of the impedance occurs. f; is
the frequency of the impedance maximum below f3, and f3, is the

frequency of the maximum above f,. The resonant frequency of
the speaker in the box fs;, can be computed as fs, = (fnfi)/fo-
An alternative measurement method which requires blocking of
the port is described in [19].

From the results of the impedance measurement, according to [4]
the compliance ratio a can be computed as

2 2\( £2 2
(fn — fo)(fs — f7)
sh
Furthermore the tuning factor can be computed from the impedance
measurement as

hedo o S0 (12)
f s f sb

The free air resonance frequency fs normally deviates only slightly
from the resonance frequency of the built-in speaker fs, [19], hence
the influence of this approximation on the group delay will also be
small.
With the knowledge of Qs all coefficients of the general trans-
fer function can be determined. Bullock [5] gives an approximate
formula for the total driver quality factor as

1 \ 33
Qts:(m) ) (13)

For the box quality factor Q;, a value of (J; = 7 can be assumed.
A slightly larger value could be applied for smaller boxes and a
smaller value for larger ones.

With the knowledge of «, h, Q; and Qs the coefficients of the
transfer function a1, a2 and as of the loudspeaker can be computed
using equations (2) - (4). Hence the transfer function G, (s) and
the resulting magnitude, phase and group delay responses can be
determined independently of the used alignment. If the measure-
ment is made directly at the terminals of a complete loudspeaker,
the influence of the crossover network, which mainly influences
Q15 1s already included in the results.

An advantage of this method is, that it directly yields a paramet-
ric description of the transfer characteristics, as only the three fre-
quencies fi, f» and f3, have to be determined. Hence no smoothing
is required as it would be the case with a direct acoustic measure-
ment.

4. CORRECTION FILTER DESIGN

If the group delay is known, the next step is the design of the cor-
rection filter for compensation of the vented-box group delay at
low frequencies. Because of the very small ratio of the lower cut-
off frequency fo to the sampling frequency fs, very long filters are
needed in the case of FIR-filters to obtain a satisfactory frequency
resolution. IIR-filters can work with a significantly lower amount
of coefficients but will have high demands on the precision of the
coefficients necessary for this task.

Consequently, if a suitable filter has been designed, the filtering
process may also require a high resolution, i.e. a powerful proces-
sor in the case of a long FIR-filter or high precision in the case of
an [IRfilter.

The computation of the filter coefficients can be challenging due to
the above reasons. For example an optimization based method as
described in [20] can be applied to design an allpass filter that ap-
proximates the phase response of the loudspeaker. However, this
method may not directly give good results or stable filters in our
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application. This is due to the fact that the phase is only approx-
imated in a very narrow frequency band, for which the numerical
conditions become an issue. Furthermore a suitable phase offset,
which is not directly included in the optimization problem has to
be chosen to ensure good approximation of the phase. We will
show two alternative methods to design a correction filter.

The required equalization filter must have a negative group delay
in a certain frequency range to "speed up" the signal or must intro-
duce additional delay, to "slow down" signals in the complemen-
tary frequency range. In the second case an additional delay will
be introduced into the signal path, which has to be considered, e.g.
in live applications or audio/video synchronous tasks.

4.1. Equalization filters with negative group delay

The use of such filters is not directly possible, because filters show-
ing negative group delay have a high-pass magnitude response
[21]. The frequency range, in which the negative group delay oc-
curs is then in the stopband of the filters. This would attenuate fre-
quencies in the desired low frequency range and therefore would
need an additional equalization (amplification) which would result
in a poor signal-to-noise-ratio.

The use of allpass filters with negative group delay (which would
be the filters with the desired characteristic in our application) is
not possible. These filters are not stable because their poles would
be located outside the unit circle.

4.2. Equalization filters with inverse delay

Such a filter should increase the group delay at all frequencies ex-
cept the ones near resonance frequency of the cabinet, which could
be achieved using allpass filters. This means that a large filter or-
der has to be used to obtain low ripple in the group delay response
for higher frequencies. Furthermore the fact, that the required de-
lay can become quite high at typical audio sampling frequencies
(some 1000 samples) the Q of the group delay for one allpass is
very large since the poles resp. zeros have to be very close to the
unit circle. This further increases the filter order needed to obtain
a low ripple in the group delay response.

Two alternative methods to design such a filter are shown in the
following.

4.2.1. FIR filter with unit magnitude response and inverse
phase response

A frequency response function with a constant magnitude and ar-
bitrary phase can be designed in the frequency domain directly. As
a starting point, the transfer function of the loudspeaker G (s) can
be transformed to the discrete time domain via the bilinear trans-
form to obtain G, (z). Then the impulse response hi(n) of this
IIR filter can be computed for a desired number N of samples.
The response can then be transformed to the frequency-domain
using a discrete Fourier transform (DFT). In the next step, in the
frequency domain the magnitudes can be set to an arbitrary value,
e.g. unity if only a phase equalization is required. If the phase has
to be equalized to exactly cancel the original phase and no mag-
nitude equalization is desired, this is the only modification needed
in the frequency domain. To ensure real coefficients of the filter in
the time domain, it has to be ensured that the spectral values of a
length N filter satisfy the relation

Hi(k) = Hf (N —k), k0. (14)

After a transformation back to the time domain via an inverse DFT,
we obtain the impulse response of the FIR filter having only the
phase response of the speaker and unity gain for all frequencies.
To obtain the final equalization filter with inverse group delay w.r.t
the original, the impulse response has to be time reversed.

The disadvantage of this approach is the resulting computationally
expensive long FIR-filter that finally does the group delay equal-
ization. This can make a real time implementation e.g. on an em-
bedded DSP-system difficult. A computation of the convolution in
the frequency domain using overlap-add or overlap-save schemes
would reduce the effort significantly, but requires quite long Fast
Fourier Transforms (FFTs) which require more memory, increase
the delay due to block processing and can decrease the precision
on fixed-point systems.

An advantage of this method is, that more correction can be de-
signed into this filter, e.g. magnitude equalization or highpass fil-
tering for driver protection without increasing the computational
effort of the filtering process. The data for magnitude equaliza-
tion could be obtained via an acoustic measurement whereas the
incorporation of predefined functions like subsonic filters would
not require additional measurements.

A correction filter as described can be designed using MATLAB.
Filters that are not directly based on the modelled frequency re-
sponse of the speaker but can be tuned manually or selected using
presets can be designed with a tool like rePhase [22].

4.2.2. Direct design of an allpass with the same group delay
as the speaker and computation as a time-reversed IIR-filter

In this approach we first design an allpass-filter with a group de-
lay approximating that of the loudspeaker. Mainly, we want to
compensate for the delay introduced by the cabinet, which is a
resonator and hence a second order system, whereas the whole
speaker is modelled as a fourth order system. Hence, the approach
is to assume that it is sufficient to design a resonator as a two-pole
filter

bo
(1 —re—dwoz=1)(1 + refwoz—1)
to mimic the group delay response of the box.
Two parameters, the radius r and the angles £wq of a pole pair
p1,2 have to be determined. This can be done based directly on
parameters of the original (measured) group delay response. In
this approach the resonance frequency of the box determines the
angle of the poles of the correction filter. The radius of the poles
determines the rate of change of the phase at the pole frequency
and thus the maximum of the group delay.
The maximum magnitude response of a resonator which corre-
sponds to the maximum group delay does not directly occur at
the pole frequency wp but also depends on the pole radius r and
occurs at the frequency

HR(Z) =

s)

2
Wy = arccos < +rr cos wo) (16)
[23]. This shift of the resonance frequency is due to the fact that
we have poles at positive and negative frequencies to get real co-
efficients, i.e. a two-pole system for a single resonance. The pole
at negative frequencies also has an influence on the response eval-
uated on the positive frequency axis in the upper half of the unit
circle and vice versa. For values of r close to unity, the pole of
the respective half-plane dominates and the dependency of the res-
onance frequency from the second pole can be neglected and thus
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wr /= wo. Hence we set the pole angles to

wo = £27 10 a7

fs

The required pole radius r can be derived from the phase response
of the resonator. Here also both poles influence the desired group
delay value, which makes the relation quite complicated. The ex-
pression for the group delay at wo dependent on 7 is given in eq.
(21) in the appendix. The expression in eq. (21) is quite unhandy
and not easily to solve for r. A method for the determination of the
required value of 7 is to compute it iteratively. A suitable starting
point are the pole radii of the original transfer function G (z).

In addition to the poles of the resonator, two zeros z1,2 have to
be added to obtain an allpass-system with a constant magnitude
response. With the two zeros

21,2 = —— (18)
P12
we obtain the resulting transfer function of the allpass filter as
(1- lejwoz—l)(l + le—jwoz—l)

H. = - - .
2(2) (1 —re-dwoz=1)(1 + reiwoz—1)

19)

The zeros compensate the magnitude and add an additional delay
of the same amount as that of the poles. Since w, = wo is fixed,
the poles have to be complex conjugates and the zeros directly
result from the poles, r is the only parameter to be adjusted for
the whole allpass equalization filter. Fig. 3 shows a pole-zero plot
corresponding to the application example in the next section which
shows the dimension of wg and r.

0.03f
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0.01F

Imaginary Part
o
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-0.03-

i P i i i i i i i
096 097 098 0.99 1 1.01 1.02 1.03 1.04 1.05
Real Part

Figure 3: Poles and zeros of the correction filter before time-
reversal

We now have a second-order recursive filter which approximates
the group delay of the loudspeaker. To equalize the speaker, it
has to be time reversed, which would normally lead to an unsta-
ble filter. This method for the design of the correction filter is not
as exact as the approximation using a long FIR-filter on the basis
of the measured group delay described in the section above. The
advantage of this method lies in the significantly reduced compu-
tational effort required to run the filter in real-time.

The time-reversed low-order allpass H2(z) can be realized effi-
ciently as an IIR-filter using the structure proposed in [24]. The

#RSTT

Hy(z) o z
xm) [y i ST B ) —l N | Y
“] LIFo [ { 0y @ Lipo [
Hy(z)

Figure 4: Block diagram of time-reversed filter implementation
from [24]

block diagram of this filter is shown in Fig.4. Using this method,
data is buffered for a number of /N samples using a Last In First
Out (LIFO) buffer. The output of the buffer is a time-reversed ver-
sion of the input signal and sent through the second order allpass
filter, which requires only 5 multiplies and 6 additions per output
sample. Due to the long time constants it may be necessary to
implement the filter in double precision which would increase the
computation time roughly by a factor of four, which is still much
less than a FIR implementation requires. The result is then again
time-reversed by a second length-N LIFO-buffer and given to the
output. To account for adjacent blocks an overlap-add scheme is
applied. Computing the equalization filter as a time-reversed IIR-
filter significantly reduces the required computational effort com-
pared to an FIR implementation. However, there is no free lunch
and the drawback is, that the delay is increased to 2N samples and
the memory requirements to 4N samples. This would allow to
run the equalization filter on quite simple platforms, provided, that
they have enough memory. The additional delay may not pose a
problem if just a music playback situation is considered.

Another advantage of this approach is, that the delay of the equal-
ization filter can be changed quite easily just by changing pole
radius r and re-computing the 5 filter coefficients of H2(z). The
computation of an inverse DFT and time inversion is avoided. This
would allow to implement an adjustable delay on an embedded
system.

Both approaches, the FIR-filter and the time-reversed IIR-filter use
a truncated impulse response of a recursive system as a correction
filter. The required length IV of this impulse response is of course
dependent on the sampling frequency fs and should be chosen to
provide a minimum frequency resolution Af = fs/N of about 5
Hz. This results in a value of N > 8820 for f; = 44.1 kHz.
When using an FIR-filter this would mean 8820 multiply and accu-
mulate (MAC) operations per output sample in contrast to about 50
operations and some overhead for the buffering operations when
using the time-reversed IIR approach in double precision.

5. APPLICATION EXAMPLE

The following examples show the application of the proposed cor-
rection technique to a commercial HiFi loudspeaker (JBL TI5000).
This speaker shows an electrical impedance at the loudspeaker ter-
minals as shown in Fig.2. The three frequencies of interest for this
speaker are f; = 13.8 Hz, f, = 30 Hz and f;, = 49 Hz. The com-
puted total driver quality factor is Qrs = 0.31 and the resonance
frequency fo, = 22.6 Hz. These values are in good accordance
with the data given by the manufacturer with f, = 30 Hz, f, = 24
Hz and Qs = 0.29. From the measured frequency values the ad-
ditional parameters are computed as @ = 2.32 and h = 1.33,
which are reasonable values for a QB3 alignment.

DAFx-61



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

With these values the coefficients of the transfer function G, (s)
can be computed. The original magnitude and group delay re-
sponses of the speaker as computed from the data of the impedance
measurement are shown in Fig.5. The maximum value of the group

Original Magnitude

Level / dB

Frequency / Hz
Original Group Delay

m:
rg/ S
o 5

Level / dB

Frequency / Hz

Figure 5: Original Magnitude and group delay response of the
loudspeaker

delay Tgmaq is about 16.5 ms at a frequency of 29.5 Hz, which is
close to the measured cabinet resonance frequency of 30 Hz. The
-3 dB corner frequency of the system is at about 32.5 Hz.

The resulting pole radii of the discrete-time fourth-order highpass
G (z) are: 0.99803, 0.99803, 0.99853 and 0.99454. A correction
filter has been designed as described in 4.2.2. The pole angles are
chosen as wo = 27(f»/ fs) with f, = 30 Hz and f, = 44.1 kHz
and the pole radii r» were determined iteratively as r = 0.9968.
This leads to the pole-zero configuration as shown in Fig. 3.

In Fig.6 the frequency response of the time-reversed correction fil-
ter is shown. The group delay correction is not exact, as expected
because the box is a fourth order system and the correction fil-
ter a second order system and only models the cabinet resonance.
Furthermore the magnitude is unity because of the additional ze-
ros placed at the mirror position of the poles. For evaluation of

Magnitude of correction filter

Level / dB
S
>

Frequency / Hz
Group Delay of correction filter

m;
‘[g/ S
o 6

Frequency / Hz

Figure 6: Magnitude and group delay response of the correction
filter before time-reversal

the equalization performance, the group delay of the correction fil-
ter has been subtracted from the original group delay of the loud-

speaker. The result is shown in Fig.7. The correction filter does
not affect the magnitude response of the speaker but reduces the
group delay error of the box in the audible frequency range sig-
nificantly. The group delay error is about 4 ms at a frequency of
10 Hz, where the magnitude is already at about -35 dB w.r.t. the
passband and about -2.4 ms at a frequency of 47 Hz. This error of
-2.4 ms is much smaller than the original group delay of 9.3 ms at
this frequency before equalization. In [15] it is stated that a delay
below 1-2 ms will practically never be noticed and 3-5 ms errors
are safe for most program material. At the cabinet resonance fre-
quency of 30 Hz, the group delay is zero as expected.

Magnitude respomse with correction filter

Frequency / Hz
Group Delay after correction

T /ms

(

Frequency / Hz

Figure 7: Magnitude and group delay response of the corrected
speaker

The performance of the filter can be fine tuned by manually adjust-
ing wo and r to further reduce the errors or to adjust the equaliza-
tion to personal preferences.

5.1. Results

The result has been evaluated in an informal listening test, where
the correction was clearly audible for all participants. The low-
frequency reproduction gets tighter and more defined. Rhythmic
instruments like bassdrums have a better coherence of bass and
subbass frequencies and thus are fusing more into one sound. Due
to the change introduced by the equalization, the resulting sound
is also a little unusual since the listener is in most cases used to
listening to uncorrected speakers for a long time.

Another observation is, that the crestfactor of the output signal of
the correction filter can change due to the phase shifts in the low-
frequency range. To avoid clipping, the level of the output signal
may have to be reduced or limited according to the capabilities of
the signal processing system.

6. CONCLUSIONS

A way to determine the transfer function and thus the group de-
lay of a vented box in a simple applicable way via an electrical
impedance measurement has been shown. The group delay defi-
ciencies of the speaker can be equalized with an FIR-filter, into
which further equalization can be incorporated. This method can
give very accurate equalization but is computational demanding.

The correction filter can also be designed as a time-reversed allpass
by choosing the appropriate resonance frequency and pole radii of
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a second order resonator whose magnitude is then corrected with
additional zeros. This approach does not account for all sources of
unwanted group delay and but delivers good results. Furthermore
it allows for a parametric filter design and thus an implementation
of a simple real-time control of the delay. Additionally, it reduces
the computational load of the filtering process significantly with
the cost of introducing some additional delay into the signal path.
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8. APPENDIX

The general expression for the group delay of a fourth order But-
terworth filter (highpass or lowpass) is

9.28986 wo w® + 3.84786 wo® w? + 3.84786 wo® w? + 9.28986 wo

= . 20
Toa(w) 3.55511 w® — 0.000386 wo? wb + 0.000635 wo* w* — 0.000386 wo® w? + 3.55511 we® 20)
The expression for the group delay introduced by a pole pair at
Fwo with both poles having the radius r is
3r? sin® (2wo) 4 (67° cos® (wo) — 2r?) cos (2wo) + (2r — 4r?) cos® (wo) — 2r*
Tg(r) = @1

 2r3sin? (2wo) + (473 cos? (wo) — 272) cos (2wo) + (4r — 472) cos? (wp) — 7% — 1"
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ABSTRACT

This paper presents the time variant vectored comb filter. It is an
extension of the feedback delay network to time variant and non-
linear domains. Effects such as chorus and flanger, tap delay and
pitch shifter are examined in the context of the feedback scheme.
Efficient implementation of a stateless vectorizable LFO for modu-
lation purposes is presented, along with a recursive formulation of
the Hadamard matrix multiplication. The time variant comb filter
is examined in various effect settings, and presented with source
code and sound examples.

1. INTRODUCTION

A feedback delay network is a well established for method for
implementing efficient synthetic reverberators. The algorithm is
a simple yet elegant generalization of the comb filter; the signal
and filter parameters are vectored and the feedback attenuation be-
comes a matrix multiplication.

Different extensions to the comb filter are also ubiquitous. The
extensive design space of modulation—delay effects can be seen as
comb filter variants. This leads into an intriguing possibility of
further generalization, the vectored modulation delay.

This paper explores the addition of vectored delay time and
amplitude modulation to the FDN. Effects resembling modulation
delay staples such as chorus and flanger are examined and ex-
tended. Since all these effects are just parametrizations of the vec-
tored time variant comb filter, various hybrids are also presented.

The fundamentals of feedback delay networks are presented
first, in Section 2, Background. The generalization into Vectored
Time Variant Comb Filters is discussed in Section 3, Exploring
the Design Space. This section discusses the implementation and
applications of the effect as well as efficient implementation of the
modulation structure on vector hardware. A summary of the paper
is given in Section 5, Conclusion.

2. BACKGROUND

The standard comb filter is shown in Figure 1. For high filter or-
ders, it will be perceived as an echo effect. Lower order filters that
result in very fast echoes are perceived as frequency response col-
oration. Comb filters are ubiquitous, especially in artificial rever-
beration. The traditional design by Schroder[1] employs a bank of
these filters, tuned to generate a series of decaying echoes resem-
bling the diffuse reverberation field.

* This work was supported by MuTri Doctoral School, Sibelius
Academy, University of Arts Helsinki

Figure 1: Comb Filter

The seminal work on feedback delay networks for artificial
reverberation was done by Gerzon in the 1970s[2]. Since then,
the algorithm has become a staple of synthetic reverberation. The
overall schematic is similar to the comb filter: the delay and feed-
back coefficient are vectorized, the feedback gain stage becomes a
matrix multiplication.

In contrast to the comb filter bank, each delay line feeds back
into several or even all the other delay lines, giving FDN the prop-
erty of an echo density that increases over time. Real acoustic
spaces exhibit a similar property, unlike the constant echo density
comb filter bank.

The exact nature of the FDN sound field depends on the prop-
erties of the feedback matrix. Much of the research since its dis-
covery has been on tuning the counterintuitive algorithm. Seminal
work on the subject has been done by Jot[3]. Rocchesso and Smith
present important techniques and constraints for the feedback ma-
trix design, as well as equivalences to classes of digital waveguide
networks [4].

Time varying variants of the simple comb filter are also widely
used. An overview of these modulation delay effects is in the
literature[S]. The contribution of this paper is to explore the com-
bination of these: the vectored, time variant comb filter, and to
demonstrate an efficient implementation on SIMD hardware.

3. EXPLORING THE DESIGN SPACE

The example implementation of the vectored time variant comb fil-
ter is designed to explore the possibilities of delay and amplitude
modulation of significant depth. Typically, modulation techniques
in the context of feedback delay networks have been used to break
the modes of the reverberator. The analogy to vectored comb filters
suggests the possibility of vector chorus, vector flanger and even
complicated doubler type effects. Since these are just parametriza-
tions of the filter, hybrid effects combining features of several ef-
fects are also potentially interesting.
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LA

S-shaping

Figure 2: Overview of the waveshaping LFO

An 8-dimensional vectored time variant comb filter is imple-
mented for the purposes of this study. The filter consists of a delay
bank with loss filters and a feedback matrix. Two LFOs are pro-
vided per delay, one for delay time modulation and one for ampli-
tude modulation.

This design should be easily adaptable for efficient processing
on common SIMD units which tend to be 4 or 8 units wide at
the time this article was written. The reference implementation
can optionally use the Intel AVX instruction set to run most of
the comb filter on a parallel SIMD code path. It should be easily
adaptable to most similar vector architectures.

3.1. Implementation
3.1.1. Vectorized LFO

This section presents an LFO algorithm capable of producing con-
trol waveforms of triangle and square variety, with adjustable sym-
metry and slopes for ramps and pulses as well. All waveforms
can be continuously morphed between linear and pseudosinusoid
shape. The oscillator is designed for control signals and is not band
limited.

The algorithm is designed for modern hardware and vector
processing, which essentially preclude the use of nondeterminis-
tic code path or memory access. Wavetables and branch logic are
thus out of question. The algorithm is a pure function waveshaper
that acts on a simple phasor. Stateful or stateless phasors can be
chosen according to the target hardware.

The waveshaper is presented as a cascade of stages follow-
ing the phasor producing a periodic ramp in the range [0, 1]. An
overview is given in Figure 2.

The triangle/ramp/square base shape is accomplished by two
linear functions and three clipping stages. The base waveform is
parametrized by three degrees of freedom, (z1, x2, x3), as shown
in Figure 3. The linear functions for Sy, and Sqown follow triv-
ially from these points and are given in Equations 1 and 2. For the
linear segments to be defined, x1 > 0 Ax2 > x1 Ax3 > z2. How
small the deltas can be depends on the numerical characteristics of

X1 X2 X3

Figure 3: LFO degrees of freedom

the target hardware.

The waveform is combined by clipping S., below one and
Sdown below zero. Summing these and clipping above zero yields
the final waveform in the unipolar range of [0, 1]. Sqown should be
computed in the form k(z — x2) to preserve numerical precision
near zero — the section that will actually be used.

A pseudo-sinusoid waveform can be accomplished by a fur-
ther waveshaping polynomial (Equation 3). This shaping turns the
linear segments in the LFO into S-shape curves that are continuous
in the first derivative when applied to a triangle-like wave. A con-
tinuous control parameter from linear to pseudo-sinusoid segment
can be introduced. All in all, the pseudo-sinusoid shape morphing
roughly doubles the computational complexity of the LFO. The
S-curve is potentially useful for all of the waveforms: triangle,
skewed pulse and ramp.

T

Supla) = —2— m
Sdown (m) = m (2)
T2 — T3
332 3:'3
h(z) = 6(7 - g) (3)

3.1.2. Delay and Filter Bank

The delay and attenuation filter banks used in the effect are straight-
forward. The filter bank is based on the standard first order loss
filter. The delays are implemented as circular buffers.

The one pole filter bank is an easy fit for vector hardware.
The same can not be said for the delay bank, due to non-uniform
ring buffers. This leads to the memory access pattern requiring a
scatter/gather idiom.

The modulation of delay lines makes the signal path nonlin-
ear. This undermines the canonical stability criteria for feedback
delay networks. The described modulation is attenuation rather
than boost, so an unstable situation is not expected. However, the
attenuation effect of amplitude modulation is unpredictable and
program dependent. That is why a manual adjustment of feedback
beyond 100%, is provided per delay line, with total stability guar-
anteed by an additional stage for soft saturation.

3.1.3. Feedback Matrix

As in reverberators, a lossless feedback matrix is the starting point.
Such matrices are unitary. For the purpose of this study, the orthog-
onal Hadamard matrix with computationally beneficial features is
used. The matrix is generated by taking a /N-fold Kronecker prod-
uct of seed matrices and scaling for orthogonality, as shown in
Equation 4. This matrix caters for a network of 2V delay lines.

1o1]®Y
1 -1

o= e |
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Table 1: Permute—flip—add sequence for 8 x 8 Hadamard matrix

permute a
permute b
sign
permute a
permute b
sign
permute a
permute b
sign

—_— O
[SSIR S
(SN
~N

N O+ W
W =1
AR+ 9
N WD

Ao+ R+ s
N =4+ Q3 W
QN B

~ W

+ O+ DO+ = O

+ o=+ W=

+ oo
+ 9w

In the case of two delay lines (/N = 1), the matrix computa-
tion trivially results in a vector containing their sum and difference.
A larger feedback matrix can be constructed by computing pair-
wise feedback vectors, then recursively combining pairs of them
by concatenating the vector sum and difference. Each level of re-
cursion corresponds to a Kronecker product, doubling the number
of diffuse feedback channels. This algorithm results in N2V addi-
tions, or by the number of delay lines, nlogs(n) additions as noted
in the literature for FDN reverberators[6]. The matrix scaling co-

1

efficient 5w can be integrated into the delay line loss filters.

The feedback matrix is also amenable to SIMD computation.
Each Kronecker product can be reduced to a vectored permute,
sign flip and addition. An example with N = 3 is demonstrated
in Table 1. Three products are shown. The permute rows a and b
correspond to element indices for the left and right hand side of the
addition; the sign row denotes sign flips for the right hand side. For
architectures with a vector width of 2%, the entire feedback matrix
can be computed in 4N vector operations, corresponding to two
permutes, sign flip (xor) and addition per Kronecker product.

Alternatively, the Hadamard matrix could be vectorized as a
time-parallel computation in block processing. This choice could
be considered as it saves the permute operations described above;
however, it is less appealing due to the matrix appearing in a feed-
back loop of a modulation delay. The various techniques to work
around the latency of such an algorithm would likely cost more
than the simple permutation instructions, both in terms of compute
efficiency and algorithmic complexity.

3.1.4. Control Surface and Parameter Mapping

The internal parameter set used for each delay line in the effect is
shown in Table 2. A one to one mapping from the internal param-
eter set to a user interface is not likely very attractive. For eight
delay lines, the interface would contain 144 parameters. Macro
controls would be more useful; this should be studied in the fu-
ture.

3.2. Applications and Qualitative Evaluation

This section briefly discusses some of the creative possibilities of
using the effect described in this study. The evaluations are the
subjective impressions of the author; they shouldn’t be read as sci-
entific results. For a more detailed perspective, please refer to the
example code and sound files that are available at the code reposi-
tory specified at the conclusion of this paper.

Table 2: Time Variant Vectored Comb parameter set

parameter unit description

delay ms delay time

in gain dB input signal to delay line

out gain dB delay line to output signal
out pan linear stereo panorama

tone linear loss filter to feedback matrix
b gain % delay line to feedback matrix
LFO rate Hz

DM depth ms delay time modulation

DM offset linear DM phase offset

DM shape | 4 linear | x1,x2,x3, shape

AM depth linear amplitude modulation

AM offset linear AM phase offset

AM shape 4x linear | x1,x2,xs, shape

3.2.1. Vector Chorus—Flanger

The vectored chorus—flanger revolves around delay times and de-
lay modulation depth of 0 — 40 ms and LFO rates in the range of
0.1 — 5 Hz. Adding feedback creates a flanger-like moving reso-
nance effect, but the tonal color is a lot more complicated as the
feedback network system has a large number of poles.

With longer delay times and feedback, the effect acquires spring
reverb characteristics, especially with faster LFO rates.

Complex stereo imaging can be achieved by using variations
of similar settings on multiple delay lines and panning them across
the image.

3.2.2. Multitap Delay

By using delay times a lot longer than those in a diffuse field re-
verberator, a sparse multitap delay effect is created. What is es-
pecially interesting is the echo density escalation over time. The
sparse echoes gradually become a diffuse tail. The effect is capa-
ble of generating interesting transitions from percussive textures to
static ones.

3.2.3. Pitch Shifter

By using ramp-shape delay time modulation together with phase
shifted triangular amplitude modulation results in a simple pitch
shifter. The ramp modulator adjusts momentary playback speed,
while the triangular envelope is aligned to hide the discontiuity in
the ramp. An even overrall amplitude can be attained by using
overlapping shifters with orthogonal phase shifts.

The complex feedback is the distinguishing feature from stan-
dard slicer shifters. The effect is less useful as a plain transpo-
sition, as an infinite number of high order transpositions are gen-
erated by the feedback, but can result in extremely full ensemble
thickening effects with subtle pitch shift factors.

3.2.4. Hybrid Effects

Interesting combinations of effects can be realized by mixing de-
lay line settings from several of the above categories. Reverb-like
settings together with pitch shifter and chorus effects appear to be
the most immediately useful.
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3.2.5. Semi-Stable Self Oscillation

By utilizing very short delay times in the range of 0 — 20 ms and
feedbacks in excess of 100%, a self-oscillating network can be cre-
ated. Soft saturation in the feedback loop prevents the blow-up and
introduces both harmonics and non-harmonic aliasing frequencies.
The tonalities due to complex feedback paths are interesting, but
the pitch is quite hard to predict and control.

4. PERFORMANCE EVALUATION

4.1. LFO

The performance of the LFO reference implementation was mea-
sured by accumulating its output over 100 000 000 sample frames
to ensure timing accuracy. The accumulator is in place to pre-
vent dead code optimization by the compiler. A vectorized LFO
with eight independent waveforms was measured. The test pro-
gram was compiled with Microsoft Visual Studio 2013, with AVX
architecture and the fast floating point model enabled. The mea-
surement was run on Windows 7 with the dual core Intel i5-3317U
CPU clocked at 1.70GHz.

The vectorized LFO was able to produce 1.14286 x 10° out-
put frames of 8 discrete signals per second — roughly 16 CPU cy-
cles per frame, or 2 cycles per sample. This translates to a real
time CPU core utilization of 0.0039% per modulation signal on
the machine the measurement was performed on, when processed
at 44.1kHz.

4.2. Time Variant Vectored Comb Filter

The entire effect consists of the following modules:
delay bank (8)

modulation LFOs (16)

loss filter bank (8)

feedback matrix (8 x 8)

input and output routing matrices

M

The loss filter, modulation LFOs and all gain and summation
stages trivially vectorize to SIMD code. The feedback matrix is
also fully vectorized, as explained in Section 3.1.3. The modula-
tion delay bank remains scalar, as the requisite scatter/gather oper-
ations defeat the purpose of vectorization on current hardware.

In a test harness like the one described in 4.1, the entire comb
filter implementation produced 3.57 x 10° stereophonic output
frames per second. This translates to a real time CPU core utiliza-
tion of 1.23% at 44.1kHz. Roughly 80% of the time is spent in the
scalar delay line bank. This suggests that the additional computa-
tional load from a comprehensive feedback matrix, in contrast to a
plain modulation delay bank, is far from prohibitive in the context
of suitable vector hardware.

5. CONCLUSION

This paper examined the extension of feedback delay networks
into the realm of modulation delay effects. Efficient vectorized
implementation of the parallel modulation structure and a diffu-
sive feedback matrix were demonstrated.

The generalized time variant vectored comb filter is interesting
in the sense that it is a superset of a large number of delay-based ef-
fects. It offers musically relevant and divergent possibilities when

complicated feedback structures are used. In particular, hybrids
between spatial and ensemble effects offer novel sounds. Con-
tinuous morphing from one effect state to another is also easily
attainable.

Possible future work could involve a deeper investigation of
the feedback matrix. The current implementation uses a fixed feed-
back matrix for maximum efficiency. Control over the diffusion
between the submatrices of the Hadamard tree could be especially
interesting, as it could be seen as a way to isolate or combine sec-
tions of the network. The impact of advancing scatter/gather im-
plementations could be interesting in improving the performance
of the scalar delay bank. The user interface is also an open ques-
tion: the exposal of the extensive parameter set via a higher level
control surface could increase the viability of the effect from the
end user point of view.

A reference implementation of the effect in C++, along with
sound examples, is available on Bitbucket under the MIT license,
athttps://bitbucket.org/vnorilo.
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ABSTRACT

A variety of methods are available for implementing time-varying
digital filters for musical applications. The considerations for mu-
sical applications differ from those of other applications, such as
speech coding. This domain requires realtime parametric control
of a filter such as an equalizer, allowing parameters to vary each
sample, e.g. by user interaction, a low-frequency oscillator (LFO),
or an envelope. It is desirable to find a filter structure that is time-
varying stable, artifact-free, computationally efficient, easily sup-
ports arbitrary filter shapes, and yields sensible intermediate filter
shapes when interpolating coefficients. It is proposed to use the
state variable filter (SVF) for this purpose. A novel proof of its
stable time-varying behavior is presented. Equations are derived
for matching common equalizer filter shapes, as well as any z-
domain transfer function, making the SVF suitable for efficiently
implementing any recursive filter. The SVF is compared to state of
the art filter structures in an objective evaluation and a subjective
listening test. The results confirm that the SVF has good audio
quality, while supporting the aforementioned advantageous quali-
ties in a time-varying digital filter for music. They also show that
a class of time-varying filter techniques useful for speech coding
are unsuitable for musical applications.

1. INTRODUCTION

In digital audio effects, filters are rarely time-invariant. A filter is
time-variant if it has a user-controllable parameter. A time-variant
filter is also a useful building block for an effect such as a phaser or
filter controlled by an LFO or envelope. For these applications, it
is important that the filter remain stable, and that the time-varying
behavior not introduce perceptible artifacts. Here, we focus on
realtime musical applications, where parameters may be varied
every sample, as with an LFO, and it should be computationally
efficient to do so. An ideal method will allow implementation
of any filter shape. As the parameter changes may be smoothed,
the transfer functions resulting from the intermediate coefficients
should maintain a similar magnitude response to the shapes be-
ing interpolated. This study is restricted to second-order recursive
filters because higher order filters are typically decomposed into
second-order sections.

The choice of filter structure has a large influence on time-
varying behavior, including whether the filter will remain stable.
Even stable filters can still produce objectionable artifacts, as will
be shown in Sec. 6.

In order to implement time-varying filters, given a desired trans-
fer function, one option is to select a time-varying stable filter
structure, and configure this structure to realize the transfer func-
tion. Another option is to use a time-varying unstable structure
such as Direct-Form II transposed, and stabilize it.

A variety of approaches have been proposed to improve time-
varying behavior. One category of methods is transient suppres-
sion [1] [2] [3], and another is stabilization [4] [5]. These are
discussed in more detail in Sec. 2.

One filter structure that is often used to realize realtime, per-
sample time-varying behavior is the state variable filter (SVF).
Empirically, it is known to remain stable and artifact-free, but
these properties have not previously been proven. A proof of time-
varying stability will be shown here. By taking the output of this
filter from different nodes, it is possible to obtain second-order
lowpass, bandpass, or highpass filters. The SVF also maps intu-
itively to common audio equalization filters, providing indepen-
dent control over frequency and resonance, which results in a low
computational burden. Due to this relation, directly interpolating
SVF coefficients also tends to result in sensible intermediate fil-
ter shapes, unlike some other structures [6]. Here we will also
show how to choose SVF coefficients to realize any desired trans-
fer function. Thus, the SVF satisfies the desired qualities of a time-
varying filter for musical applications.

Prior approaches to time-varying filtering are reviewed in
Sec. 2. In Sec. 3, we review the proposed digital implementation
of the SVFE. In Sec. 4, we derive formulas for using the SVF to
realize some common filter types for audio equalization, and gen-
erally, any second-order z-domain transfer function. This allows
the SVF to be easily used to implement any digital filter. In Sec. 5,
the time-varying stability of this structure is proven. In Sec. 6, the
time-varying behavior is compared with state of the art methods
in an objective evaluation of DC response, as well as a subjective
listening test, which confirms its good audio quality, and suggests
criteria for perceptually good time-varying behavior.

2. PRIOR WORK

A variety of filter structures have been studied in the time-varying
case, e.g. [5] [4]. Structures such as Direct-Form II, lattice, and
normalized ladder are not necessarily stable when coefficients are
changed. Coupled form, also known as normal form or Gold
and Rader [7] [8], is stable in the time-varying case. Stability
here refers to bounded-input/bounded-output (BIBO) stability [5],
meaning that the output of the filter will be bounded so long as the
input is bounded.

In addition to these structures, there are several methods for sta-
bilizing a filter or eliminating transients from it. Consider a change
from state space matrix S1 to Sz at time n=m. Let y1[n] be the
output when filtering the entire signal with Sy and y2[n] be the
output when using S2. The output switching model [1] [3] has the
ideal response of

ii={ 0] Tl g
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2.1. Transient Minimization

Transient minimization techniques consider the transient signal,
defined as the difference between the actual output signal, and the
output switching model from equation (1). Transient minimization
techniques decrease this transient signal.

Zetterberg and Zhang [1] propose a method, motivated by LPC-
based speech coding, that realizes equation (1). It works by recom-
puting the state vector, but this requires the entire input signal to
achieve this, making it unsuitable for realtime use. Viliméki and
Laakso [3] propose an approximation to Zetterberg-Zhang which
only requires a finite signal history, allowing realtime usage. How-
ever, this method is designed for sparsely occurring coefficient
changes. Supporting audio-rate coefficient changes, e.g. when
modulating a filter with a LFO, would require many filters running
at once, making it computationally prohibitive for this application.

Rabenstein [2] uses an intermediate set of coefficients, which
minimizes the variance of the transient signal. This method is also
intended for coefficient changes that are spaced far apart in time.

2.2. Stabilization

While transient minimization deals with correcting a filter’s out-
put, stabilization allows use of a filter structure that is ordinarily
not stable when time-varying, by forcing it to stay stable.

Rabenstein and Czarnach [4] present a method of transforming
the state vector to stabilize any filter structure. It works by relating
a filter in its state space structure to the coupled form. This can be
performed every sample, making it suitable for audio-rate coeffi-
cient changes. It can be incorporated into the coefficient matrix,
allowing the filtering operation to incur no additional cost, while
making coefficient computation more costly.

3. THE STATE VARIABLE FILTER

3.1. State Space Form

The continuous-time state variable filter in state space form [9] has
the differential equation

{If1 ZU72RCE1 — T2

" 2

2=1T1

where 1, x2 are the state variables, and w is the input to the fil-
ter. The & superscript indicates a time derivative. The parameter
R controls the resonance, and this continuous-time formulation
places the center frequency at unity, i.e. it is normalized. It will be
useful to render this system in matrix form, so that

%X=Ax+Bu 3)
In this case, we have
A= (@)
B=[1 0" (4b)
X= [acl xg]T (4¢)
u=[u] (4d)

3.2. Bilinear Transform

We will apply the bilinear transform to obtain a discrete-time fil-
ter. This is equivalent to trapezoidal integration, preserves stabil-
ity, and maps the entire continuous frequency axis to the discrete-
time frequency axis [10] [11].

In audio signal processing literature, cases are encountered
where the application of the bilinear transform to a continuous-
time filter results in a delay-free loop: a feedback loop that con-
tains no delay elements, where the state at time n appears to de-
pend on itself instantaneously. For example, Smith [9] and Du-
tilleux [12] both remark that the bilinear transform cannot be used
with the SVF for this reason. The Chamberlin filter structure is
another discretization of the SVF, using Forward Euler and Back-
ward Euler integrators [13] [9] [14], but this structure becomes
unstable for some parameters.

These difference equations are actually implementable with
some extra computation. The K-Method [10] [15] is an algebraic
method for discretizing and solving systems in state space form,
and Zavalishin [16] presents a graphical method that is equivalent,
which is also applied to the SVE.

The K-Method involves writing a difference equation for the in-
tegrator to be used and then substituting the system to be simulated
in state space form into that difference equation. Delay free loops
are handled by solving the resulting system, which will be linear
in this case.

3.3. Discretization

We apply the K-Method using a Direct-Form II transposed (TDF-

1) trapezoidal integrator [11], which is the same integrator as used

in [16]. This form is canonical with respect to delay. Introducing s
as the state vector, the TDF-II trapezoidal integrator update rule is

Xn =9gXn+Sn—1 (5a)

Sn =Sn—1+29Xn (5b)

where the coefficient g is chosen to map a specific analog fre-

quency w, = 27 f, to a digital frequency w. = 27 f., at a sampling
rate fs = =, known as prewarping [11]:

_tan(nT f.)

9= o,

6

We can substitute the state space formulation from equation (3)
into the integration and update rules from equation (5) to discretize
an arbitrary continuous-time state space system. This is similar to
how the K-Method is used in [10] and [15], except that we use the
TDF-II realization of the trapezoidal integrator, instead of DF-I.
Solving for x,, and sn, we have

H=(I-gA)"' (7a)
xn=gHBun+Hsn_1 (7b)
Sn =Sn—-1+29gAxn+29gBun (7¢)

This is how the K-Method handles delay-free loops: upon substi-
tuting (3) into (5), xn appears on both sides of the equation. The
matrix inverse H is used to solve this linear system, making it ex-
plicit in xx,.

Now we use (7) to implement the SVF. By substituting the SVF
state space matrices from equation (4) into this TDF-II trapezoidal
integration rule (7), we obtain a discrete-time realization of the
SVF:

1 1 —g
H=— 8
> +2Rg+1 {g 2Rg+1} (82)
xn=gH H un+Hsn 1 (8b)

-2 -1 1
sn:sn_1+2g{ 1R 0 ]xn—i-Qg {O} Un (8¢)
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By expanding the individual expressions for z1[n] and z2[n], the
elements of x, it can be verified that this is the same as the discrete-
time model of the SVF in [16], where 1 =ypp and z2 =y p. The
filter can now be implemented by computing equations (8) in or-
der.

3.4. Alternate Implementation

If the filter is implemented with equations (8), the integrator out-
puts are directly available as the elements of xy, but additional
algebra is required if the integrator inputs X, are desired.

It is possible to realize the same filter topology by first comput-
ing Xn as an intermediate variable. A general form can be found
by substituting equation (7b) into equation (3):

%n=(gAHB+B)u,+AHs,_ 1 ©))

If this alternate realization is used, first equation (9) is com-
puted, and then the generic TDF-II trapezoidal integration rule
from equation (5) is used. Note that equation (5) does not depend
on the specific state space matrices A or B, only on the integrator
gain g.

This realization will be convenient for the next section, where
21 will be needed. It can be verified that &, is the same as yup
from [16].

4. REALIZING OTHER FILTER TYPES

One useful property of the SVF is that various transfer functions
can be obtained by taking the output from different nodes, as
demonstrated in [12] and [16]. Most directly, =1 is a bandpass
filter, x> is a lowpass filter, and 2 is a highpass filter:

2

S

Hur(9)= 7 oRes1 (102)
S

Hor(9)= 7 oRes1 (10b)
1

Hir(8)= iomett (100)

When the filter is digitally implemented, 1 [n] and z2[n] are avail-
able as elements of the state vector x,. If the alternate implemen-
tation from equation (9) is used, £1[n] is immediately available as
well, otherwise it can be computed from equation (2).

Zavalishin [16] presents some ways of combining these outputs
to produce other filter types, such as band-shelving, notch, and
allpass. However, difficulty is noted in producing other shapes,
such as low- and high-shelf filters. Here we will demonstrate how
to obtain these shapes, as well as others that are useful for audio
equalization.

4.1. Filters for Audio Equalization

Some common filter types are presented in [17]. To enable broad
applicability of the SVF, we will show how to implement some
of these filters. The technique presented here is suitable to be
used with other s-domain filter design methods, e.g. [18]. The fil-
ter types that we will implement are presented as continuous-time
transfer functions with unity cutoff in Table 1.

These filters share some parameters: () controls the filter reso-
nance, and A = 10%/4° controls the gain, where G is the gain in
decibels.

Table 1: Filters for audio equalization.

Type Transfer Function
Lowpass H(s)= m
Bandpass H(s)= m
Highpass H(s)= s%—éﬁ
Peaking H(s)= %

24 VA A
Low Shelf | H(s)= AET%
High Shelf | H(s)= A%

The general strategy is to write the desired transfer function as
a linear combination of the lowpass, bandpass, and highpass trans-
fer functions from equation (10). This requires adjusting the res-
onance parameter I? and the trapezoidal integrator coefficient g to
scale the filter to the correct frequency. The general form is

H(s)=cupHup(ks)+cppHpp(ks)+crpHrp(ks)  (11)

The lowpass, bandpass, and highpass filters can be obtained
trivially by picking R = 1/2q. For the rest of the filters, it is nec-
essary to solve for R, and possibly to use frequency scaling as
in [16]. Frequency scaling maps an analog frequency w, to the
digital frequency w., using equation (6), with w, = k. The SVF
denominator can be made equal to the target transfer function by
manipulating R and k in this way, and then the numerator can be
matched by choosing cyp, csp, and crp.

This strategy is used to generate filter coefficients, which are
displayed in Table 2. In addition to the filter type, each filter is
controlled by the critical frequency w., the resonance (), and pos-
sibly the gain A. For the SVF, compute 2R and k according to the
table, and use k to compute the integrator gain g from equation (6).

Then, process a sample through the filter, and combine the sig-
nals using the gains cyp, cpp, and crp to form the output:

y[n]|=cupzi[n]+cppzin]+crLpxa[n] (12)

Table 2: Filter coefficients

Type 2R k cup | cgp | cLp
Lowpass | 1/Q 1 0 0 1
Bandpass | 1/@ 1 0 1 0
Highpass | /@ 1 1 0 0

Peaking o) 1 1 Alq 1
Low Shelf | /o | VA 1 Alg | A?
High Shelf | /o | I/vAa | A% | 4/ | 1

4.2. Arbitrary Digital Filters

In the previous section, common audio equalization filters, de-
signed by applying the bilinear transform to a continuous-time
transfer function with unity cutoff, were matched with the SVF.
This technique is generally applicable when given a continuous-
time transfer function. There are a variety of other representations
available for a digital filter, but some filter design methods, e.g.
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those of Berchin [19] and Christensen [20] operate directly in the
digital domain, yielding transfer function coefficients. Though the
filter was discretized with the bilinear transform, it can be used to
realize any second-order filter. Therefore, we now derive SVF fil-
ter coefficients for arbitrary second-order digital filters, to enable
use of these techniques.

4.2.1. Discrete-Time SVF Transfer Functions

First we must derive discrete-time transfer functlions for the SVF.
This can be done by substituting s < < 1=2— for each of the
transfer functions from equations (10), in order to apply the bilin-
ear transform in the z-domain, or with the Z-transform. Solving,

we find

Hup(2)= 1-2z714272
e T 14+924+2Rg+(292—2) 214+ (1+92—2Rg) 22
(13a)
—2
g—gz
H =
zp(2) 1+9%2+2Rg+(2¢2—2)2~ 1+ (1+g2—2Rg)z 2
(13b)
2 2.1, 2 -2
+2g°2" "+g°z
Hip(2) g g g

T 1+¢2+2Rg+(292—2)z 1+ (1+¢°—2Rg)z 2
(13¢)

4.2.2. Matching a Z-domain Transfer Function

Now that we have the discrete-time SVF transfer functions, we
want to choose coefficients to match a given second-order digital
filter. Without loss of generality, let that filter be specified as

—1 -2
H(Z)—b0+blz +boz

—0ThE To2E 14
14+a1z27t+asz2 a4

Like equation (11), we will write the desired filter as a linear
combination of the three transfer functions (13):
H(z)=cupHpup(z)+cepHpp(2)+crpHrp(z) (15)
Thus, there are five coefficients as input, and five degrees of
freedom to match that filter: g, R, cup, cgp, and crp. To find
these parameters, we normalize the SVF transfer functions (13) by
dividing the numerators and denominators by 1+ g* +2Rg, and
then set equation (15) equal to (14). This system can be solved by
setting all the coefficients of z, as well as the constant terms in the
numerator, equal. Solving for positive g and R, we find

R= \/—1—a1—122?/1—1+a1—a2 (16b)
ch:% (16¢)
epp == \/—1—a12—([;02?/b—2)1+a1—a2 (16d)
CLP:% (16¢)

Note that it is possible for both square roots to be purely imagi-
nary, but the imaginary parts will cancel when they are multiplied
or divided, yielding real numbers. Using these coefficients, it is
possible to design a digital filter using any design method, decom-
pose it into second-order sections, as noted in [16], and then realize
the filter using the SVF. This allows the time-varying stability and
artifact-free behavior of the SVF to be used for any digital filter.

5. STABILITY

Stability is more complex in the time-variant case. This topic is
treated thoroughly by Laroche [5]. To summarize, a time-variant
filter that has the coefficients of a stable time-invariant filter at each
point in time may still be unstable. There are stricter criteria for
time-variant filters, two of which are presented in [5]. Here we
will prove the stability of the TDF-II realization of the SVF.

5.1. Transition Matrix

The stability criteria apply only to the state transition matrix,
which describes the linear contribution of the state vector from
time n — 1 to time n. To derive this matrix, solve for s,, in terms
of s,,—1 by substituting equation (7b) into equation (7c):
sn=Psn_1+(2° AHB+2¢B)u, (17)
P=(I+29AH) (18)
where P is the state transition matrix. Next, substitute in the SVF
matrices from (4) to find the SVF state transition matrix.
p_ 1 1—¢g®>—2Ryg —2g
T g2 +2Rg+1 29 1-¢°+2Rg
Criterion 1 presented in [5] immediately fails for this matrix.
The criterion is that there exist a real constant 0 < v < 1 such
that ||P|| <~, where the standard Euclidean matrix norm is used.
Assuming g >0 and R >0, it can be seen that |P||=1.
Instead, we must use Criterion 2 from [5], which requires a
change of basis matrix T. Then, the criterion is that there exist

a real constant 0 <+ < 1 such that | TPT || <~. This approach
was attempted but not completed in [21].

19

5.2. Change of Basis
(1) ]f . We will
show that it is possible to pick £ > 0 such that g and R can take
on an arbitrarily large range. This work is done with the aid of a
computer algebra system, Mathematica version 8.0.1.0 (Wolfram
Research, Inc.; 2011), and some intermediate results will be omit-
ted for brevity. Throughout, the assumptions g > 0, R > 0, and
k>0 will be used.

First, solve for | TPT™!||. The resulting expression is very
long, so it is omitted here. To simplify, make the substitutions o =

\ 164+4k2+k4 2
VIBHAETHR and = 4tk

=1~ » and solve for the stable region of pa-
rameter values g and R, and coefficient k, where |[TPT || <1.
This stable region is the union of the following inequalities:

Pick a change of basis matrix of the form T =

(9<B—antE<R<p) (19a)
(B—a<g<1/\(§ <R< 922;1 \/922;1 <R<f))

(19b)
(9=1A(E<R<1V1<R<!F2yE+42 - pg))

(19¢)
(1<g<a+ﬂ/\(§<R<f’z;1vg22j1<R<ﬁ)) (19d)
(9=a+BrE<R<Z5H (19¢)
(9>a+BAE<R<p) (199)
(B-a<g<a+BAR=73) (199)
(9=1AR="212) (19h)

DAFx-72



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Next, we want to show that for any choice of gmin, gmaz,
Roin, and Riqz, the region 0 < gmin < g9 < gmazs 0 < Rmin <
R < Rpmae is included in these inequalities, so that the filter is al-
ways stable. Split the inequalities into three cases: g <1, g =1,
and g > 1.

For g > 1, consider the union of (19d) and (19g). Inspection
of B — o reveals that it attains a maximum of 2 — v/3 at k = 2.
Therefore we have §—a < 1, so the union contains the region

1<g<a+/3’/\g<R<ﬂ (20)

For g < 1, consider the union of (19b), (19a), and (19g). For k>0,
we have o+ 3> 1, so this union contains

O<g<1/\§<R<B 21

Finally, for g =1, use (19¢), (19h), and (19g). Substituting g =1
into (19g) and combining, we find that the union of these three
inequalities contains

k
g=1n5<R<p (22)

Combining (20), (21), and (22), we see that the filter is stable in
the region

0<g<a+,8/\§<R<ﬁ 23)

Note that equations (19¢) and (19f) have not been used; it will be
seen that stability where g > o+ 3 is unnecessary.

To prove stability over the entire range of parameters, note that
as k— 0, a+ 8 — oo, and B — oo. Therefore, for any choice of
Gmin > 0, gmazs Bmin > 0, and Rp,qq, it is possible to choose
a k > 0 to simultaneously satisfy a+ 8 > gmaa» % < Rmin, and
B> Rpmaz- In other words, the parameters g and R can be allowed
to vary over an arbitrarily large range, and the filter will remain
stable in the time-variant sense, by Criterion 2 of [5].

6. EXPERIMENTS

The SVF is compared to state of the art time-varying filter struc-
tures in objective and subjective tests, in order to evaluate its qual-
ity with respect to artifacts. The code, audio files, and data associ-
ated with the experiments are available online'.

Both tests are composed of five trials. In each trial, a different
filter shape is used, with a single discontinuous parameter change.
Within each trial, different filter structures are compared. In this
way, the effects of parameter changes on different filter structures
can be evaluated. A constant gain was applied across all excerpts
within each trial, to normalize peak levels. The filters for each trial
are listed in Table 3.

Table 3: Filter parameters for each trial

Trial Filter Frequency (Hz) Q Gain (dB)
1 Lowpass 80 to 120 6 n/a

2 Lowpass 100 0.6to4 n/a

3 Peaking 80 to 120 6 4

4 Peaking 100 6 —4t04
5 Peaking 120 0.6to4 4

https://github.com/iZotope/time_varying_
filters_paper

The filter structures compared are Direct-Form II (DF2), cou-
pled form (GR), SVF, SVF using Rabenstein’s transient minimiza-
tion [2] (SVFR), SVF using Rabenstein and Czarnach’s stabiliza-
tion [4] (SVFRC), TDF-II (TDF2), TDF-II using Rabenstein and
Czarnach’s stabilization (TDF2RC), and output switching (ZZ).
Note that the SVF is already stable, but transient minimization is
used to evaluate the perceptual impact of this technique, and stabi-
lization is used for comparison against the stabilized TDF-II struc-
ture. Although DF-II and TDF-II are not stable, and Zetterberg-
Zhang is not suitable for realtime, continuously varying parame-
ters, they are included as points of comparison. Viliméki-Laakso
is not included because it is an approximation to Zetterberg-Zhang,
so the results are likely to be similar.

6.1. Objective Evaluation

One possible way to objectively evaluate the quality of a filter
when parameters vary with time is to analyze the response during
steady state DC. The response can be measured by supplying con-
stant DC to a filter’s input until the filter reaches a steady state, and
then changing the parameters instantaneously while continuing to
pass DC. If the DC gain does not change, then there should be
no change in the output, which corresponds to the output switch-
ing model. Note that if the gain does change, output switching
may not be the perceptually best ideal. This will be shown in the
subjective evaluation.

This evaluation method was mentioned by Berners [22], and a
plot demonstrating it is present at [23], in order to show the suit-
ability of a particular filter structure.

Fig. 1 compares the SVF used as a lowpass filter against a DF-
II realization of the same transfer function. It can be seen that the
SVF performs ideally, while the DF-II realization exhibits a large
transient followed by ripple until it settles back into a steady state.

30 T T T T T T T
SVF
— DF-I|]

20 |-

10 -

yrp[n]

—10 }

—920 I I I I I I I
0 20 40 60 80 100 120 140 160

n (samples)

Figure 1: Comparison between lowpass state variable filter and
Direct-Form Il topology of steady state DC response when pa-
rameters are changed. At sample 50, the parameters are changed
from g=0.0458 and R=0.4545 to g=0.2679 and R=0.1111.

For each filter output, the ¢ norm of the difference from the
ideal DC response was computed after the parameter change. The
errors are displayed in Table 4. Zetterberg-Zhang is omitted be-
cause it passes this test by definition.

As can be seen, the SVF and the stabilized SVF are the only
structures besides Zetterberg-Zhang that perform perfectly in this
test, with no deviation from the ideal. Transient minimization ac-
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Table 4: Objective test results with DC stimulus. The reported
values are the {2 norms in decibels of the error as compared to the
output switching model. Lower values are better, and —oo is ideal.

# | DF2 GR SVFR | SVFRC | SVF | TDF2RC | TDF2
1 18 10 15 —00 —00 —36 -9
2| =25 13 13 —00 —00 18 18
3 3 -5 0 —00 —00 -3 -2
41 —65 | =27 | —12 —00 —00 7 7
5| —42 —4 -3 —00 —00 17 15

tually worsens the response of the SVFE. Other filter structures per-
form acceptably for some trials and poorly for others. This ideal
DC response can be proven to hold for the SVF over all parame-
ters.

First, let us determine the filter’s state, sn, in a steady DC state,
where the input un = [k]| for all n, where k is the magnitude of
the DC signal. Because the output at x; is a bandpass filter, and
x2 is a lowpass filter, we know x, = [O k] T, since the lowpass
filter passes DC, and the bandpass filter rejects it. Substituting the
values of uy, and x5, into equation (7b), we find that

sa=[0 k" 4)

For DC input, both x5, and s, are independent of the filter pa-
rameters. Therefore, time-varying parameters do not cause switch-
time transients in the DC response of the filter’s state, which proves
the observed behavior.

6.2. Subjective Evaluation

Listening to the transient elimination methods in a musical con-
text suggests that for use on musical signals, with rapid parameter
changes, output switching is the wrong goal. A sinusoidal input
can be used to illustrate: an instantaneous change in filter param-
eters corresponds to an instantaneous change in the amplitude and
phase of the signal. The spectrum centered at the point of co-
efficient change reveals high sidebands, which are audible as an
impulsive "click", shown in Fig. 2.

20
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Figure 2: Spectrum of filtered 100 Hz sinusoid during parameter
change with output switching, using 85 ms Hann window (Y).
Spectrum of the signal before (Y1) and after (Y2) shown for
reference.

Output switching removes the transients that result from the
state vector reacting to a change in coefficients. However, it also
emphasizes discontinuous changes in filter parameters, resulting

in this click. Apparently, the transient caused by a filter structure
when its parameters are changed can smooth the change out, re-
ducing these sidebands. This is simply a case of differing goals:
Zetterberg and Zhang were motivated by LPC-based speech cod-
ing, while here, we consider musical applications.

To better understand the impact of these transients, and to com-
pare the SVF to other solutions, we have subjectively evaluated
different filter structures, and schemes of transient elimination and
stabilization. A 100 Hz sinusoid at 48 kHz was chosen as the test
signal, because it masks the transient very little, allowing artifacts
to be easily heard.

6.2.1. Experimental Setup

To evaluate the time-varying response of these filter structures, we
performed listening tests using the MUSHRA method [24]. The
test was performed with 21 subjects, all of whom have experience
playing and recording music, and many of whom perform critical
listening professionally. Subjects listened with headphones in a
quiet room. They were asked to rank the excerpts in quality, in
terms of how unpleasant they found any artifacts they might hear.

In addition to the filter structures, a high-quality reference and
hidden low-quality anchor were included. The reference is made
by applying a gain envelope corresponding to the gain of the filter
at each point in time, smoothed with a 10 millisecond Hann filter
kernel. The anchor is made using the unsmoothed gain envelope,
with an impulse added when the coefficients change. The ampli-
tude of the impulse is three times greater than the maximum filter
gain applied.

6.2.2. Listening Test Results

Fig. 3 displays the average MUSHRA scores over all trials. Ta-
ble 5 presents the MUSHRA scores separated by trial, so that per-
formance can be compared across filter shapes.
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BO [ nr st e "
Good | oo % I
U e ]:]:-

Fair - . . . . . . . L
o i b
Poor . . ¥ . . 1 . . . .
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Figure 3: Average MUSHRA scores and 95% confidence intervals
for each filter structure, over all trials. Filter structures that are
time-varying stable and support efficient per-sample coefficient
update are in bold.

The results confirm the SVF’s good performance, in compari-
son to other filter structures. The output switching filter consis-
tently received scores ranging from "bad" to "poor". However,
of the time-varying stable filters, the stabilized TDF-II structure
(TDF2RC) has the best score.
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Table 5: Average MUSHRA scores for each filter structure,
separated by trial.

# | DF2 | GR | SVF | SVFR | SVFRC | TDF2 | TDF2RC | ZZ
1 18 29 63 20 60 69 63 18
2| 99 27 96 22 95 70 64 7

3| 26 28 72 23 71 77 71 13
4| 43 34 43 37 41 95 94 38
5| 25 24 25 27 23 64 59 26

The efficacy of Rabenstein and Czarnach’s method of stabiliza-
tion is confirmed. For both the SVF and TDF-II structures, this
state vector adjustment causes only a small decrease in scores.
This technique need not be applied to an already stable filter such
as the SVF, as it decreases the quality without providing any ben-
efit. Interestingly, this method is derived by transforming a sys-
tem into the Gold and Rader structure, which received significantly
WOTSe Scores.

Choice of filter structure is a trade-off: if interpolation of pa-
rameters is needed, or if there are performance constraints, the
SVF may be a better choice, as interpolating TDF-II coefficients
can give less sensible intermediate transfer functions, and the
method of Rabenstein and Czarnach requires several more trigono-
metric function evaluations. On the other hand, if interpolation is
not necessary, stabilized TDF-II may be a better generic choice.
Though the TDF-II performed well in these listening tests, recall
that it performed poorly in the objective test of DC response, while
the SVF had an ideal response.

The per-trial scores in Table 5 also suggest that choice of filter
structure may depend on the type of transfer function being im-
plemented, and what parameters will be modulated. For example,
the SVF performs better than stabilized TDF-II for both lowpass
filter trials, and more or less the same when the peaking filter fre-
quency is changed, but significantly worse when the peaking filter
resonance or gain are changed.

The transient minimization methods (Zetterberg-Zhang and
SVF with Rabenstein’s method) both achieve their stated goals,
yet they received scores of "poor". This confirms the hypothesis
that output switching is the wrong goal in this musical context.
The peak signal levels are decreased, and Rabenstein’s method
successfully decreases the variance of the transient signal in the
SVER excerpts. However, the results indicate that transient min-
imization degrades the quality of the SVFE. Fig. 4 shows that the
transient signal and the MUSHRA scores are essentially uncorre-
lated. While transient minimization may be useful for applications
such as speech coding and synthesis [3], it appears to be undesir-
able for equalization of musical signals.

If transient minimization is not a desirable criteria for musical
time-varying filters, what is? Sideband energy appears to be nega-
tively correlated with MUSHRA scores, with Pearson’s » =—0.59
and p="7.02x 107°, as can be seen in Fig. 5. This is a crude psy-
choacoustic measure, but perhaps it would be possible to design
an optimal time-varying structure by minimization of sideband en-
ergy, rather than variance of the transient signal.

7. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of choosing a structure suitable for digi-
tal filtering in a musical context with per-sample time-varying pa-
rameters has been addressed. In this problem domain, important
qualities include support for arbitrary transfer functions, computa-
tional efficiency, zero-latency realtime implementation, and good
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Figure 4: Scatter plot of transient signal variance versus

MUSHRA score, excluding anchor and reference, showing little
correlation. Pearson’s r=0.11, p=0.48.
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Figure 5: Scatter plot of sideband energy versus MUSHRA score,
excluding anchor and reference, showing correlation. Sideband
energy was measured using an 85 ms Hann window centered
around the parameter change, by computing the magnitude
spectrum, removing the energy inside one equivalent rectangular
band (ERB) [25] at 100 Hz, and computing the RMS of the
remaining signal.

intermediate filter shapes when interpolating parameters. The SVF
discretized with the TDF-II bilinear integrator was reviewed and
proposed as a good general purpose solution to this problem.

In order to make the SVF useful for this purpose, equations were
derived for implementing common audio equalization filters, as
well as any z-domain transfer function, and its time-varying sta-
bility was also proven for the first time. These results allow the
SVF to be applied to this problem domain.

The audio quality of the SVF during parameter changes was
evaluated in both objective and subjective tests. In the objective
test, the SVF was the only filter structure supporting realtime per-
sample parameter changes that was found to have an ideal DC re-
sponse. The results of the subjective listening test confirmed that
the SVF performs well, though the stabilized TDF-II performed
better, on average. The results also indicated that different struc-
tures perform differently depending on the transfer function being
realized.

The listening test results also revealed that output switching,
i.e., eliminating the transient response of a filter, is not desirable
in musical applications. The sideband energy was proposed as one
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measure of quality, with low sidebands being most desirable.
Some considerations for the SVF can be drawn by considering
the experimental results alongside the presented theory. For exam-
ple, as the SVF was proven to respond instantaneously to changes
in DC gain, and these abrupt discontinuities were shown to cause
perceived artifacts, it may be desirable to smooth the changes in
coefficients cyp, cgp, and ¢z p, which set the filter’s zeros. In fact,
Table 2 shows that the peaking filter’s zeros are affected by both
gain and resonance, which corresponds with the findings in Ta-
ble 5: that the SVF performs the worst when the peaking filter gain
or resonance are changed. It appears that changes in these three co-
efficients is responsible for audible artifacts, while the transient re-
sponse resulting from changes in the poles is perceptually pleasant.
Future research could concentrate on schemes for improving
subjective quality in musical contexts. For example, as Raben-
stein [2] derived intermediate coefficients to minimize transient
signals, perhaps perceptually important factors such as sideband
energy could be minimized. Another potential area of research is
further perceptual evaluation of a greater variety of structures and
transfer functions, using other musical stimuli. From such experi-
ments, it might be possible to determine mathematical criteria rel-
evant to perceived quality as alternatives to transient minimization.

8. REFERENCES

[1] L. H. Zetterberg and Q. Zhang, “Elimination of transients
in adaptive filters with application to speech coding,” Signal
Processing, vol. 15, no. 4, pp. 419-428, December 1988.

[2] R. Rabenstein, “Minimization of transient signals in
recursive time-varying digital filters,” Circuits, Systems, and
Signal Processing, vol. 7, no. 3, pp. 345-359, 1988.

[3] V. Viliméki and T. 1. Laakso, “Suppression of transients
in variable recursive digital filters with a novel and effi-
cient cancellation method,” IEEE Transactions on Signal
Processing, vol. 46, no. 12, pp. 3408-3414, December 1998.

[4] R. Rabenstein and R. Czarnach, “Stability of recursive
time-varying digital filters by state vector transformation,”
Signal Processing, vol. 8, pp. 75-92, 1985.

[5] J. Laroche, “On the stability of time-varying recursive
filters,” J. Audio Eng. Soc., vol. 55, no. 6, pp. 460—471, June
2007.

[6] J. Laroche, “Using resonant filters for the synthesis of time-
varying sinusoids,” in 105th AES Convention, California,
USA, Sep. 26-29, 1998.

[7] C.M. Gold and B. Rader, “Effects of parameter quantization
on the poles of a digital filter,” Proceedings of the IEEE, vol.
55, no. 5, pp. 688-689, May 1967.

[8] C. W. Barnes, ‘“Roundoff noise and overflow in normal
digital filters,” IEEE Transactions on Circuits and Systems,
vol. 26, no. 3, pp. 154-159, March 1979.

[9] J. O. Smith, “Digital State-Variable Filters,” Available
at https://ccrma.stanford.edu/~jos/svf/svf.html, accessed
March 06, 2014.

[10] D. T. Yeh, “Digital implementation of musical distortion
circuits by analysis and simulation,” M.S. thesis, Stanford
University, 2009.

[11] J. O. Smith, Introduction to Digital Filters with Audio
Applications, W3K Publishing, second edition, 2008.

[12] P. Dutilleux, “Simple to operate digital time varying filters,”
in Preprint 86th AES Convention, Hamburg, Germany, Mar.
7-10, 1989, pp. 1-25.

[13] H. Chamberlin, Musical Applications of Microprocessors,
Hayden Books, second edition, 1985.

[14] D. Wise, “The modified Chamberlin and Zolzer filter struc-
tures,” in Proc of the 9th Int. Conference on Digital Audio
Effects, Montreal, Canada, Sep. 18-20, 2006, pp. 53-56.

[15] G. Borin, G. De Poli, and D. Rocchesso, “Elimination
of delay-free loops in discrete-time models of nonlinear
acoustic systems,” IEEE Transactions on Speech and Audio
Processing, vol. 8, no. 5, pp. 597-605, Sep 2000.

[16] V. Zavalishin, “The Art of VA Filter Design,” Available
at http://www.native-instruments.com/fileadmin/ni_media/
downloads/pdf/VAFilterDesign_1.0.3.pdf, accessed March
06, 2014.

[17] R. Bristow-Johnson, “Cookbook formulae for audio EQ
biquad filter coefficients,” Available at http://www.musicdsp
.org/files/Audio-EQ-Cookbook.txt, accessed March 06,
2014.

[18] S. J. Orfanidis, “Digital parametric equalizer design with
prescribed nyquist-frequency gain,” J. Audio Eng. Soc., vol.
45, no. 6, pp. 444-455, June 1997.

[19] G. Berchin, “Precise filter design,” IEEE Signal Processing
Magazine, vol. 24, no. 1, pp. 137-139, Jan 2007.

[20] K. B. Christensen, “A generalization of the biquadratic
parametric equalizer,” in Proc. 115th Audio Eng. Soc., New
York, USA, Oct. 10-13, 2003.

[21] R. Bencina, “Time Varying BIBO Stability Analysis of
Trapezoidal integrated optimised SVF v2,” music-dsp mail-
ing list, Nov. 2013, Available at http://www.mail-archive
.com/music-dsp@music.columbia.edu/msg02467 .html.

[22] D. Berners, “Analog Circuit Emulation for Plug-In Design,”
in Audio Eng. Soc. Master Class M1, New York, USA, Oct.
9, 2009.

[23] D. Berners, “The Inner Workings of the Moog Multi-
mode Filter,” Available at http://www.uaudio.com/blog/
moog-multimode-filter-design/, accessed March 08, 2014.

[24] ITU, “ITU-R BS.1534-1: Method for the subjective assess-
ment of intermediate quality level of coding systems,” 2003.

[25] B. C. J. Moore, “Frequency analysis and masking,” in
Hearing, B. C.J. Moore, Ed., pp. 161-205. Academic Press,
San Diego, California, 1995.

[26] R. Bristow-Johnson, “The Equivalence of Various Methods
of Computing Biquad Coefficients for Audio Parametric
Equalizers,” Available at http://thesounddesign.com/MIO/
EQ-Coefficients.pdf, accessed March 06, 2014.

DAFx-76



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

PERCEPTUAL LINEAR FILTERS: LOW-ORDER ARMA APPROXIMATION F

OR SOUND

SYNTHESIS

Rémi Mignat, Vesa Valimaki

Aalto University,
Department of Signal Processing and Acoustics
Otakaari 5A, 02150 Espoo, Finland

ABSTRACT

This paper deals with the approximation of a given frequeney
sponse by a low-order linear ARMA filter (Auto-Regressive\Mo

ing Average). The aim of this work is the audio synthesisnthe

to improve the perceptual quality, a criterion based on huliza

tening is defined and minimized. Two complementary appresch

are proposed here for solving this non-linear and non-copveb-
lem: first, a weighted version of the Iterative Prefilterisgcond,

In this work, we propose to directly estimate a linear ARN
filter on the linear frequency scale using the minimizatidrac
perceptually-based criterion. In the context of the Souitter
principle, the target frequency response is obtained byeatsgd
envelope estimation of an original sound, which can be paric
This estimation can be done by the DAP method of [13], the 1
Envelope of [14, 15], or the True Discrete Cepstrum of [16jtéN
that it is also possible to use a post-processing, MTELPQ
or PCF [18], which provide a “quasi-perceptual” pre-smaagh

adapted to guarantee the causality/stability of the obthifilter,

This paper is organized as follows: in Sec. 2, the ARI

and eventually its minimum phase property. The benefit of the ,qqelis given, and the perceptually-based criterion is@efistep

new method is illustrated and evaluated.

1. INTRODUCTION

The goal of this paper is the approximation of a given freqyen-
sponse by a low-order linear ARMA filter (Auto-Regressive\Mo
ing Average), with a high sampling ratg; >44.1 kHz. The con-
text of this work is the low-cost sound synthesis of musioaks
using theSource-Filterprinciple which consists of the filtering of
an excitation signal. Then, because the aim is an audiocagtialn,
the obtained filter must be as close as possible to the ofigimea
in a perceptual sense, rather than using a physical or sigsad
criterion.

by step in Sec. 3. Then, the two parts of the algorithm areng
in Sec. 4. Section 5 gives one practical example, and prese
perceptual comparison of the proposed method with othedatd
methods. Finally, section 6 concludes this paper and give®e:
perspectives.

2. MODEL

Given a complex frequency responsK f), where f is the fre-
quency in [Hz], this work deals with its approximation by fioé
lowing ARMA(Q, P) filter

It is known that in a general case a spectral envelope has a
sparser representation with an ARMA model than a purely AR
or MA model. It is especially the case for nasal speech, and fo
musical instruments. For example, even if an ARMA() filter
and an AR{-+p) filter have approximately the same complexity for where@ andP are the orders of the numeratBrand the denomi:
the time simulation, the ARMA modeling will be more efficient nator A respectively.z is the complex variable of thetransform,
most of the cases. Some ARMA approximations exist, cf. e.g.: which isz = e’?"f/Ts on the unit circle, withf the frequency
Prony’s method [1], Shanks’s method [2], the Iterative Refhg variable andF; the sampling rate in [Hz]. The polynomial coef
[3], Durbin’s method [4] or the Inverse Linear Predictior] [6r cientsb, anda, are the variables to optimize.
cf. e.g. [6] for a partial review). Nevertheless, with thesethods
the cost function is adapted to facilitate the algorithnd Emever
adapted to the perception.

A usual idea is to adapt the model to the frequency resolution ) o
of the ear. In [7, 8, 9] a warped frequency scale is used todit th 3-1. First criterion
Bark scale, cf. [10, 11], and a warped AR filter is obtained.- Un
fortunately, first we have shown in [12] that for low-ordetise

B(z) o+l baz

H(z) = Az) 1+25:1 apz—?

; @)

3. PERCEPTUAL CRITERION

Let us define the following criterion which provides a distare-

warped modeling is not satisfying in a perceptual senses dbi
servation can be explained because the optimizationionités not
fully perceptually based. Moreover, the time-domain impéata-

tween the targeH (f) and the modeH (f):

Fs

). @

tion of the warped AR filter is two or three times more expeasiv
than a linear AR filter with the same order, cf. e.g. [8].

7 [oH), )~ o(H(f), )]
@ / S(H (), /)2 M

This cost function is perceptually meaningful because effti-

* This work is funded by the Marie Curie Action project ESUS 289. lowing reasons
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Loudness conversion First, the functions (X, f) is the conver-
sion of the (physical) sound pressure levélin pascals [Pa], to

the (perceptual) loudness in sones, depending on the fiegue
f. The conversionr is here calculated with the consecutive con-

versions: o (X, f) = s(¢(6(X), f)), whereXqg = 6(X) =
201og,0(| X |/po) is the standard scale in [dB SPL], with = 2 x
10~° Pa the reference sound levél, = ¢(Xa, f) is the conver-
sion from the decibel scale to the phon scale, relative tethal
loudness curves cf. e.g. [19, 20], ahd = s(L,,) = 2(Lr—40)/10
is the conversion to the sone scale, cf. e.g. [21].

Frequency scale Second, the measufé (df) takes the frequen-
cy resolution of the ear into account, as the standard waumpien-

tioned earlier. Withm( f) the conversion from the linear frequency

scale in [Hz] to any warped scale, we writé(df) = dm(f) =
m’(f)df. For example, with the Mel scale of [22l(f) =
2595 log,, (1 + £/700).

Relative error
respectively linear and logarithmic scales in the loudrEssain,
such as the pascal and the decibel scales in the sound |lexwaimo
respectively. Then, the relative error is computed in (2prider
to take into account the logarithmic sensitivity of the éaemark
that it would be also possible to directly defi®iewith the absolute
error in the phon scale, logarithmic, but it is equivalenttoghe
first order and the denominator will be used in next section.

3.2. Modified criterion

For a numerical computation, first a new versiorCofis derived

using a discrete sum. Second, the loudness conversion fi-sim

fied using a first-order limited deveIoEmentan(ffI, f) aroundH.
Theno (H, f) ~ o(H, f)+o'(H, f)(|H|-|H|) witho’ (X, f) =
0o (X, f)/0|X]|, and the criterion becomes:

M
Co=>

m=1

(IHom| — [Hun|) 0" (Hu, fin)?
o(Humy fn)?

where the frequencieg,, uniformly sample the rangf, F; /2]
andH,, = H(fm). Note that in this worlos and its derivative are
computed using the analytical expression of [23].

If the phase of the target respondes known, we can replace
(|Hum| — |Hm|)? by |H, — H,n|?. This actually simplifies the
optimization procedure and facilitates the convergenase lthat,

m'(fm),  (3)

only knowing |H|, its phase can be recovered assuming a mini-

mum phase system, cf. e.g. [24].

Since a sound with a level below the auditory threshold is im-

perceptible in principle, the functiom is not defined below this
threshold which corresponds to 0 phon. Then WAt f) the au-
ditory threshold in pascals, such thetX,(f), f) = s(0) =274
sons, we define the saturated function

o o(X, ) if|X] > Xo(f)
a(X, f) = { 94 if | X| < Xo(f) @

and the saturated derivatiyé in the same way. Finally, the crite-
rion to minimize is written as

M
C = Z ’H‘"L - ﬁnL 2 an, (5)
m=1

(Hnn fm) m (6)

with W, =
(Hum, fm)

Third, note that the sone and the phon scales are

In consequence, the criterighis just the weighted squared su
of the error, with a weightV,,, which takes into account the sen:
tivity of the ear to the frequencies via(f), to the sound level vi
o, and to the auditory threshold via the “saturated”

3.3. Remarks

Because most of the time the sensitivity of the recordingade
is not available, a possible way to adapt the unscaled rewp!
sound to the pascal scale is just by applying a gain whichsgive
desired sound level. For exampke;, = 70 dB SPL is a norma
level for a single musical instrument.

In (4), Xo(f) is the absolute auditory threshold. It is also p
sible to combine it with the simultaneous masking threshofd
e.g. [25], calculated from the target resporf$éf). Neverthe-
less, this strategy seems hazardous becalise and H(f) are
not “concrete” spectra, but “abstract” spectral envelopes

4. OPTIMIZATION ALGORITHM

With an ARMA modelingﬁ = B/A, the minimization of (5) is
not trivial because the error is non-linear with the coeffitsa,, of
the denominatod and this optimization problem is not convex.
this section two complementary iterative algorithms a@ppsed
to minimize the cost functio@. The first approach is based on t
Iterative Prefilteringof [3]. It is referred as the Mode 1 becau
its result is used as initialization of the second one, thel®/d,
which is based on the Gauss-Newton algorithm, cf. e.g. [26].

4.1. Mode 1: Weighted Iterative Prefiltering

Instead of optimizing a non-linear problem, the Iterativeffiter-
ing method, initially proposed in [3], consists in iteraty solv-
ing linear sub-problems using the Least Mean Square opiiniz
(LMS). For that, the criteriog is modified at every iteration usin
the previous estimation.

4.1.1. Secondary criterion

With A’ the estimated denominator of the previous iteration,
multiplication of the erroe,,, := (Hmm — Bm /Am) W, of (5) by
A, /A, leads to the secondary criterion which follows

Z A Hm W’” meZ: " (7)

m=1

SinceA’ is known, the new defined error is linear with the parar
tersa, andb,, and the minimization of’ can be solved using th
standard LMS. This procedure is equivalent to the Iterafive-
filtering method of Steiglitz and McBride, cf. [3, 27], witme
additional frequency weight/ (f). It is important to note that &
the convergence, if it happend,/A’ goes toward 1, consequent
the secondary criterio@’ gets closer to the primary criterigh

4.1.2. Linear optimization

In (7), C’ is given in the frequency domain, but considering
Hermitian symmetry of, fl, andWW, and using the Parseval th
orem, we can write it in the discrete time domain to avoid clemy
numbers. Whereas the computatiorhef the time response df,
does not cause any issue, the direct inverse Fourier transfiol
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makes a non-causal response becalisis real. Neverthelessg),
is invariant by adding a phase 1, then to avoid time aliasing,
we definew,, as the minimum phase solution @f, cf. e.g. [24].

With y := (h * w)/A" andz := w/A’, where the symbok
denotes the convolution product andl’ denotes the prefiltering
by the AR filter1/A’, the secondary criterio®’ is written

L N=l P Q 2
RS SIS S W
p=1 q=0

n=0

Note that, even if the computations@fand(h * w) may be quite
expensive, they are done only once before the first iteration

Then, forn € [1, N], p € [1, P] andq € [1, @ + 1], and with
the matrix transpose’, we define the column vectofs and
such thaty;, = y,—1 andu = [a1,...ap,bo,b1,...bg]", and
we define the block matri® = [—®,, ®,], with the Toeplitz
matrices®y [n,p] = yn—1—p andP;[n,q] = zn—q. Note that
considering causal signalg, = 0 andz,, = 0 for n < 0.

Consequently, the matrix form of the secondary criterion
C'=3(Y — op)" (Y — @u), and if @ is full rank, the optimal
solution in the LMS sense is given by solving the linear peabl
(@7 @) = (®TY), which can be written, cf. e.g. [26],

p=(e"0) "o’y = oty 9)

As it is implicitly mentioned in [3], at the first iteration, ev
simply choosed’ = 1. Note that without weightV/, at the first
iterationz,, = 4,,, the Dirac distribution, and the first estimat&d
and A are the solutions of Prony’s method.

4.1.3. Properties

Remark that the positions of the roots4fand B are not ensured
to be inside the unit circle, which means that the causatility
and the minimum phase property cannot be controled. Evéisif t

S

problem occurs rarely if the targéf checks these properties, it

may be overcome by testing the desired properties at eveng- it
tion, using the Jury criterion for example [28], and by repoiing
the LMS solution with lower orders? and Q. This strategy usu-
ally leads to good properties, but with eventually a watse

As mentioned in [3], the convergence of this iterative proce

dure is not guaranteed. Nevertheless, we observed in expey-e
iment an efficient decrease in the criteriérand we observed the
convergence of the coefficients df. Unfortunately, first, some
conditioning problems usually appear after some iteratiarhen
®T ® is numerically singular, and second, eved/fget closer to
C, the partial derivatives af’ are different from those af, which
explains why this algorithm usually does not converge tocallo
minimum in the sense df.

In[3], a second iterative procedure, the respective Modag,
been proposed to improve the estimation of the first one. Jdirg
is not detailed here, we refer the interested readers tdr{34vor-
able cases, this new mode converges to the closest locahomimi

but again, the convergence is not guaranteed, and may diiferg

its initial value is far from a local minimum. Moreover, in 0ex-
periments, some conditioning problems may still appeanallj,
as with the Mode 1, the causality/stability, and the minimphmase
property, of the obtained filter cannot be clearly guarahtee

In the next section, we proposed another Mode 2 which is

based on the Gauss-Newton algorithm. First, this methodahas

better convergence, second, the conditionning is effilgjidn-
proved, and third, this approach can guarantee the caustiili-
ty and the minimum phase property of the estimated filter.

4.2. Mode 2: Non-linear optimization

We propose in this section an adaptation of the iteratives&e
Newton algorithm, cf. e.g. [26], with constraints for theusal-
ity/stability of the filter, and eventually its minimum pleprop-
erty. Compared to the standard gradient descent, its cpenee is
usually faster, and it avoids the successive 1D optiminatalong
the direction of maximal descent.

4.2.1. Gauss-Newton algorithm

Newton’s algorithm is based on a second-order limited dmse
ment of the criterion. Starting from an initial paramettiaa of
the model, the parameters are iteratively updated by tHenapt
solution of the quadratic form given by the limited develagrh
around the previous parameters. If the cost function is igui
the algorithm converges in one step, and if it is not quacitadi
sufficiently regular, it naturally converges to the nealesal min-
imum in some iterations.

With z* the column vector collecting the current paramet
of the model, the following parameters are given by:

P = - (W) Ve (Wb,

with V¢ (u) the gradient vector anfc (i) the Hessian matrix
Veli] = 0C/0u; andQeli, j] = 0*C/Ouidu;.

The Gauss-Newton algorithm differs from the previous
by the approximation of the Hessian matrix. This approxiore
facilitates the computation and is justified by the fact that cri-
terion is the squared sum of the magnitude of the ergrcf. e.g.
[26]. With

(10)

the criterion is writterC = E E, whereE is the column vectol
of the errore,, and.” is the Hermitian transpose.

Now, definingJ.(p) as the Jacobian matrix df, such that
Je[m, i) = dem /O, the gradient vector af becomesVe (p) =
2J. ()" E(u), and the approximated Hessian matrix is writ
Qe (p) = 2Je(p)® Je(11). Consequently

O 've = (J21) U E=JlE. (12)

Nevertheless, with (10), the algorithm may diverge in sc
cases. Then, it is usual to introduce a relaxation fagfor< 1,
and the algorithm becomes

P = it = Qe (") Ve (i), (13)
A simple strategy for the choice of; is to successively reduc
its value untilC(1/*t) < C(u*). Note that if the Hessian me
trix is positive-definite, there always exists\a > 0 providing a
decreasing criterion. Here, we first tést= 1 to accelerate th
convergence, and we divide it by 2dfdoes not decrease.

4.2.2. Optimization of the ARMA model

Starting from the standard ARMA modeling of (1), to impro
the conditioning we introduce a gaip and we forceby = 1,
without loss of generality. The model is then given E}(z) =
gB(z)/A(z), and the parameters to identify are the gaend the
coefficientsa, andb, of the polynomialsA(z) and B(z) respec-
tively, with p € [1, P] andq € [1,Q]. Moreover, to avoid the
singular case iy = 0, we do the change of variable= (e,
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where( is the sign of the initial gain, and we optimizeon R
instead ofg.

With z,, = e/27fm/Fs andy = [v,a1,...ap,bi,...
the Jacobian matri¥. (1) is given by

bol”,

dem B(zm)a_e"* =

oy CA(zm) oy Wi = —H{zm)Wm,
Oem  B(zm) 0A(zm) _ ,pﬁ(zm)
day _gA(zm)2 Oay Won = 2m A(zm) Wen,
Oem _ _—g 9B(zm) _,-a_—9
Doy~ Alem) Dby T,y Wm

Remark that in (2) and (5), we only have considered unilatera

spectra forf € [0, Fis/2]. Then the solution given by (13) could
lead to complex coefficientg, a, andb,, with no consideration

of the rang€ F /2, F;]. Instead of summing the error on the full
range|0, Fs], we prove the equivalence of the following update

equation

P = — Re[Qe (")} T'Re(Ve (1)} (14)

where R€.} is the real part operator, and whee andV¢ are
still computed on the frequency range F /2]. This equation can
be fastly computed by splitting the real parts and the imagin
parts ofJ. and E, cf. (12).

Concerning the causality/stability of the obtained filtend
eventually its minimum phase property, it is necessary tbthis
constraint in the algorithm. Remind that an ARMA filter is awi

imum phase system if and only if both poles and zeros arelgtric

inside the unit circle. To guarantee the desired propergvaty
iteration, we adapt the choice of the relaxation factgras it is

done in Sec. 4.2.1 for the convergence. To study the location

the roots of the polynomialgl and B, we use the Jury stability
criterion. Note that at some iterations, at the pgifit the local

properties of® may attract the algorithm outside the constraint do-

main, even if the nearest local minimum is inside. Then, shap

a small\; allows to stay inside the domain, and most of the time,
from the new position/* ™ the algorithm naturally reconverges to

the minimum.

4.2.3. Summary of the algorithm

To summarize the complete algorithm, first the Mode 1 iteretj
weighted Iterative Prefiltering, are computed using th&aliza-

tion A’ = 1. As mentioned above, even if the Mode 1 usually

converges, the primary criteridhmay not be strictly decreasing,

which means that with a finite number of iterations, the last r

sult may not be the best one in the sens€.offhen, to initialize
the Mode 2, the Gauss-Newton algorithm, among all sucaessiv
sults of the Mode 1, we retain this one which minimizes-inally,

since the convergence of the Gauss-Newton is well-defined, w

can use standard stop criteria. Here the algorithm is stbpbeen
the maximal number of iterations is attained, or when thatired
difference of two consecutive criteria is smaller than ashiold
defined in[%)].

5. EXPERIMENTATIONS

5.1. lllustration

The proposed method, which we call tRerceptual Linear Filter
(PLF), is illustrated in Fig. 1. Using an Oboe tone, B3 @47
Hz), first the spectral envelope has been estimated with the
Envelope (TE) of [14] and has been slightly smoothed usirg
PCF approach of [18]. Then, from the magnitude of the obthi
frequency response, the phase has been recovered assumimg
imum phase system, cf. e.g. [24]. Finally, the PLF is comgt
by the algorithm presented in Sec. 4, Mode 1 and 2, using
ARMA(8,8) model, and is compared to Prony’s method with
same orders. All frequency responses are displayed in tH&RIB
scale, together with the auditory threshold.

As a general trend, we observe that the PLF method foc
the approximation at the lower frequencies, as the standarp-
ing technique (cf. [8, 9]), but especially to those frequesevhere
the target responsH (f) is above the auditory threshold. We c
observe that Prony’s estimat& () does not fitH ( f) around 4.5
kHz, but it fits the last formant after 14 kHz which is impertible
in principle. On the contrary, thanks to the perceptual Wviigy
W (f), cf. (6), the PLF filterH. (f) fits H(f) when it is audible,
and it strongly smooths it when it is imperceptible.

80 T T T T

T T
(spectrum)

o X(f)
7 7 —— H(f) (TE+PCF)
— 60Q - == EI.(f) (Prony’s method)H
% Hs(f) (PLF method)
o 20T \ Auditory threshold 1
2 ot \ Equal loudness contours||
o) \
>
g 3o \ - 1
N

2 20} Y ]
p}
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O 10+ N 4

or - . ]

.
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Figure 1: lllustration of the Perceptual Linear Filter (ALFhe
orders of the ARMA model ar® = 8 andP = 8.

22050

5.2. Perceptual evaluation

This section proposes a perceptual evaluation by compahie
PLF method and other methods, using periodic signals imge
instrument sounds. We prefer to perform automatic and tiege:
perceptual tests in order to have an exhaustive evaluatiih;
many orders, fundamental frequencies, and instrumentisteént
ing test would have required too much time to be done in gac
First, we define the perceptual measure of the approxims
error following some concepts of the PEAQ method, cf. [29, !
Then we describe the procedure of the objective tests, aatlyfi
the results are presented. Note that to use a neutral ey
which does not favor the PLF method, we have to choose an
measure which is as different as possible from the critefion

5.2.1. Perceptual Mean Square Error

Let G and G'*' be the magnitudes in [Pa] of the-th harmonic
of the reference and the test sounds, with the frequenfgies=
mFy in [Hz] with Fy the fundamental frequency. Because the
proximation is evaluated heré/®' and G sample the response
of the targett (f) and the estimaté/ ( f), at the frequencieg,..
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First, the effect of the middle-ear response is taken into ac Remark that a warped AR filter can be converted in principl
count by multiplying the magnitudes By f) = 107720 where into a linear ARMA(,q) filter. Because the purpose of this pay
is the low-cost simulation, we prefer to compare the methwitts
f —0.8 f 4 equal simulation complexity, even if the warped method€Hess

—3.6 (—> —0.001 (—> degrees of freedom.

1000 1000

2 To cancel the effect of the fundamental frequency, the te:
(15) of the perceptual tests are printed as a function of the atiioral
ordera = q/nsx, wheren,, = 0.5F;/Fy is the number of har
monics betweeid and F; /2. We tested the adimensional orde

a € {0.1,0.2,0.3}. Table 1 summarizes the used ordefsr the
lower and the higher fundamental frequencizX) and440 Hz.

v(f)
16.5 e—Oﬁ(%—Sﬁ)

The functiony( f), which is similar to the middle-ear modeling of
[29], is actually the inversion of the auditory thresholddabing
given in [31]. Hence, the auditory threshold just corregfsoto
T(fm)Gm = po With po = 2x 10~° Pa the reference sound level.

Then, to imitate the auditory system’s critical bands, theer a=01]la=02] a=03
of the corrected harmonicgl’( f.,)G'm)?, is summed by process- —
ing a filter bank as done with the PEAQ or the MFCC computation, Fo =220 Hz 10 20 30
cf. e.g. [32]. We use here a triangular window with a singlerev Fo =440 Hz 5 10 15

lapping, and 100 filters uniformly spaced in the Bark scalgL0f.
Finally, with L;, the outputs of the filter bank, the measure of
the perceptual erraris given by

ref _ ritest)2
(L — Li®) >

K
1
€= —
K (Z (LE"+ po) (L + po)

k=1

Table 1: Value of the ordej as a function of the adimension
order« and the fundamental frequenéy, for Fis = 44.1 kHz.

=

For all targetH (f) and all approximationgZ(f), we derive
five harmonic spectra which uniformly sample the associatec
sponses. The fundamental frequendiésare chosen on a rang
of two half-tones around the original fundamental freqyeng,

(16)

Here, the auditory threshold is implicitly taken into acobibe- ) e i
cause ofpo which imitates the presence of an inner-ear noise, as Which meansfy, = F, 22x12, with —2 <k < 2. This procedure
with the PEAQ method. Moreover, a relative difference isduse allows to have a refined evaluation of the response appraxime
here in order to take account for the logarithmic sensitioitthe __ Finally, every test spectrum, which samples the approxone
ear to the sound level. Note that this choice is similar te tirie of H(f), is compared with its associated reference spectrum, w
Sec. 3, but it does not favor the PLF method because all the oth samplesH ( f). The perceptual measure of the distance is dete

methods also minimize a relative error in frequency, as th€ L in Sec. 5.2.1.
cf. [5].
Even if the error measure and the criteriorC are based on
5.2.3. Results

similar concepts, they are different. This fact allows ased re-

sults, which does not favor the PLF method. The results of the objective evaluation are printed in FigTRe

original musical sounds come from the sound database of
Since for all the 13 estimations (half-tones between 2204t
Hz), 5 discrete spectra have been synthesized and comphece
For every half-tone between 220 and 440 Hz, the spectrum enve mean and the standard deviation of Fig. 2 are computed
lope of a frame is estimated using the True Envelope of [14isT 65 computations of the perceptual distance, separatelgdoh
frame is chosen around the middle of the sustain part. Then, a method, each tested instrument, and each ardéfere the testet
accurate AR modeling is done using the TELPC method of [33]. instruments are: clarinet, horn, trumpet and violin; we dé&sted

5.2.2. Experimental procedure

This high-order modeling of the spectral envelope givegdinget
responsed (f).

All tested ARMA methods are computed for the obtained fre-

quency responsds of all half-tones. They provide an ARMA(q)
approximation in the linear frequency scale. The testechout
are the following:

e Prony: The well-known Prony method of [1].

e StMcB: The Iterative Prefiltering of Steiglitz and McBride,

cf. [3], Mode 1 and 2.

e WLP™: The warped LPC modeling, cf. [7, 9], for which

the warping factor\* is this one which optimally fits the
Bark scale, cf. [11]. FoFs = 44.1 kHz, \* = 0.7564.

e WLP.6: The warped LPC modeling with = 0.6.

e PLF1: The Mode 1 of the proposed PLF method, cf. Sec. 4.1

other sustained instruments, such as: trombone, cellopbaxe,
flute, and similar results are obtained.

As a general trend, we observe that the proposed PLF me
is among the best methods in all cases, whereas the other
ods fail at least once. In consequence, even if the PLF me
is not clearly the best method in all cases, it is signifigattie
more robust. Moreover, comparing with the PLF Mode 1 alc
we observe a slight improvement due to the Mode 2 as expec

Additionally, the behavior of the warped methods has beel
ready observed in [12] using a listening test. With the optil
warping factor\* = 0.7564, in the sense of [11], for the lowe
orders the results are sometimes worse than the results=0.6.
This phenomenon has been explained by analyzing the fregt
responses. Indeed, with a strong warping, the high fredesmce
compressed aroun#; /2, and the natural slope of the spectr
becomes stronger in the warped frequency scale. As a résul

cause of the properties of the LPC, cf. [5], the frequencpaase

e PLF1&2: The proposed PLF method, Mode 1 and Mode 2 at high frequencies is overestimated. One solution is theeduce

of Secs. 4.1 and 4.2.

the value of\.
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Figure 2: Results of the perceptual evaluation of six ARMAm@ximation methods, for four instruments and three adsiweral ordersy.
The mean of the perceptual square error (PMSE) is display#tkeidecibel scale together with the standard deviatior.t&sted method
are: Prony’s method (Prony), the Iterative Prefiltering ed and 2 of Steiglitz and McBride (StMcB), the optimal warh®C (WLP"),

the warped LPC withh = 0.6 (WLP.6), the PLF method Mode 1 (PLF1) and the PLF method Modedl2 (PLF1&2).

6. CONCLUSION

In this paper, a novel ARMA approximation for audio signals i

presented. Itis based on a perceptually meaningful avitexihich
takes into account the sensitivity of the ear to the freqigsnand
to sound level via the loudness conversion. The solvingrilgo
is split into 2 consecutive modes: the first one is a weighted v

sion of thelterative Prefilteringof [3], and the second one is an

adaptation of the Gauss-Newton algorithm.

Let’s remark that the perceptually-based criterion ancptioe
posed algorithm are two independent contributions of thisep.
First the proposed criterion may be optimized using anatietel

or method, second the proposed algorithm can be used with a di

ferent frequency weighting. Moreover, even without weiigit
for the reasons mentioned earlier (convergence, stalaititytrol
and conditioning), the proposed Mode 2, is preferable coatha
to the original Mode 2 of [3].

As illustrated in Fig. 1, this method efficiently focuses thie
terion where the original frequency response is audibld, @o-
vides less accurate fitting where it is inaudible but with ereimt
results. A perceptual evaluation is given in Sec. 5.2. E¥ehei

proposed approach does not lead to outstanding resultsowe n
tice its stronger robustness. Whereas the other methoddaihay
in some cases, the PLF method always provides one of the best

results.

As a possible improvement of the proposed method, we en-
visage to apply it with a warped ARMA modeling, cf. [11]. For

example, we can notice that a warped ARM#&{ filter can be

directly converted to an equivalent linear ARMA{) filter. The
benefit is to better adapt the model to the critedotogether with
the same number of degrees of freedom, and the same sinmu
cost. Unfortunately, with a high warping factaror high orderg,
some numerical problems usually occur. In this case, evérei
equivalent linear ARMA filter is stable in theory, the finiteepi-
sion of the floating numbers makes the filter numerically aipist
For example, witly = 15, these problems might appeanif> 0.4
with the single-precision floating-point.

Unfortunately, this approach may not be suitable in the o
a frame-by-frame analysis-synthesis framework. Indeedusu-
ally observe strong discontinuities between the estimspedtra
of two consecutive frames, which leads to annoying effedtste
that it is also the case in many other ARMA approximation m
ods. Nevertheless, in the case of the synthesis of a quasi-
spectral envelope, which is under interest in the contextusf
work, cf. e.g. [35], the proposed PLF method is fully satisfy
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ABSTRACT

In recent work, the construction of non-uniform generalized Gabor
frames for the time-frequency analysis of signals has been intro-
duced. In particular, while preserving perfect reconstruction, these
frames allow for tilings of the time-frequency plane with arbitrary
allocation of partially overlapping frequency bands or time inter-
vals.

In a recent paper, the author demonstrated that the construc-
tion of such frames can be entirely based on warping operators,
which are specified by the required frequency or time warping
maps, which, in turn, interpolate the desired frequency or time
intervals edges. However, while the online computation of Ga-
bor expansions on non-uniform time intervals presents little or no
problem, the computation of Gabor expansions on non-uniform
frequency bands requires knowledge of the Fourier transform of
the entire signal, which precludes online computation.

In this paper we introduce approximations and ideas for the de-
sign of nearly perfect reconstruction analysis and synthesis atoms,
which allow for the online computation of time-frequency repre-
sentations on non-uniform frequency bands.

1. INTRODUCTION

Adapting time-frequency representations, such as the phase
vocoder or Short-Time Fourier Transform (STFT), to features of
the sound signals or to characteristics of perception, such as glis-
sando, vibrato and 12-tone note system, is a desired goal in the
analysis, synthesis and processing and in several contexts ranging
from music information retrieval to transformations and special ef-
fects.

The STFT’s uniform frequency bands can be transformed into
non-uniform frequency bands by means of a frequency map, i.e. a
monotonically increasing function remapping the frequency axis,
as shown in Fig. 1 for adaptation to an equally tempered scale with
a constant Q 1/3 octave band splitting.

In a similar way, non-uniform analysis time intervals can be
allocated by remapping the time axis of the signal prior to per-
forming uniform time-frequency analysis. The uniform analysis
of the time warped signal achieves non-uniform time resolution.

Warping the signal prior to STFT analysis is equivalent to in-
verse warping the representative elements, i.e. the atoms of the
representation.

However, being a time-shift dependent operation, frequency
warping disrupts the time organization of signals. Uniform time-
frequency analysis of the frequency warped signal results in a
frequency dependent distortion of the time axis in the warped

1/3 Octave Scal

Band Number

Frequency v (Hz) x10*

Figure 1: Frequency warping uniform frequency bands according
to a 1/3 of octave scale (top); resulting frequency band character-
istics (bottom). Here b is the frequency shift in Hz of the original
uniform bands.

time-frequency representation. Similarly, the time warped time-
frequency representation shows time dependent distortion of the
frequency axis. Thus, warping one variable prior to uniform time-
frequency analysis affects the conjugate variable in the representa-
tion plane.

In recent work [1, 2, 3], the problem of the construction of
flexible frames that allow for arbitrary selection of the frequency
bands of their atoms was addressed. In [3] it is shown that the
required allocation of generalized Gabor atoms can be specified
according to a frequency or time warping map. In [4] the STFT
redressing method is introduced, which, with the use of additional
warping in time-frequency, shows under which conditions one can
have generalized Gabor frames. These conditions are dictated by
the interaction of sampling in time-frequency and frequency or
time warping operators.

The results in the previously cited work show that arbitrary al-
location of the atoms is generally possible in the so called painless
case, i.e. in the case of finite time support of the windows for arbi-
trary time interval allocation and of finite frequency support of the
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windows for arbitrary frequency band allocation.

Since online computation of the generalized Gabor analysis /
synthesis is only possible with finite duration windows, the arbi-
trary frequency band allocation is not exactly feasible in applica-
tions that require real-time, while the arbitrary time interval allo-
cation presents little or no problem.

In this paper, we address the problem of online computation
of generalized Gabor analysis with arbitrary frequency band allo-
cation, resorting to approximations that lead to near perfect recon-
struction methods.

The paper is organized as follows. In Section 2 we review
the concept of applying time and frequency warping to time-
frequency representations derived from the continuous time Short-
Time Fourier Transform, pointing out the problems introduced by
dispersion and resolving them with the redressing method, which
involves a further warping operations in the time-frequency do-
main. In Section 3 we apply the redressing method to frames,
which allow for sampled time-frequency analysis and synthesis,
and we provide the conditions by which the redressing of disper-
sion is exact. In Section 4 we introduce approximations suitable
for the online computation of redressed frame expansions. In Sec-
tion 5 we draw our conclusions.

2. REDRESSED WARPED TIME-FREQUENCY

In this section we review concepts that lead to the redressing
method for the time alignment of the frequency warped Short-
Time Fourier Transform (STFT).

In order to set the notation, the uniform STFT is obtained by
applying the operator S to the signal s:

[Ss] (1,v) = (s, hrp) = (s, T-Myho,0) =

oo iomu(t— )]
/ s()hoo(E = T)e 92T gy

— 00

where T;s(t) = s(t — 7) is the time-shift operator, M, s(t) =
e9?™5(t) is the modulation operator and the overbar denotes
complex conjugation. The operator S acts over time signals and
the frequency v is considered as a parameter. In (1), the analysis
windows

e (t) = [T+ M, ho o] (£) = hoo(t — 7)™ (2)

are modulated and shifted versions of a unique time window hg 0.
Their Fourier traqsforms are related to the Fourier transform of the
original window hg,o as follows:

b (f) = hoo(f —v)e 727, 3

which are frequency shifted and modulated versions of the Fourier
transform of the window hg,o.

Since [Ss] (1,v) = s(7) * ho,.(—T), where the symbol =
denotes convolution, one can rewrite (1) in the frequency domain
w.r.t. T as follows:

[S5] (1) = how(D3() = hoo(F =0)3(S). @)

Non-uniform time-frequency representations can be obtained from
uniform ones via time and / or frequency warping, as discussed in
Section 2.2, after we formally introduce warping operators in the
next section.

2.1. Warped STFT

The warped STFT can be obtained by warping the signal prior
to applying the STFT operator. The most general warping op-
erator involves combined time-frequency warping, i.e. time de-
pendent frequency warping or, equivalently, frequency dependent
time warping. For the purpose of this paper we consider separa-
ble warping, which can be computed by cascading time invariant
frequency warping with frequency independent time warping. We
mostly focus on pure frequency warping.

A 1D warping operator performs a remapping of the abscissae,
as obtained through function composition. A time warping oper-
ator W, is completely characterized by a function composition
operator in the time domain:

stw = Wys =507, ®)

where ~ is the time warping map and Sy, is the time-warped sig-
nal. Similarly, a frequency warping operator W is completely
characterized by a function composition operator Wy in the fre-
quency domain:

S = Wps = Wys = Wys =500, )

where 0 is the frequency warping map, which transforms the
Fourier transform § = Fs of a signal s into the Fourier trans-
form 87, = Fsz, of another signal s;,,, where F is the Fourier
transform operator and the hat over a symbol denotes the Fourier
transformed quantity (signal or operator). We affix the ~symbol
over the map 6 as a reminder that the map operates in the frequency
domain. Accordingly, we have W5 = ]-'71VAV§]-' = F 'WyF.
If the warping map is one-to-one and almost everywhere dif-
ferentiable then a unitary form of the warping operator can be
defined by amplitude scaling, as given by the square root of the
derivative of the map (dilation function). For example, a unitary
frequency warping operator U has frequency domain action

3ru(v) = [Ugs| ) = /| 22 [360)), ™

where v denotes frequency. We assume henceforth that all warping
maps are almost everywhere increasing so that the magnitude sign
can be dropped from the derivative under the square root.

2.2. Warped Time-Frequency Representations

Remapping signals prior to STFT allows for a reinterpretation of
the representation elements: while the organization of the repre-
sentation (tiling) remains the same, the elements capture differ-
ent components of the signal. Time warping dilates / shrinks and
displaces the characteristic analysis time intervals (resolution and
centers) w.r.t. signals. Frequency warping remaps the character-
istic analysis frequency bands w.r.t. signals (bandwidths and cen-
ters).

Given a frequency warping operator W 5, the warped STFT is
defined through the operator S; as follows

[Sgs] (m,v) = [SWys] (T,v) =

8
(Wos.hr) = (s, Wiheo ), ®
which is indeed a warped version of (1), where W;; is the adjoint
of the warping operator. If the warping operator 1s unitary then
we have Wg = Wé_1 = Wj_.. In that case, warping the signal
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prior to STFT is perfectly equivalent to perform STFT analysis
with inversely frequency warped windows. The warped STFT is
unitarily equivalent to the STFT so that a number of properties
concerning conditioning and reconstruction hold [5].

The Fourier transforms of the frequency warped STFT analy-
sis elements are

hew(f) = [Womthro| (F) =

1A . —1
Vo007 (1) = v)e 2T,

which shows how the analysis elements are obtained from fre-
quency warped modulated windows centered at frequencies f =
0(v). The windows are time-shifted with dispersive delay, where

)

the group delay is 7%.

Frequency warping generally disrupts the time organization of
signals. Indeed, the time-shift operator T does not commute with
the frequency warping operator:

[WaTrs| ) = [WoTrs] ) = e 07 5(0(), - 10)

which is different from TT/VVés] (v) = e79%™75(0(v)), unless
the map 0 is the identity map. Thus, an event that starts at time
T in the original signal, is dispersed into events starting at times
¢a(v)T', where ¢q(v) = 0(v)/v is the phase delay of the warping
map, which depends on frequency unless the map is linear.

In the applications we would like to produce spectrograms
with non-uniform time or frequency resolution but the dispersion
introduced by warping results in misalignment and spreading of
the time-frequency components in the conjugate variable of the
warped one. In the next section we will show how further warp-
ing in the time-frequency plane can redress the warped representa-
tions.

2.3. Redressing the Warped STFT

To address the problem of realigning the frequency warped STFT
[Sys] (1, V), consider its Fourier transform w.r.t. the time variable
7. This can be written in the form (4) by replacing the Fourier
transform of the signal with that of the frequency warped signal:

[SWas| (£,0) = hoolf =)/ %50(). (D

Recall that f is the frequency variable conjugate to time 7 in the
time-frequency plane. Performing unitary frequency warping on
this variable by means of the inverse frequency map 6! one ob-
tains:

[ngS\W@s] (f,v) = mé(ﬂ (12)

where we have used the fact that

ape= (M) _ ap do~1

1= af = dala=0-1(f) df - 13
The redressed frequency warped STFT (12) is again in the form of
a time-invariant filtering operation (convolution in time domain)
where the filters are frequency warped versions of the modulated
windows in (4). As a result, the dispersive delays in the analysis

elements (9) are brought back to non-dispersive delays, the Fourier
transform of the redressed analysis elements being

hr(f) = [T Wahoo| (£) = hoo(07" () = v)e 777",
(14)
It is possible to interpret (12) as the similarity transformation
Wgswé on the STFT operator, which is time-shift covariant.

3. REDRESSED WARPED GABOR FRAMES

In this section we review the definition of Gabor and warped Gabor
frames. We would like to apply the same redressing method used
in the previous section to counteract dispersion and realign time.
However, the Gabor expansion coefficients are time-frequency
samples of the STFT so that only a discrete version of time-
frequency unwarping can be set forth.

3.1. Gabor frames

Given a window function A and two sampling parameters a, b > 0,
the set of functions

G(h,a,b) = {TnaMmsh : q,n € Z} (15)

is called a Gabor system. A signal s can be projected over a Ga-
bor system by taking the scalar products (s, T;,oM,,,h). These
are exactly evaluations of the STFT of a signal with window h
at the time-frequency grid of points (na, gb). Here we have de-
fined the Gabor system using the same convention as in the def-
inition (1) of the STFT. Usually, Gabor systems are defined with
a reverse order of time-shift and frequency modulation operators,
ie. {MmpThnah : ¢,n € Z}. However, the extra phase fac-
tors that are introduced to convert from one definition to the other
are perfectly irrelevant when establishing properties of the system.
Even in the computation the extra phase factors cancel out in the
analysis-synthesis algorithm, so they can be ignored.

A sequence of functions {v1},.; in the Hilbert space H is
called a frame if there exist both positive constant lower and upper
bounds A and B, respectively, such that

Allsl* <Y s, )P < Bllsl* VseH,  (16)
ler
where ||s||> = (s, s) is the norm square or total energy of the
signal. Frames generate signal expansions, i.e., the signal can be
perfectly reconstructed from its projections over the frame.

A Gabor system that is a frame is called a Gabor frame. In this
case, the signal can be reconstructed from the corresponding sam-
ples of the STFT. While not unique, reconstruction can be achieved
with the help of a dual frame, which in turn is a Gabor frame gen-
erated by a dual window h. Perfect reconstruction depends on the
choice of the window and the sampling grid. One can show that
there exist no Gabor frames when ab > 1.

3.2. Warping Gabor frames

From (16) it is easy to see that any unitary operation on a frame
results in a new frame with the same frame bounds A and B [5]. In
particular, unitary operators can be applied to Gabor frames to ob-
tain new frames. Depending on the operator, the resulting frames
are not necessarily of the Gabor type, as the atoms are not gener-
ated by shifting and modulating a single window function.
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Conceptually, starting from a Gabor frame (analysis)
{¥n.a} 4 nez and dual frame (synthesis) {Vn,q},, ,ez

“n,g = TnaMgph

a7
Yn,qg = T7Lanb97

where h and g are dual windows, warped frames can be generated
by unitarily warping the signal s prior to analysis and unitarily
unwarping it after the synthesis:

s = UJ(; Z (Ugs, on,q)¥ng =

n,qeZ

Z <Sa Ug(pn»(1>U;5fYnaQ7

n,q€Z

(13

where Uj is a unitary frequency warping operator. Defining the
frequency warped frame (analysis) {@n,q}, .oz and dual frame
(synthesis) {¥n,q},, ,cz as follows:

q,ne

Pn,q = U;@n,q =Uz-1 TraMgrh

- ‘ (19)
Yn,q = Ué’Yn,q = Ué*lTnanbg7
one obtains the signal expansion
s= Y (8, Pna)na 20)

n,qe€Z

Just as Gabor frames can be obtained by uniformly sampling
the integral STFT, the warped frames can be obtained as a result
of nonuniform sampling in time-frequency. Nonuniform sampling
theorems based on a time warping map were introduced in [6] and
their adaptation to frequency sampling is immediate. Applications
of frequency warping to time-frequency analysis date back to [7].
However, warped Gabor frames suffer from the same problem as
the warped STFT: as a result of frequency warping, the time or-
ganization of the analysis and synthesis systems is disrupted; the
windows are time-shifted with frequency dependent shifts. Indeed
the Fourier transforms of the warped Gabor frame elements are

Bralf) = ) L h(07H(f) — gb)e ™2™ Dme

which bear frequency dispersive delays. In other words disper-
sive time samples are produced by the direct application of the
warped frame analysis. Similar problems are encountered when
time-warping Gabor frames.

The magnitude Fourier transforms (01 (f) — gb) of a set of
frequency warped modulated windows corresponding to 1/3 oc-
tave frequency resolution is shown in Fig. 1, together with a scaled
version %9’1 of the warping map, which maps warped frequency
to fractional band number, i.e., the integer values of %0’1 corre-
spond to the center frequencies of the bands.

3.3. Redressing Warped Gabor Frames
The evaluation of the warped Gabor expansion coefficients
én,q = <57 Sﬁn,q> (22)

is identical to that of a time-frequency sampled warped STFT. In
order to redress the frequency warped STFT into a time covari-
ant representation we have introduced additional inverse frequency

warping with respect to the time variable 7 in the time-frequency
plane. However, in the warped Gabor frames (19) this variable is
sampled at instants na. Therefore, in order to parallel our warped
STFT redressing procedure in the warped Gabor frames case, one
can only apply a discrete-time form of frequency warping to the
time index n.

It is possible to show [8, 9] that if the discrete-time frequency
warping map ¢ is one-to-one and onto [f%, +% [, and almost ev-
erywhere differentiable there, then the set of sequences

1
+3 X

nm(n):/l \/3—36]2”(”"7”“9("))61!1/, (23)
-2

where n,m € Z, forms an orthonormal basis of £*(Z). These
are recognized as generalized Laguerre sequences [10, 11, 12],
which are the inverse discrete-time Fourier transforms of warped
harmonic complex sinusoids in the frequency domain interval
[—3,+2[ The map o can be extended over the entire real axis
as congruent modulo 1 to a 1-periodic function.

Given a sequence {x(n)} in £2(Z), the scalar products

I(m) = (2, Mm) e (2) (24)

generate another sequence {Z(m)} in £%(Z), which satisfies

F) = /L3207 (v), (25)

where the " symbol, when applied to sequences, denotes discrete-
time Fourier transform. Thus, 7, (n) defines the nucleus of an
inverse unitary frequency warping ¢*(Z) operator D 5-1 = DE.

Clearly, the transposed conjugate sequences fim(n) = 7nn(m)
form the nucleus of a unitary frequency warping ¢*(Z) operator
D;.

In order to limit or eliminate time dispersion in the frequency
warped Gabor expansion, one can apply the discrete-time fre-
quency warping operator D 5_, to the time sequence of expansion
coefficients over the warped Gabor frame (22), i.e., with respect
to index n. Since the operator is applied only on the time index,
for generality, one can include dependency of the map and of the
sequences 7),, on the frequency index g, which will be useful in the
sequel. The new coefficients are obtained as follows:

e = [Dyora| ()= 3 aa(m) (s, Gma) =

meEZL

(26)
<57 Z Wn,q(m)¢m,q> :

meL

In order to reconstruct the signal from the coefficients ényq one can
first recover the coefficients ¢, 4, which stems from the complete-
ness and orthogonality of the set {7,,q}nez, and then combine
them with the dual warped frame elements:

s= Z Cn,qYng = E : § équn"'l,q(n)ﬁ/n,q- 27
n,qEL n,qEZ meZ

Hence, defining the redressed frequency warped Gabor analysis
and synthesis frames as follows:

Szn,q = Dﬁglﬂbtq = Znn,q(m)sam,q
. i (28)
Tn,qg = Dﬁgl%,q = Znn,q(m)Vm,qv
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from (26) and (27) we have:

s= Y bngdma= Y, (5Png)ine 29

n,qeZ n,q€(2)

Indeed, the redressing discrete-time warping transformation is
based on an orthonormal and complete expansion in £2(Z), which
leads to the unitary equivalence of the redressed warped frames
with the warped frames.

Exploiting the periodicity of the discrete-time redressing fre-
quency warping map one can show that the Fourier transforms of
the redressed frame is

Gral(f) = APROT(f) — gb)e 720 (D) (30)

Af) =2t [

Hence, the effect of the dispersive delays would be counteracted if

Vq(ad ™' (f)) = dof (32)

where

(€29}

v=ab=1(f)

forany f € R, where d are positive constants controlling the time
scale in each frequency band. In this case, the Fourier transforms
of the redressed frame elements simply become:

Laf @7 (f) — gb)e P (33)

Furthermore, if all d, are identical, all the time samples would be
aligned to a uniform time scale throughout frequencies.

However, each map 9, is constrained to be congruent modulo
1 to a 1-periodic function, while the global warping map € can be
arbitrarily selected. Furthermore, having to be one-to-one in each
unit interval, the functions ¥, can at most experience an increment
of 1 there.

The problem of linearizing the phase is illustrated in Fig. 2,
where the black curve is the amplitude scaled warping map d,0(v)
and the gray curve represents the map ¥4(av), which is 1/a-
periodic, both plotted in the abscissa v = 67 '(f). Amplitude
scaling the warping map 6 allows the values of the map to lie in
the range of the discrete-time warping map 4. The amplitude
scaling factors are the new time sampling intervals d, of the re-
dressed warped Gabor expansion.

If the window h is chosen to have compact support in the fre-
quency domain, which is the so called “painless” case, one can
exactly eliminate the dispersive delays with the help of (28). In
fact, suppose for simplicity that the bandwidth of the window h is
Kb, with K a positive integer, i.e., h(f) = 0 for |f| > Kb/2.
The choice of the initial sampling interval a allows all the maps
{94 }qez to be arbitrarily specifiable to match d,0(v) in the inter-
vals where the Fourier transforms of the warped modulated win-
dows (warped frame elements) are nonzero. Hence, condition (32)
only needs to be satisfied by the map 9, in this interval. Equiva-
lently, we require

Jg(av) =def(v), (¢- 5 <v<(¢+5)b, (4
which is possible if on one hand the variation of the argument of
the map 4 in (34) satisfies

allg+ )b — (¢ — £ = Kab< 1 (35)

N N
v =(a— 5 4,0()
V+—(q+%)b
Uy (av)
d,0(1) [t I
GO 1

v v

v=0"(f)

Figure 2: Locally eliminating dispersion by means of discrete-time
frequency warping. Black line: curve derived from the original
map 6 by amplitude scaling. Gray line: discrete-time frequency
warping characteristics for local delay linearization.

and, on the other hand, if also the variation of the map 9, over the
warped modulated window bandwidth satisfies

da[0((q+ 5)b) —0((q — 5)b)] =dyB, <1, (36)

where B, = 0((q + 5)b) — 6((q — £)b) is the full bandwidth
of the warped modulated window. The first of these conditions
only requires ab < 1/K, which does not depend on g and can
be satisfied assigning sufficient redundancy (oversampling) of the
initial Gabor frame. Incidentally, this is the same condition for the
original Gabor system to form a frame. A valid choice is K = 2,
which requires ab < 1/2. For the second condition, one needs
to select dy < 1/B4, as intuitively clear from the sampling theo-
rem. If there is an upper bound B to the bandwidths B, then one
can choose identical d, = 1/B, q € Z, to satisfy the sampling
condition with uniform rates.

In the general case, a perfect time realignment of the compo-
nents is not guaranteed. By construction, the redressed warped
Gabor systems are guaranteed to be frames for any choice of the
maps 4 satisfying the stated periodicity conditions, even when
the phase is not completely linearized. Locally, within the essen-
tial bandwidths of the warped modulated windows it is possible to
linearize the phase of the complex exponentials in (30).

4. ONLINE COMPUTATION AND APPROXIMATIONS

The warping map design method to eliminate dispersive sampling
in the frequency warped Gabor elements is exact when the ele-
ments are compactly supported in the frequency domain. This type
of frames are definitely suitable for offline computation using sim-
ple and efficient frequency domain techniques [1].

Since the computation of Gabor expansion coefficients is not
causal, in online computation one requires the frame elements to
have compact support in the time domain. Starting with a finite
duration window, one can linearize the phase and choosing suit-
able sampling parameters, one can eliminate dispersion within the
essential bandwidths of the warped modulated windows [4]. How-
ever, this is still not sufficient for online computation purposes.
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In fact, generally, the modulated frequency warped windows will
not have compact support in the time domain even if the original
window had this property.

In order to provide an approximation suitable for online com-
putation, one can observe that the window h is narrow band low
pass and the warping map is differentiable. Therefore, in the argu-
ment of & in (30) one can expand 6~ (f) in Taylor series around
the point 6(gb). Truncating to first order, which corresponds to a
local linearization of the warping map within the bandwidth of the
window, one obtains:

- 1
07 (f) = ab+ —(f = O(ab)), 37
q
where
o= % o (38)

is the group delay associated to the warping map 0( f) at frequency
f = gb. Thus, we have the following approximation:

3u(f) = hO7 () —qb) = b (FEL) 39

Thus, in this approximation, the window g4 (t) is simply obtained
by dilating and modulating the prototype window h, in which the
local group delay acts as scaling factor:

9a(t) = Tgh(rgt)e?* 0", (40)

Hence, if the prototype window has compact support in the time
domain, all its approximate warped modulated versions will have
compact support.

In order to perform online computations of the redressed fre-
quency warped Gabor expansion, one can start from a prototype
window h that has compact support in the time domain, where
aliasing is canceled in the time-domain through overlap-add, such
as the time-domain cosine window, given by

2b at T T
h(t) = & cos if -5 <t<+3 @41
0 otherwise

where T is the total duration of the window, R > 1 is an inte-
ger, b is the frequency sampling interval and we let the time shift
parameter a = T’/ R.

In the redressed frame (30) one replaces the warped modulated
windows by the scaled windows in (39). Furthermore, one per-
forms redressing in the essential bandwidth and considers uniform
time sampling within each analysis band. This requires suitable
setting of the time-frequency sampling rates, which we are goind
to illustrate for the cosine window example.

The Fourier transform of the cosine window, given by

h(v) = 2= (sine(vT — 1) +sinc(vT + 1)), (42
is plotted in Fig. 3, from which one can see that the main lobe
has bandwidth 3/7 = 3/Ra. Assuming this as the essential
bandwidth in which to linearize the phase, in order to satisfy
(32) here, one needs to select R > 3, which is the analogon of
(35), and dqB; < 1, which is the analogon of (36), where now
By =0(qb+ 55) — 0(gb — 5%).

Concurrently, the parameter 7" can be selected according to
the smallest required essential bandwidth. For example, in the
case of a tempered scale warping map, in order to have sufficient

=5 =3 0 +3 45
T 2T 2 2

Frequency

[N}
~

Figure 3: Magnitude Fourier transform of the cosine window.

frequency resolution one can select % = fo, where fo is the
frequency of the smallest tone to be represented, so that adjacent
tones fall away from the main frequency lobe of the window, which
gives a = ﬁ.

The frequency shift parameter b must be chosen so that ab <
1/R for the original Gabor system to be a frame. For R = 3
and the chosen value of a, this gives b < 2f,/3. However, in
practice one would like the tones of the scale to be adequately
represented by the warped bands; moreover, narrower bands im-
prove the approximation of the warped modulated windows with
the scaled modulated cosine windows. In our examples we chose
b = fo/3. The quality of the approximation can be evaluated by
comparing the magnitude Fourier transform of the widows, shown
in Fig. 4 for the case of 1/3 octave warping map for the centerband
frequency of 356.02 Hz. The two modulated windows are shown
in the time domain in Fig. 5. One can see that the scaled cosine
modulated window closely approximates the warped window on a
finite interval, truncating its tails.

As a refinement of the finite length window approximation,
one can consider the truncation of the modulated warped windows
on a larger interval than that offered by the approximating scaled
cosine. The length of the interval can be estimated at 1.5 the sup-
port of the approximating cosine window. In this case one can ob-
tain a reconstruction error norm in the order of 10" of the norm
of the signal for the 1/3-octave warping map. Informal perceptual
tests show no audible artifacts attached to the approximate analysis
and synthesis procedure. A deeper analysis of the approximation
error will be the object of a forthcoming paper.

Since the center frequencies of the warped Gabor frames are
not equally spaced, the computation of the transform cannot be di-
rectly performed by means of the Fast Fourier Transform. Real
multirate filterbanks can be designed by combining the complex
conjugate channels. Therefore the complexity is linear in the num-
ber of samples, where the number of channels is a proportional
factor.
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Figure 4: Magnitude Fourier transforms of the warped modu-
lated window (dotted line) and of the approximating modulated
scaled cosine window (solid line), calculated for a 1/3 octave time-
frequency representation.

5. CONCLUSIONS

In this paper, we have introduced approximation methods suit-
able for the online computation of the analysis and synthesis of
time-frequency representations with arbitrary allocation of the fre-
quency bands based on frequency warping. The problems arising
from the dispersive sampling introduced by warping are solved by
introducing a further warping operation in time-frequency.

The approximation of the frequency warped modulated win-
dows consists in a local linearization of the warping map, which
corresponds to time scaling and modulating a prototype window.
The effect of dispersion is minimized within the essential band-
widths of the frame elements when these are selected, in order to
fulfill causal computational needs, to have compact support in the
time domain. A further refinement is obtained by directly truncat-
ing the modulated windows on larger intervals than the approxi-
mating cosine windows, obtaining higher accuracy in the recon-
struction at the cost of larger storage, as the windows can be pre-
computed offline.
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ABSTRACT

This paper presents a hybrid reverberation processor, i.e. a real-
time audio signal processing unit that combines a convolution re-
verb for recreating the early reflections of a measured impulse re-
sponse (IR) with a feedback delay network (FDN) for synthesizing
the reverberation tail. The FDN is automatically adjusted so as to
match the energy decay profile of the measured IR. Particular at-
tention is given to the transition between the convolution section
and the FDN in order to avoid audible artifacts. The proposed
reverberation processor offers both computational efficiency and
flexible perceptual control over the reverberation effect.

1. INTRODUCTION

During the last decades, two main approaches for digital artificial
reverberation processing have been widely used in music and film
production [1]: convolution reverbs and delay-network techniques.
In this paper, we present and discuss a novel hybrid reverberation
processor that combines both methods and overcomes some of the
limitations of earlier approaches. A hybrid reverberation effect
processor should have the following properties:

o the hybrid reverberation effect should be perceptually in-
distinguishable from a pure convolution reverb for a given
room impulse response;

e the algorithm should fulfill the constraints for real-time au-
dio signal processing;

e the algorithm should be computationally efficient and thus
attractive for practical applications;

e the processing method should provide a flexible high-level
control over the perceived room effect.

This paper is organized as follows: The remainder of Sec-
tion 1 briefly discusses the motivation for this study and offers a
summary of earlier works and current state of the art methods for
reverberation effect processing. Section 2 details the technical as-
pects of the proposed method. In Section 3, we present the results
of a case study. In Section 4, we extend the hybrid reverberator
with a perceptual control paradigm. Section 5 discusses some of
the limitations of the proposed method and outlines possible future
improvements.

1.1. Convolution-based reverberators

The acoustic transfer path between an emitter and a receiver in a
room is usually modeled as a linear time-invariant system, which
is fully characterized by its impulse response (IR). With this linear
model, the room reverberation can be reproduced by convolving an

warusfel}@ircam.fr

anechoic input signal with the respective room impulse response.
This convolution-based "auralization" approach guarantees for an
authentic and natural listening experience.

Due to the increase in available processing power and recent
advances in the development of computationally efficient low la-
tency algorithms for frequency domain filtering (such as, e.g., the
block-partitioned FFT convolution [2] and frequency delay lines
[3]), convolution-based reverberation processing became widely
applied during the last few decades. However, the computational
cost of this method depends on the length of the processed IR.
This may become a problem when recreating the reverberation of
large concert halls and opera houses, where the length of the IR is
typically in the order of a few seconds.

A survey on available convolution-based reverberation render-
ing software and hardware devices shows that the control over the
reverberation effect is, in general, limited to only a few low-level
parameters. Typically, the early-to-reverb ratio can be modified by
adjusting the gains of the respective time sections of the IR. Often
the decay time can be varied too, i.e., either increased or reduced.
This can be achieved, for example, by resampling the original IR
or by applying an exponentially decaying gain curve to the late
reverberation tail. More advanced IR transformations often yield
artifacts that result in an unnatural or unpleasant sounding reverb.
This clearly limits the range of possible IR transformations in cur-
rent convolution-based reverberators.

1.2. Parametric reverberators (FDNs)

Jot and Chaigne [4] used feedback delay network (FDN) process-
ing structures for digital reverberation rendering. FDN simulate
the statistical properties of the late room reverberation in a com-
putationally efficient way. They are scalable and allow for a con-
tinuous tuning of the time and frequency behavior of the room
response.

A commonly reported drawback of FDN rendering is the lack
of authenticity in the early part of the room response. This is typi-
cally linked to transient coloration effects or from insufficient echo
and/or modal densities, as it takes some time to build up dense re-
flection patterns with feedback loop structures.

1.3. Motivation for developing hybrid reverberators

This work aims at developing a hybrid reverberator that combines
both convolution processing for the early part of the IR and FDN
for late reverberation rendering. The hybridization approach shows
several advantages over full convolution processing. Early reflec-
tions (ER) typically arrive within less than 50 — 200 ms. Applying
convolution filtering to this part of the IR comes with a low com-
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putational cost, while it preserves the naturalness and spectral sig-
nature of the room response. The late reverberation decay, which
may be several seconds for large rooms, can be accurately modeled
with computationally efficient FDNs. The feedback loop structure
offers flexible control over the rendering parameters and can be
adapted to perceptually-motivated control methods (see Sec. 4 for
further details). The two main challenges for the design of such
hybrid processor are:

e the estimation of model parameters from the original (e.g.,
measured) IR for automatic tuning of the FDN;

e to guarantee smooth transitions between the two processing
stages (i.e. at the transition between early reflections and
reverberation tail) without perceptible artifacts.

1.4. Related works

The idea of combining FIR filter for early reflection modeling
with a recursive topology for modeling late reverberation decays
dates back to early works on digital artificial reverberation (see e.g.
[5-7]), even though actual attempts at hybridization only appeared
in the late 2000s.

Stewart [8, 9], for instance, proposed a hybrid reverberator us-
ing a 16-channel FDN for generating the late reverberation. This
reverberator automatically estimates the FDN parameters from the
energy decay relief (EDR). More precisely, the reverberation time
(RT) is estimated in each frequency band. The initial spectrum of
the FDN is, however, not taken into account. A Hann window as-
sures smooth cross-fading between the concatenated sections (i.e.
early reflections and late reverberation) and minimizes perceptible
artifacts. Although Stewart et al.’s method is very similar to what
is proposed in this paper (see Sec. 2), they only demonstrate that
such a hybrid reverberator is viable. To the authors’ knowledge,
it has never been realized in practice. It should be further noted
that this cross-fading approach is not well suited for real-time im-
plementations. The rising edge of the Hann window is applied at
the beginning of the late reverberation, which is not possible in
real-time.

A similar approach is taken in [10], without providing detailed
information on the crossfade in between the two sections. Here,
the reverberation decay times are estimated in only two frequency
bands and a 16-channel FDN is adjusted to match the original IR
at the transition points. No additional spectral shaping is applied
to the FDN.

Abel et al. [11] model a plate reverberator with a hybrid pro-
cessing unit. This method (which is inspired from [8]) first esti-
mates the spectral decay times and then applies them to the FDN.
For equalizing the FDN a short FIR filter, which is obtained from a
minimum-phase version of the impulse response, is applied to the
transition region. The transition between the convolution section
and the FDN is accomplished by means of a power-complementary
crossfade.

Greenblatt et al. [12] further extended the methods presented
in [8] and [11] by improving the window-based crossfade between
the convolution and FDN sections. This method allows for any
arbitrary window shape and length as it is subtracted from the con-
volution part.

In [13], Lee et al. generate the ER section using conventional
convolution techniques and the late reverberation part with a so-
called “switched convolution (SC)” technique. The SC processor
consists of a recursive comb filter that is convolved with a short

noise segment. The transition between the two processes uses the
cross-fading technique developed in [11].

Other works mainly focus on the optimization of the different
processes: Heise et al. [14] proposed an optimization strategy for
matching the settings of two different audio processors. As a case
study they tune an algorithmic reverb so that it mimics a convo-
lution reverb processor. The optimization procedure evaluates the
differences between the actual response and the target response on
the basis of psychoacoustic features. As a principal measure the
euclidian distance between MFCC vectors is applied.

A hybrid reverberation processor with a Moorer structure for
the reverb tail is used by Primavera et al. [15-18]. It is based on an
iterative optimization algorithm (see [19] for details) to determine
the parameters of an IIR filter structure (i.e. delay line lengths,
gains, and damping factors) that jointly minimize different cost
functions. The cost functions are obtained by comparing the syn-
thesized IR with the real IR in both the time and frequency domain.

Holm-Rasmussen et al. [20] apply linear predictive coding to
fit a synthesized reverberation tail to a measured IR. For synthesis
sparse FIR filters are used.

Several works investigate different time-frequency represen-
tations to estimate the model parameters that best approximate a
given room impulse response (see e.g. [21-23] for further details).
Most methods apply the short-time Fourier or wavelet transform;
the parameters of the filter structures are estimated using the Prony
or Steiglitz-McBride method.

2. PROPOSED METHOD

In this paper we propose a method that (automatically) tunes a
FDN unit to best approximate the time-frequency response of the
original IR. Schroeder (see e.g. [24, 25]) statistically modeled the
late reverberation of a room as exponentially decaying Gaussian
random process. It is shown in the following that, when apply-
ing Schroeder’s statistical model, the FDN can be fitted with arbi-
trary accuracy to both the reverberation decay profile and the initial
spectrum of the original IR.

2.1. IR truncation

A time-domain room impulse response can only be Gaussian when
a sufficient number of reflections overlap, i.e. when the echo den-
sity in a room is sufficiently high enough. The stochastic model
for late reverberation is thus only valid for frequencies higher than
the Schroeder frequency [24] and times later than the mixing time
(tmiz). The mixing time determines the transition between the
ER and the reverberation tail and thus defines the cross-over point
between the convolution section and the FDN section of a hybrid
reverberator. Several estimators for the mixing time have been
proposed in literature (see e.g. [26-32]), with varying results that,
in general, strongly depend on the estimation parameters (e.g. the
size of the analysis window). An objective comparison of the per-
formance of these various estimators is beyond the scope of this
paper and is postponed to future publications. (Note that Lindau
et al. [33] presented a comparative study on the estimation of the
perceptual mixing time). For the remainder of this article it is as-
sumed that the mixing time is estimated with sufficient accuracy
and that the IR can be modeled as decaying Gaussian random pro-
cess for times ¢ > ¢z
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2.2. Feedback delay network reverberator

The hybrid reverberation engine presented in this paper is based
on IRCAM’s parametric reverberation engine, which is part of the
sound spatialization software “Spatialisateur” (Spat~). This FDN-
based reverberator consists of a “lossless prototype” (i.e. a rever-
berator with infinite reverberation time that is based on lossless
unitary feedback matrix structures) combined with absorptive IR
filters (see [34] for more details). With this processing structure
one can achieve arbitrary time and modal densities, low tonal col-
oration, and independent control of the frequency envelope and
decay characteristics [4]. The Spat~ reverberation processor can
be controlled by a set of perceptual descriptors (see Sec. 4). These
descriptors rely on a simplified model of the IR’s time-frequency
energy distribution that is reduced to four time segments and three
frequency bands (cf. Fig. 1). The Spat~ model separates the IR
into three sections: (a) “early” for the very first discrete echoes,
(b) “cluster” for the late and more diffuse early reflections with a
dense reflection pattern, and (c) “late reverb” for the late reverbera-
tion. The cluster is synthesized with multi-tap delay lines feeding a
decorrelation unit; the late reverb is generated by a delay-network
(that is fed by the output of the cluster section) with typically 4 to
16 feedback channels.
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Figure 1: Time-frequency IR model of the FDN-based reverberator
Spat~: echogram (top) and time-frequency distributions (bottom).

Hybridization requires to adjust the FDN model parameters
(i.e. the reverberation profile and the initial frequency spectrum)
to the time-frequency envelope of the original IR. This is achieved
by analyzing the energy decay relief of the original IR.

2.3. Energy decay relief analysis

The energy decay relief (EDR) is the ensemble average of the time-
frequency representation of the reverberation decay after the inter-
ruption of the excitation signal (see [35]). It represents the spectral
energy density of the IR over time. The EDR is a generalization
of Shroeder’s energy decay curve (EDC), which allows for a time-
frequency representation of the IR. It can be used to accurately es-
timate the model parameters of exponential reverberation decays.
Given an impulse response h(t), the EDR writes:

T=00 X 2
/ h(r)e 2™ dr| . (1)

=t

EDRy. (1, f) =

Eq. (1) can be efficiently computed, e.g., through backward inte-
gration of the short-time Fourier spectrum of the impulse response.
Following the procedure of [35], the reverberation time RT( f) can
be estimated for any frequency f. Measured impulse responses
are usually corrupted by measurement noise, which distorts the
computed EDR and results in biased estimates of the decay times.
In practice, the analysis of the EDR is restricted to a frequency-
dependent time interval in which the hypothesis of exponential en-
ergy decay holds.

The absorptive filter g; in the i*" feedback channel of the FDN
is then chosen such that the logarithm of its magnitude response is
proportional to the delay length and inversely proportional to the
reverberation time. With reference to [4] and by neglecting the
absorptive filter’s phase response, the filter equation writes as

anp| | —60
9™ = e T @

20 - log, RT(f)

where 7; is the delay length (in seconds) of the i'" inner chan-
nel. Spat~ implements the absorptive filter g; as a three-band para-
metric filter with adjustable crossover frequencies. The estimated
RT(f) is thus averaged and reduced to three frequency bands.
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Figure 2: Hybrid reverberator processing structure. Blocks with
dashed-lines indicate offline processing. The “direct/early/cluster
convolution” module performs the convolution of the IR truncated
to the time interval [0 — tmiz).

2.4. Transition filter (spectral correction filter)

With reference to Jot et al. [4,26], the EDR is not only character-
ized by the reverberation time RT(f) but also by the initial power
spectrum P(f). In theory, the FDN’s initial power spectrum is a
zero-mean white Gaussian process that is independent of the decay
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characteristics. This assumption does not always hold in practice,
due to approximations in the derivation of the FDN’s correction
filter [4] and the FDN-channel lowpass filters that simulate the air
absorption of the reflection paths [36]. Note that the air absorption
filters are not compensated by the FDN’s correction filter.

An additional spectral correction is thus introduced to match
the initial spectrum of the FDN with the EDR of the original IR at
the mixing time:

EDRy, (tmiz , f)

EDReoN (Emiz, f) ®

correction(f) =

A linear-phase filter is derived from the magnitude response
of the spectral correction in Eq. (3) and then applied to the FDN
(see Fig. 2). This spectral correction filter guarantees for a smooth
and continuous time-frequency envelope of the hybrid reverbera-
tion processor at time t = tpiq.

2.5. Statistical aspects

The modal density D,, (i.e. the average number of modes per Hz)
of a FDN with N feedback channels is related to the total length
of the delay units by the following equation:

N
D=7 7. @)
k=1

A crucial requirement for convincing artificial reverberation is to
satisfy the assumptions of Schroeder’s statistical model, i.e. to
operate above the “Schroeder frequency”. This condition corre-
sponds to a modal overlap of at least 3:1 (see [35] for details),
which is equivalent to

Drm > RTo, ®

where RT( denotes the average reverberation time. Egs. (4) and
(5) are used to adjust the delay times of the inner loops of the FDN
structure.

2.6. Current real-time implementation

The proposed hybrid reverberator is implemented in C++ and avail-
able as an external object (spat.hybrid~) for Max/MSP® as part
of the Spat~ package. The external object first loads the IR and
then performs the above-mentioned EDR analysis. This initial
processing step is performed offline. Once all IR parameters are
determined the external object enables the real-time processing of
the input audio stream. To ease perceptive comparisons, one can
switch between convolution and FDN modeling for the late rever-
beration tail (cf. Fig. 2). The real-time convolution is implemented
as a zero-latency partitioned FFT algorithm adapted from [2]. The
N uncorrelated output channels of the FDN can be either summed
up to produce a mono output signal, or distributed over several
loudspeakers creating a convincing spatial diffuse field out of a
mono IR.

3. RESULTS

This section presents the results of a case study applying the above-
mentioned algorithms to the IR of a large factory hall. In order to
preserve a certain objectivity the IR was taken from a commercial

library. The file is about 9s long and the average decay time is
RTo ~ 4.5s. The mixing time is taken as ¢ty ~ 200ms. The
FDN consists of N = 8 feedback channels and the crossover fre-
quencies are set to 2.5 and 7 kHz.

Fig. 3 (bottom figure) demonstrates that the EDCs of the orig-
inal and the hybrid IR are in good agreement; the upper figure
compares the frequency-dependent reverberation time before and
after applying the hybridization process. For frequencies higher
than 1.5 kHz, the decay profile is in good agreement with that of
the original IR. However, for lower frequencies an error of approx-
imately +10% can be observed. This error results from the use of
2"4_order absorptive filters in the FDN loop, which determines
the overall shape of the RT(f) curve. For the given example, the
2"4_order shelving filters cannot approximate the original RT(f)
curve with sufficient accuracy in the low and very high frequency
bands.

The choice of 2"%-order filters is motivated by the results of
earlier studies on the perceptual characterization of the acoustic
quality of concert halls, opera houses, and auditoria. Kahle [37]
showed that controlling the reverberation time in three frequency
bands covers the full range of perceptual attributes for a large set
of room acoustic qualities. First informal listenings tests using the
shown case study (among other examples) indirectly confirm these
results. Despite the biased RT(f) depicted in Fig. 3, preliminary
results indicate that listeners cannot distinguish sounds processed
with the hybrid reverberator from those that have been convolved
with the original IR. Anyway, more detailed listening experiments
are needed to verify these early results.

The proposed hybrid reverberation processing model does not
limit the number of absorption filter frequency bands. Higher-
order parametric filters have been successfully implemented, but at
the expense of a higher computational cost. The presented three-
band filter model provides a good trade off between model accu-
racy and computational load.
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Figure 3: Estimated reverberation time (top) and energy decay
curve (bottom) for both the original and the hybrid IR.

Fig. 4 (top figure) compares the EDR derived from the original
IR with that from the FDN, both evaluated at the transition time,
tmiz. The high frequency damping in the FDN spectrum (red dot-
ted curve) results from the air absorption filters. Fig. 4 (bottom
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figure) depicts the magnitude response of the spectral correction
filter that provides a smooth transition in between the convolution
and the FDN. We perform a critical band smoothing before the
magnitude response is transformed into a 256-taps FIR filter for
real-time implementation. The actual length of the spectral cor-
rection filter is a tradeoff between the modeling accuracy and the
computational efficiency.
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Figure 4: EDR of the original IR and the FDN at the transition time
(top) and the magnitude response of the transition filter (bottom).

Fig. 5 illustrates the EDR of the original and the hybrid IR.
Visual inspection confirms a good agreement between the EDRs.
A closer look at the right figure shows that the reverberation time
is slightly underestimated, i.e. the RT of the hybrid model is too
short in a frequency range from 500 to 1500 Hz. The spectral cor-
rection filter shapes the FDN to match the spectrum of the original
IR at the transition point. Without this correction filter, the hy-
brid reverberator would not reproduce the frequency boost around
5000 Hz. In this regard, the proposed processing method clearly
outperforms standard FDN implementations.

Informal listening experiments confirm that the hybrid model
generates perceptually indistinguishable results for various test sig-
nals (e.g. Dirac impulse, percussive sounds, male/female speech,
music, etc.). As mentioned above, more detailed listening experi-
ments are needed to verify these early results.

The computational advantage of the proposed hybrid reverber-
ation processor over a pure convoler depends on many parameters,
such as the length of the original IR (i.e. the reverberation time),
the mixing time, the number of feedback channels in the FDN, the
audio I/0 latency of the processing environment, and so on. There-
fore, it is difficult to draw general conclusions on the cpu load from
comparisons with a pure convolution processor. With the different
parameter settings that were tested in this case study, we gained
about 35% of cpu load compared to an optimized real-time convo-
lution algorithm.

4. PERCEPTUAL CONTROL

In the 1980s and 1990s, IRCAM has undertaken a series of room
acoustic measurements and listening tests in different European

concert halls. The aim was to establish a set of perceptual descrip-
tors for the acoustic quality of concert halls (see e.g. [37-40]).
Multidimensional data analysis (more specifically Individual Dif-
ferences Scaling analysis, INDSCAL; see [41]), revealed a set of
nine mutually independent perceptive descriptors for describing
the room acoustic quality. It has been shown that these descrip-
tors correlate well with some objective room acoustic criteria (see
[38] for more details). In order to control the room effect along the
relevant perceptual dimensions most of the proposed descriptors
require both a temporal and spatial weighting; some of them do
also require a spectral weighting in order to obtain satisfactory re-
sults. An in-depth discussion of the set of descriptors is beyond the
scope of this paper. We only give one example to allow for a more
general understanding of the perceptual control of the hybrid re-
verberator. For instance, the “DirE” descriptor refers to the energy
of the “temporally extended” direct sound energy and controls the
perceived presence of a sound source in a reverberant environment.
It is computed from the temporally segmented impulse response as
illustrated in Fig. 1. In the following, E'ro refers to the estimated
energy of the direct sound (0 — 20ms), Er1 to the energy of the
early reflections (20 — 40ms), Er> to the energy of the cluster (i.e.
the late reflections; 40 — 100ms), and E'r3 to the energy of the late
reverberation tail (> 100ms), respectively. DirE can be computed
from these energy estimations as follows:

DirE = ERO + ERl + ERZ,excess 4+ 0.18 x ER2,masked (6)
with

ER2,excess :maX(O, ER,Q - ER40),
ERr2,masked =min(FEr2, FRrao),

Erao =Er|(0,40m) = Ero + ER1.
Jullien and Kahle [38-40] have, for instance, shown that the DirE

parameter represents well Lochner and Burger’s “energy ratio cri-
terion” [42] for the intelligibility of speech. As a result one can
control the perceived presence of sound source by controlling the
gain of the different time sections of the impulse response. For
more details on the perceptive descriptors, please refer to [37-40].

IRCAM'’s parametric FDN-based reverberator applies the per-
ceptive descriptors in a similar way, and they have been proven
useful in many music productions. If we now apply them to the
hybrid reverberation process, we have to modify the signal pro-
cessing structure given in Fig. 2 so that it represents the time-
segmented structure given in Fig. 1. The convolution segment (i.e.
for the time interval from ¢ = 0 to ¢ = ¢,,4) 1S split into three
sub-segments corresponding to the sections “direct”, “early”, and
“cluster”. The output signals of these subsections are first time
aligned with delay lines and then filtered with three-band paramet-
ric shelving filters, which are controlled by the perceptual model
parameters. Fig. 6 depicts the extended processing model (for
simplicity, the data analysis modules are not shown in this fig-
ure). When the direct/early/cluster/late filters are flat, the hybrid
reverberation unit represents the original IR. When the user ma-
nipulates the perceptual factors, the parameters of the filters are
updated accordingly. This allows to smoothly modulate the acous-
tical quality of the IR by navigating along the different percep-
tual axes. For instance the so-called “source presence” factor con-
trols “DirE” and creates a convincing effect of proximity or re-
moteness of the sound source by simultaneously adjusting the di-
rect/early/cluster/late levels (Ero, Fr1, Fr2, Er3) according to
the structured model.
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Figure 5: EDR (in dB) of the original (left) and hybrid (right) IR. The dashed line represents the transition time, t = tmiz.
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Figure 6: Process chart of the hybrid reverberator with percep-
tual control. Blocks in blue correspond to convolution segments.
Blocks in red correspond to parametric reverberation. Delay lines
(brown blocks) ensure time-alignment of the convolution segments.
Blocks in magenta correspond to three-band filters controlled by
the perceptual model.

5. CONCLUSIONS AND PERSPECTIVES

This paper considered both the theory and implementation of a
hybrid reverberator that combines convolution processing for early
reflections with feedback delay networks for late reverberation ren-

dering. The proposed method first estimates the reverberation time
and exponentially decaying envelope in different frequency bands
from the original impulse response. These parameters are then
used to control the FDN processing. Particular attention is paid to
the smooth transition from convolution rendering to FDN process-
ing; the power spectrum is matched at the transition point (given
by the mixing time) in each frequency band.

An analysis of different room impulse responses (see also Sec-
tions 2 and 3) indicated that three-band shelving filters in each
FDN channel may not always succeed to model the late rever-
beration with sufficient accuracy. The model accuracy strongly
depends on the EDR profile of the original IR. Future work will
focus on the analysis of the RT(f) curve in order to automati-
cally determine the minimum number of required frequency bands
(and corresponding crossover frequencies) to keep the modeling
error below a given threshold. Increasing the number of FDN fil-
ter bands significantly increases the computational cost. However,
with the rapid increase in available processing power real-time im-
plementations may become feasible.

The modal density of a FDN should satisfy Schroeder’s sug-
gestions for natural sounding and high quality artificial reverber-
ators (cf. Section 2). A useful extension of the hybrid processor
would be estimating the modal density of the original IR to auto-
matically adjust the FDN to these parameters.

The proposed method is based on the stochastic model of late
reverberation and thus excludes, e.g., non-exponential decays, flut-
ter echoes, and spring reverbs. Nonetheless it would be possible to
extend the technique to IRs exhibiting a double-slope exponential
decay; such decay profiles have gained interest in recent years and
have been observed in concert halls such as, e.g., the Boston Sym-
phony Hall. Both the EDR analysis and the FDN rendering can
be extended to that purpose. Adapting the EDR analysis of [35] to
multiple-slope exponential decays do not raise conceptual difficul-
ties. The design of FDNs with multiple decay slopes is currently
under investigation.

In this paper we focused on single channel impulse responses
for a mono input signal and mono (or multichannel) output sig-
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nal(s). A multichannel extension to directional room impulse re-
sponses (DRIRs) is currently under development. DRIRSs are typi-
cally measured with spherical microphone arrays. Preliminary re-
sults of multichannel EDR analysis and DRIR denoising have been
published in [43,44]. The proposed methods perform a joint anal-
ysis of the EDR of all the microphone cells in order to preserve the
spatial coherence between them. Hybrid convolution reverberators
operating in the modal domain are used for higher-order Ambison-
ics rendering.
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ABSTRACT

An enhancing effect that can be applied to analogue oscillators in
subtractive synthesizers is termed Animation, which is an effi-
cient way to create a sound of many closely detuned oscillators
playing in unison. This is often referred to as a supersaw oscilla-
tor. This paper first explains the operating principle of this effect
using a combination of additive and frequency modulation syn-
thesis. The Fourier series will be derived and results will be pre-
sented to demonstrate its accuracy. This will then provide new
insights into how other more general waveform animation proc-
essors can be designed.

1. INTRODUCTION

The modelling of analogue musical equipment using digital tech-
niques has been an area of research that has received consider-
able attention over the past decade, and is still a very current
topic [1]. This field covers the reproduction of Tube amplifiers
([2] and [3]), guitar effects devices ([4] and [5]), spring reverb
units [6], analog synthesizer oscillators, both generally in [7] and
[8], and in a model specific manner in [9] and [10], and resonant
voltage controlled filters ([11], [12], and [13]).

With regard to analog synthesizer oscillators in particular,
most of the previous work has focused on the alias-free synthesis
of ideal classical waveforms, such as the sawtooth, the triangle,
and the rectangular waveforms, see [7], or [14], for example. The
reason for this focus on oscillators was simply that digital models
of waveforms associated with particular analog synthesizers are
more difficult to create because it requires access to such synthe-
sizers in order to make waveform measurements. These can be
expensive and difficult to obtain in their vintage versions. The
ideal forms of the classic waveform signals have a spectrum that
decays about 6 or 12 dB per octave, following the 1/f or the 1/f2
law (where f denotes frequency), respectively [19].

An early approach was the filtering of the digital impulse
train obtained from the summation formula for the cosine series
[20]. More recent works have proposed to implement an ap-
proximately bandlimited impulse train using a windowed sinc
table ([21] and [22]), a feedback delay loop including an allpass
filter [24], or a sequence of impulse responses of fractional delay
filters [25]. Alternative approaches include the differentiated
polynomial waveforms ([26],[27] and [28]), hyperbolic wave-
shaping [8], Modified FM synthesis[29], polynomial interpola-
tion [30], polynomial transition regions [15] and [18], bandlim-
ited impulse train generation using analog filters [16], and
nonlinear phase basis functions [17].

Alongside these oscillator algorithms, other work has fo-
cused on enhancing effects that can be applied to them such as
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Hard Synchronisation ([31] and [32]) and Frequency Modulation
([33] and [34]).

One very interesting effect is described in the literature as
Waveform Animation [35]. Animation is a single oscillator ef-
fect. It is an enhancement to the traditional non-modular ana-
logue subtractive synthesizers feature of two or three oscillators
per voice ([36] and [37]), which has generally held up for digital
emulations [38]. The result of the Animation is the production of
a deep, thick, pulsing sound. Originally proposed as a technique
for modular analog systems it did not appear on synthesizers
produced by the major manufacturers who opted for simply add-
ing a unison oscillator option instead ([39] and [40]). More re-
cently this unison oscillator arrangement has become termed as a
Supersaw [38] or a Hypersaw [41]. It became strongly associated
with electronic dance music.

Nam et al. [25] proposed an implementation of this effect in
which several detuned bandlimited impulse trains (BLITs) with
appropriate DC offsets are added together and fed through a sin-
gle leaky integrator. However, this incurs the computational costs
of generating multiple waveforms at a small frequency difference
from each other. A digital implementation of Waveform anima-
tion, however, offers a more efficient alternative for creating this
multiple oscillator sound effect than just adding numerous de-
tuned waveforms because it does not result in a corresponding
loss in polyphony as groups of oscillators are assigned to each
voice.

When it comes to the digital emulation of a particular analog
effect there are two choices: either (1) attempt to reproduce a par-
ticular analog circuit design directly or (2) to emulate the opera-
tion from an algorithmic perspective with tailored digital ele-
ments. While the first approach can work very well, it produces
an algorithm that is computationally intensive and requires a sig-
nificant oversampling factor to operate correctly, see [5], [11],
[12], and [13]. The second approach is less complex, computa-
tionally cheaper, and more flexible, conferring the final imple-
mentation with benefits such as having greater polyphony avail-
able to the virtual synthesizer. An example of this approach has
been presented in [10].

Therefore, in this paper, we will work out the underlying the-
ory of the Waveform Animator oscillator effect from a signals
point of view. This will be augmented by a model by which it
can be implemented efficiently in modern digital synthesis sys-
tems using delay lines. The next section will mention the origins
of the effect combined with the theory underlying it.

2. MULTIPLE DETUNED OSCILLATORS

The idea for this sound can be attributed to Risset [42] who de-
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veloped it in the late 1960s for some of his compositions. In
computer music circles it is sometimes termed the ‘Risset Arpeg-
gio’ [43]. The intense effect of the detuned sound is due to a
complicated beating pattern created among the harmonics of each
oscillator. An analytical expression is available that describes this
pattern [44]. Assuming a signal with a number of harmonics that
has M detuned copies at a spacing of &f, between each of them,
the beating pattern amplitude of the k™ complex harmonic cluster
is given by

sin(tM k&fqt)
sin(nk8f o t)

By (t)= A 1)

where A is the amplitude of the k™ harmonic.

3. WAVEFORM ANIMATOR

Hutchins proposed the multiphase waveform animator capable of
emulating a bank of detuned sawtooth oscillators with a single
Voltage Control Oscillator (VCO), by mixing a number of alge-
braically phase shifted sawtooth waveforms together [35]. The
original paper did not show mathematically how this is achieved;
rather it was demonstrated in terms of the waveforms it required
as it was intended for implementation using a modular analog
synthesis system. However, to gain a deeper insight that will as-
sist our digital implementations it is worthwhile to understand the
principle of this system fully.

The input to the Animator is a sawtooth with a rising edge of
amplitude A. The animator itself consists of a number of chan-
nels each controlled by a different triangle wave Low Frequency
Oscillator (LFO), whose rate should be less than 2Hz and whose
amplitude is smaller than that of the input [35]. A block diagram
of one channel that illustrates the principle of the animator is
given in Fig. 1. Note that more channels leads to a more intense
effect.

In Fig. 1, the input sawtooth and LFO are on the left hand
side, there are two subtracting elements, a comparator, and the
output appears on the right hand side. This output is a time-
varying phase-shifted sawtooth that is then added with the input
sawtooth to create the animated effect.

To explain in more detail: subtracting the input from the LFO
generates an intermediate waveform. The LFO is very slow in
relation to the input so that it is effectively like adding a DC off-
set to each period of the input wave. Fig. 2 shows this graphically
using the relevant waveforms. In Fig. 2 the amplitude of the input
sawtooth A = 5.0 and the amplitude of the LFO is 2.0. The result
of the operation is that the DC level of the input is altered by a
value of 7.0 in this example.

Phase-
shifted

Sawtooth

Sawtooth

LFO

Figure 1. Block diagram of one channel of the waveform
animator.

Input Sawtooth, LFO, difference of Sawtooth and LFO
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Figure 2. Input sawtooth (solid line), LFO waveform
(dashed line) and difference of the two (dotted line).

This waveform is fed to a comparator device that is set to emit
a pulse when its input is greater than the sawtooth amplitude A,
otherwise the output is zero. This results in a PWM waveform
whose pulse is on the leading edge and whose pulse width is var-
ying at the rate of the LFO. Further, the amplitude of the pulse is
2A. This PWM wave is then subtracted from the DC-altered saw-
tooth to produce a time-varying phase-shifted version of the input
sawtooth. This is illustrated in Fig. 3. The upper panel shows the
generated PWM wave against the comparator input and the lower
panel shows the original input sawtooth and its phase shifted ver-

sion.
PWM Wawe, DC altered saw
i o ,' — PWM Wawe
10 % 7 ;7 -=-- DC altered saw
4 4
o 8 /I i / /' -
° 4 4 ’ %
=} 7 S P /f /|
= 6k ¢ 4 S " Fd
S 1/ 24 ¥ / s
< 4} I' 'I l' /I ’I' i
S g s ’ /
2¥ 2 ! o o |
0
0 0.005 0.01 0.015 0.02
Time (S)

Input Sawotooth and Phase-shifted Sawtooth

A X A x
— Input Sawtooth R
-+=- Phase-shifted Sawtooth

| 7y

0 0.005 0.01 0.015 0.02
Time (S)

Amplitude

Figure 3. The DC-altered sawtooth (dashed line) and PWM
wave (solid line) at the output of the comparator are given in
the upper panel. The input sawtooth (solid line) and the result-
ing phase-shifted sawtooth (dashed line) are shown in the low-
er panel.

To illustrate mathematically what the animator is doing, first
assume that we are looking only over a few periods where the
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LFO waveform can be regarded as a constant DC level, we can
then write the animator output as

2A & sin(2mkf ot
s,wa(t)z_T sin(2rkfot)
k=1

+Cqe — Py t) 2

where the first term on the rhs of (2) denotes a rising sawtooth,
Cyqc represents the added DC level, and the third term represents
the PWM waveform comparator output whose maximum ampli-
tude is 2A and minimum value is zero.

The expression for a falling edge, zero-centered, PWM wave
of time-varying duty cycle d(t) is [45]

P(t)=d(t)+ é sin(2nkd((|25k2nfot)+ é Sin(l(<k2na;fot) -

Each component of the second term on the rhs of (3) is phase
shifted where the phase shift depends both on the duty cycle and
increases with increasing frequency because of the factor k. To
rewrite (3) so that it represents the comparator output correctly it
needs to have a leading edge pulse and be scaled in amplitude

P, (t)=-(2A)P(t)+2A (4)

Substituting (3) into (4), and then the result into (2) we can
write the animator output as a combination of AC and DC com-
ponents.

Swa(t)=Sac(t)+Spc(t) ®)
Remembering from (2) that the comparator combines the PWM

wave along with the input sawtooth if we concentrate on the AC
components of (5) first we have

Spc(1)=2 A[i sin(2kd (t) - k2afot) | i sin(I((anot)} .

) (kn) b} krc)
o AZsin(anfot)
a km

which can be written as

Spclt)=—2 Ai sin(k2nfqt — 2nkd (t)) "
1 (kn)

This gives the equation for a rising sawtooth with a time-varying
phase shift. Then, looking at the DC term of (5)

Spc (t)=DC-2A+2Ad(t) (8)

The term d(t) will be constant within each time period. Thus, for
a single time period we can write

Spc ~ DC—2A+2Ad )

To show that (9) is zero, we must determine d by locating
the point of intersection of the LFO waveform with the sawtooth
waveform in each period. If we write these as line equations we

can use simple geometry to determine the intersection point be-
tween the two. For argument’s sake, we assume that we are ex-
amining the crossing point within the first period of the sawtooth
wave. Doing this, the time of their intersection t, can be ex-
pressed as

A-Aro

t =
P (2Afo —2Alro firo)

(10)

where f_ro is the LFO frequency, A ro(t) is the time-varying am-
plitude of the LFO wave and A’ ro is the maximum amplitude it
will reach within that one period. The value of the duty cycle for
that period will be

q- (Afo - AE.FO fo) (11)
(2Afg —2Alko fLro)

To further simplify the analysis we assume that within this first
period of the sawtooth the amplitude of the triangle wave is con-
stant, i.e.
AlFo =Arro (12)
Then, examining Fig. 2, we can write

DC ~ A+ A ro (13)

Substituting (12) into (11) and then combine with (13) in (9) to
give

SDC =A+ ALFO -2A+2A (Af() — AI,—FO fO) (14)
(2Afg—2Alko fLro)
Next, noting that

(2Afg >> 2Alro firo) (15)

The third term on the rhs of (14) can then be approximated, and
following simple manipulation leads to the expected result

SDC =A+ A|/_|:o —2A+ A*ALFO =0 (16)

The expression (16) will hold for every period of the input saw-
tooth. Therefore, the final animator output can be written

Sya(t)= 2 Ai sin(k2nfot — 2ntkd (t)) an
k=1

(kn)

Examining (17) it can be interpreted as a summation of har-
monically related frequency modulated sinusoids where the
modulation is the time-varying duty cycle d(t) and the modula-
tion index increases with respect to the harmonic number. This
result is very interesting as it means that the bandwidth around
each harmonic increases with respect to increasing frequency.
This would suggest why the waveform is perceived as being ‘an-
imated’ as this increasing bandwidth with respect to frequency is
similar in effect to adding detuned harmonic waveforms together.
Furthermore, the faster the LFO the wider the bandwidth will
become. There also should be a relationship between the swing in
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the duty cycle with the sideband harmonic magnitudes and ulti-
mately the strength of the effect.

4. ANIMATOR SPECTRAL PROPERTIES

It is worthwhile to investigate the spectral properties of the ani-
mated waveform a little further. The time-varying duty cycle sig-
nal only changes its value for every new period of the input saw-
tooth. This means that this modulating duty wave resembles a
flat-top multi-level Pulse Amplitude Modulation signal, where
the pulse rate is the same as the input sawtooth. However, be-
cause it is changing so slowly to simplify the analysis first we
can assume that the duty cycle modulation is a shifted and scaled
triangle LFO of the form

d(t)= [dmax ; I j —(dmax ; G jtri(Zrcf,_Fot) (18)

where dyax and dpin are the maximum and minimum values of the
duty cycle respectively. They are determined by the user choice
for A ro.

We can also write the Fourier series for the triangle wave
modulation in (18) as

tri(2nf rot) = Zﬁ cos(2naf g0 — ), g =1,35,... (19)
k (an

where g is the harmonic index.

This particular triangle wave will start from its minimum
value which is in keeping with the original work [35]. Combining
(19) with (18) and then substituting into (17) we can see that we
will have a Complex FM waveform [46]. The relative contribu-
tion of each harmonic of the LFO to the spectrum of (17) could
be computed using this theory. However, it can quickly become
complicated if we use many components from the Fourier series
in (19). By writing expressions for the modulation indices it is
possible to find a way of simplifying the task. Denoting the mag-
nitudes of the modulation indices for each as |, we can consider
the first two significant components (The second harmonic mag-
nitude 1, =0 because it is a triangle wave) we have

8

Iy :;(dmax _dmin) (20)
and
8
I3 :9_(de _dmin) (21)
T

Noting that 1; > 1 while I3 << 1 (and will be true for all higher
modulation indices), this suggests that it would be reasonable to
assume that the primary contribution to the modulation of each
harmonic in (17) is only the first component with modulation
index given by (20) which allows us to rewrite

2 sin(k2nfot + k1, cos(2nf, rot)+ 9
Swa(t):_ZAzsm( il Ekcr:))S( TiFo )+ ) 22)
k=1

where we denote the phase shift 9 = —kn(d pax + dmin ) -

Magnitude spectra of modulated sine using triangle and one component approximation
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Figure 4. Comparison of the spectra of a sinewave that
has been frequency modulated using the triangle wave
LFO of (19) (solid line) versus a one component approx-
imation to it as given by (22) (dashed line).

To validate the approximation Fig. 4 shows a plot of the
spectra of a frequency modulated single sinewave of frequency
441Hz using the modulation function of (18) with frequency
0.5Hz and dm«=0.9 and dy,;i,=0.1 (solid line) along with the spec-
trum of the same sinewave but with a sinewave modulation func-
tion with modulation index given by (20). From the figure it can
be seen that there is an exact match for the magnitude of the first
and third order sidebands at 441.5Hz, 440.5Hz, 442.5Hz and
439.5Hz respectively. There is a close match with the second or-
der sidebands at 442Hz and 440Hz. This indicates that the ap-
proximation is acceptable.

Once adopting this approximation it is straightforward to
have an expression for the magnitude spectrum of (22) around
each harmonic

[H (kfo +nfeo )= (o (kly ) (23)

where J, denotes a Bessel function of order o [47].

With this done it is possible to plot a relationship between the
width of the duty cycle (that is, the difference between the max-
imum and minimum values) versus the magnitude of the first
sideband of the modulation. This is helpful when creating an an-
imated waveform as it can be used to decide how to set the am-
plitude of the triangle wave LFO and to determine the amplitudes
of other sawtooths that could be added to the animated wave to
get a desired balance between the animated waves and the origi-
nal. This is similar to the mix function associated with commer-
cial products [38], [41]. An experiment can be run by creating
different values for the first modulation index in (20) using dif-
ferent values of duty cycle width. These can then be substituted
into (23) to compute the first sideband magnitude (where o = 1).
The result of this is given in Fig. 5. It shows that the largest side-
band magnitude occurs when the width of the duty cycle is 0.7.
This corresponds to a duty cycle maximum of 0.85 and a duty
cycle minimum of 0.15. Thus, at this setting most significant lev-
el of waveform animation is achieved.
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Relationship between duty cycle width and the magnitude of the first sideband
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Figure 5. Relationship between the duty cycle width and
first sideband magnitude computed using (20).

5. ANIMATOR USING A DELAY LINE FILTER

The multiple detuned oscillator effect can also be created by em-
ploying a group of delay-line based pitch shifters and a single
waveform input [48]. The principle can be seen as an extension
of the use of inverse comb filters with time-varying delays. By
combining the output of such delay lines with the original signal,
we will be able to model the multiple detuned oscillator effect for
arbitrary inputs.

The pitch shifter operation is based on a periodic linear
change in delay time. The amount of pitch transposition is pro-
portional to the rate of delay change [49]. By modulating a delay
line with a signal whose derivative is constant and non-zero, the
pitch of the input signal can be shifted. We can define this pro-
cess for a single up and down transposition pair by the following
expressions, where 1 is the delay line length, s is the frequency
scaling factor (transposition ratio) and x(t) is the input signal:

Swa,ar (1) = W(y(D)x(t - D(y(t), 7)) +

24
w0+ Dxe-oew Ly
where the delay modulation signal y(t) is defined as
10 =(S—‘1)t{(s—‘l)tJ (25)
T T

The windowing and delay functions in (24), w(x) and D(x) are
expressed by

w(x) =0.5+0.5c0s(27nx) (26)

and

D(x,d) = xd %);—de (27)

53
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Figure 6. The pitch-shifter based detuned oscillator effect
where s is the transposition factor 1 + &fy/f,.

The windowing is necessary to hide the discontinuities of
signal as the delay jumps from 0 to t. The use of two delay lines
is designed to allow crossfading between them, which creates a
continuous pitch-shifted signal.

To create a mix of seven signals with slight tuning differ-
ences, we can use four pitch shifters arranged as in the block dia-
gram in Fig. 6. The transposition factor s should then be set to 1
+ ofg/fy, providing a constant-interval spacing between each
pitch-shifted copy of the original signal.

An example of the waveform output and the magnitude spec-
trum is given in Fig. 7. The upper panel shows the waveform
over a 9 second period. The envelope of the waveform shows
periodic peaks and troughs due to the beating that is occurring
between the detuned harmonics. The two plots in the lower panel
show the cluster of components around the region of the first
harmonic and the second harmonic of the input. As expected the
bandwidth around the second harmonic is proportionally wider
than that of the first.

Waveform output of delay-line animator
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Figure 7. The pitch-shifter based detuned oscillator ef-
fect, where s is the transposition factorl + &fy/fy. The up-
per panel shows the waveform output and the lower pan-
els shows the magnitude spectrum in the region around
the first and second harmonics of the input waveform re-
spectively.
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6. CONCLUSION

This paper has investigated the digital implementation of a
Waveform Animator oscillator effect. It has first presented a
mathematical analysis that has resulted in expressions for the fre-
quency spectra of this effect, looking in detail at the significance
of the modulation components. Secondly, it examined by simula-
tion the relationship between the duty cycle and the degree of
animation. Lastly, a delay line based algorithm was then dis-
cussed as means to obtain a general model of this effect. Fur-
thermore, if the input to the delay-line model is bandlimited then
the output will also be so. Such a model could be incorporated
within any synthesis toolkit. It is intended that this work will of-
fer sound designers more insight into alternative approaches for
synthesizing ‘Supersaw’ timbres and also raise their awareness as
to the role that frequency modulation plays within these sounds.
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ABSTRACT

In this paper, we present a model for the modulation of multi-
performer microtiming variation in musical groups. This is done
using a multivariate Markov model, in which the relationship be-
tween players is modelled using an interdependence matrix (o)
and a multidimensional state transition matrix (.S). This method al-
lows us to generate more natural sounding musical sequences due
to the reduction of out-of-phase errors that occur in Gaussian pseu-
dorandom and player-independent probabilistic models. We ver-
ify this using subjective listening tests, where we demonstrate that
our multivariate model is able to outperform commonly used uni-
variate models at producing human-like microtiming variability.
Whilst the participants in our study judged the real time sequences
performed by humans to be more natural than the proposed model,
we were still able to achieve a mean score of 63.39% naturalness,
suggesting microtiming interdependence between players captured
in our model significantly enhances the humanisation of group mu-
sical sequences.

1. INTRODUCTION

In electronically produced music, humanisation algorithms are of-
ten applied to percussive sequences in order to create a more nat-
ural sounding expressive performance. This is particularly useful
when access to performers or equipment is limited, as events can
be programmed onto a quantised grid and then modulated by a
music producer, without the requirement for human performance.
This process is often applied during the point of music creation
from within the digital audio workstation and allows for the in-
corporation of sampled or synthesised instruments into a piece of
music.

One of the main issues with current humanisation systems is
that they do not necessarily represent the expressivity exhibited by
a human agent, thus the process requires further editing in order
to achieve a natural approximation of a human musician. Further-
more, the systems are unable to model the characteristics of group
performance when used in a multi-channel environment. These

problems are namely due to the fact that the majority of existing
humanisation systems modulate the onset locations and respec-
tive velocities of an event instantaneously, using a pseudorandom
variate, selected from a Gaussian window. Therefore in simulated
multi-player performance, phase error is often introduced between
the channels. This can actually reduce the naturalness of the per-
formance, rather than enhance it due to perceptually unrealistic
cues, generated by multiple instances of the algorithm running in
parallel.

1.1. Modelling Microtiming

In this study, we focus specifically on extracting and modulating
microtiming offsets in musical performance, this can be defined as
the subtraction of an event at time n from a corresponding point
on a reference track, as illustrated in Figure 1. Here, the refer-
ence grid represents a metronome running in parallel with the per-
formed musical sequence. The challenge of the humanisation al-
gorithm is to then estimate the distribution at n 4 1, written as
P(605,41). This is usually done independently of all other events in
the sequence, based on a distribution centred around the n‘" grid
point, characterised by the parameters p and o.

S | 1 fl
| LB |
" On-1 = tot -l 4’ On=tn- tn *
| | P(0n1) = 3
t [] [] H
i —A

Figure 1: Representation of a player, following a metronome. The
offset measurements from the metronome are shown as 0, where
t, is the nt" metronomic event and tn is the nt" event performed
by player 1.
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Attempts have been made in previous studies to increase the
naturalness of single-player humanisation systems by incorporat-
ing some form of intelligent processing into the variate generation
procedure. In [1] for example, fuzzy logic has been used to model
strike velocity deviation in a humanisation system, based on sub-
jective rules, derived from domain knowledge. Similarly, micro-
timing deviation has been modelled using a number of different
supervised machine learning techniques by [2]. These techniques
are then used to apply the derived microtiming models to quantised
sequences, in which they conclude the systems used to model per-
cussive sequences significantly outperform the quantised version,
when evaluated for natural expressivity. Microtiming for Brazil-
lian Samba music is also estimated in [3] and [4], using a model
based on the extraction of quarter-note patterns using K-Means
clustering. Here, it is shown that the degree of expressive timing
can be attributed to specific metrical positions, with examples in
Samba music. This kind of information is omitted when pseudo-
random models are applied, due to the variables being indepen-
dently distributed for each event.

In previous work by Stables ([5], [6]), it has been shown that
the process of stochastic humanisation can be improved using prob-
abilistic temporal models to modulate a quantised sequence, based
on microtiming measurements taken from professional musicians.
Here, independently distributed variates (P(6,+1)) were replaced

by variates that were conditionally dependent in time (P (6n+1|60x)).

In these studies it was shown that the measured sequences ex-
hibited temporal patterns which could be synthesised using finite
state machines. In both cases, the empirically developed models
were shown to subjectively outperform quantised and Gaussian se-
quences for both perceived naturalness and musicality.

2. GENERATIVE MULTIVARIATE MODEL

Whilst the models described in section 1.1 work particularly well
with single-player sequences, phase error is still introduced in muti-
channel performance models due to the lack of inter-performer
dependence. This means that when a probabilistic humanisation
algorithm is applied to more than one track in a given session,
extensive manual correction is often required in order to create a
sense of cohesion between the separate channels. It is therefore
necessary to consider ways in which a group of musicians can be
modelled in parallel, thus preserving the inter-performer timing
characteristics of a musical group.

If we make the assumption that the performed musical signals
are stylised stochastic processes (as in studies such as [7] and [8]),
we can use a Markov chain to estimate a transition through a dis-
crete state-space Z = {zl, 295y 2 K}, where z,, represents the
n'™ state of the system, providing the sequence being modelled,
satisfies the Markov property given in Eq. 1.

P(9n+1:in+1|90:i0,91 :’il,...,en:in) (l)
= P(0n+1 = 7;n+1|€n = Zn)
Here, 60,, represents the n*" event and in represents the cor-
responding state. Each state in the model can be described us-
ing canonical form representation, consisting of a binary vector of
length K, where >_,"_, 0x = 1 and 6, € {0,1}. For example,
in a 5-state model, if the n*" event is equal to z3, we can use the
representation 6, = {0,0,1,0,0}”. This allows us to define a
single-player model using Eq. 2.

P(On41) = S0, @

Here, S is a state transition matrix (STM), representing the
probability of a transition from 6,, = iy to 041 = in41 for
n = {1,2,..., N}, where N is the number of events in the se-

quence. We then consider P(6,,) to be the Probability Density
Function (PDF) representation of 0,,. The canonical form of 6,41
is then calculated using a rejection sampling technique, given here
in Eq. 4.

1 | =
(60): :{ o 2 )
_ ) Mk [V1,k572,6] € P(6n)
= { repeat, [V, v24] € P(0n) @

Where 71,1 and ~y2 ;, are pair-wise stochastic variables, evaluated
against the n'" state distribution and § is the state vector index.
For situations such as grouped musical performance, in which there
are two or more conditionally dependent sequences, we can use
a Multivariate Markov Chain (MVMC) model. This consists of
the univariate model, estimated across M sequences being per-
formed concurrently, weighted by some measure of inter-player
dependence, given in Eq. 5.

M
PO,) = xSt ®)
k=1

In the multivariate model, 95;') represents the state distribution
of stream 4 in canonical form and the matrix S ) gives the proba-
bility of a transition from the n*" state in stream 4, to the (n+1)"
state in stream k, as demonstrated in Eq. 6. When k& = i, S
represents a standard univariate STM. The weights (o) in the
model represent the interdependence factor between streams ¢ and
k, which can be derived empirically.

2.1. Pulse Approximation

As demonstrated in Figure 1, the estimation of microtiming param-
eters in the current model relies on an isochronous grid () in order
to calculate differentials (G(i)) at any point in time (n). In single-
player streams this model works particularly well if a player has
performed the sequence to a click-track as we can use a metro-
nomic grid to approximate . However due to the nature of group
performance, it is relatively unlikely that the individual performers
will follow the same click track, unless the musicians are indepen-
dently contributing material to the musical piece. This trait is very
common in multitrack recording, but less common in group per-
formance. Using a metronomic model, we can represent the grid
using Eq. 8.

0 =i~ i,

where, t, = (n—1) (%) ®)

Where 7 represents a measurement of fixed tempo and ¢ is the
event generated by the it" performer. In order to adapt this method
for group performance, we need to estimate a global representation
of tempo within the musical group. We can provide a simplistic
model for this by taking the mean of the beat-spacings within each
bar, across all players using Eq. 9.
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P00 = 2[00 =z1)  p(0) = 2|0®) = )
p(g(w — z1|0(k> = ) p(g(w — 22|9(k) = 23)

PO = 2|0 = z1)
p(g(z) - ZK|9<k> = 2)

Uk — ©)
p(0© = 21|0" = zx)  p(0W = 22[0" = zx) p(0" = 2 |0®) = 2x)

i1={1,2,...,M}, k={1,2,...,M} (@)

events were subtracted using the technique defined in Eq. 8. The

mean tempo for the recordings was found to be 105.0 BPM, with

) 1 L&, ) N a standard deviation of 6.49. Figure 3 illustrates offset measure-

™= B Z Z(t") = (ta-1) ©) ments from all 15 takes, with the mean of the results represented

i=1 n=1

Where t; represents an event that falls on a beat location and B is
the number of beats in the bar. 7, then represents the estimated
tempo for the m'™ bar. This is now an estimated dynamic mea-
surement of temporal drift and is updated each time a new bar is
performed. The micro timing offsets are then subtracted from this
grid, using the technique defined in Eq. 8, replacing T with 7,,, and
interpolated for n.

2.2. Inter-Player Dependence

We model the interdependence (ay;,;) amongst performers in the
group using lagged cross-correlation, in which player ¢’s stream is
lagged by a pre-defined number of events (n) and correlated with
the stream of player j. This allows us to estimate the amount of de-
pendence that one player has on another. This technique has been
demonstrated by [9] to be optimal at a single event, suggesting that
players are highly receptive to short-term variations in accompani-
ment. This measurement is demonstrated in Eq 10.

N 1

> 606, (10)
k=0

Where n is a non-negative integer representing the number of events
to lag, set to 1 for this application.

1
Qi =

3. EXPERIMENT: STRING QUARTET MODELLING

In order to evaluate the performance of the model, we analyse a
professional quartet performing an excerpt from the 4" movement
of Hayden’s String Quartet Op. 74 No. 1 in C-Major, the score for
which is given in Figure 2. The quartet consisted of two violins, a
viola and a cello, and the excerpt was chosen due to the number of
notes being performed concurrently. The quartet have around 12
years experience performing together, and were shown by [9] to
follow the lead violin player relatively closely. The excerpt, con-
sisting of 12 bars was performed and recorded 15 times using the
same equipment and the musicians were asked to perform using
their natural expression. In total, each take contained 48 musical
events, all of which were being performed by all members of the
quartet at the same metrical positions in the bar.

Each player was recorded using an individual instrument mi-
crophone (DPA 4061), positioned on the body of each instrument
with a rubber mount in order to reduce bleed in the recordings.
The onsets from each player were then extracted using a spectral-
flux based technique, and adjusted manually to improve accuracy.
To find the microtiming offsets, the pulse was estimated at the be-
ginning of each bar using the method defined in Eq. 9 and the

in black. Here, deviations are shown across all four performers
playing concurrently.

Violin 1
Offset (ms)
o

Violin 2
t (m:
1

g -

1

- |
o

gge

‘

R

Viola
Offset (ms)
v
o
. }
‘i

L

(o2
al
o
©
w
3
n
&
N
a
n
o
©
@
@
N
il
N
o
IS
3

150
100 p ~ B
50 | ,

-50 al
-100}- i
~150 I I I I I I i
1 5 9 18 17 21 25 29 33 37 41 45 48

Event Num

Cello
Offset (ms)
o

Figure 3: A graphical representation of the microtiming deviation
(0) for all four performers. the measurements are taken across 15
takes of the same piece with the mean offset indicated in black, the
vertical lines represent bar divisions.

3.1. Subjective Evaluation

To evaluate the perceived naturalness of the model, subjective lis-
tening tests were conducted using a MUSHRA-based methodol-
ogy [10]. The subjects were asked to rank each of the samples
with a multi-stimulus interface and provide a rating between 0-
100 for how naturally expressive each sample was perceived to
be. Participants were informed that the experiments were based on
professional musicians and were played an excerpt from a string
quartet (not included in the stimuli) before the test began. In to-
tal 20 people participated in the experiment, all of whom were all
aged between 18-35 and had normal hearing. All participants had
some experience in performing or producing music.

The stimuli consisted of 25 versions of the same synthesised
polyphonic sequence, the score for which was taken from Haydn’s
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Figure 2: The score of the excerpt taken from Hayden’s Quartet Op. 74 No. 1 in C Major, in which 4 separate instrument parts are shown.

Quartet Op. 74 and synthesised using a string ensemble pre-set
from the Logic Studio 9 plug-in: EXS24 (Apple, CA, USA). The
sequences were compiled by generating MIDI note-on messages
and importing them into a sequencer. The MIDI was generated
using 5 different techniques, these can be categorised as follows'.

e Quantised: The note-on messages were quantised to a fixed
grid, thus exhibiting no temporal variation.

o Gaussian: Each of the note-on messages were modulated
using an independent Gaussian window.

e MC: The note-on messages for each channel were modu-
lated using a conditionally independent Markov chain.

e MVMC: The note-on messages are modulated using the MVMC

model presented in Eq. 5.

o Human: The onsets are taken from a dataset of human per-
formers.

In order to isolate microtiming deviation, other parameters
such as note-off and velocity were fixed to constant variables. The
length of each event was fixed to 1/4-note length and the global
tempo was varied across samples, bounded by measurements from
the dataset. To control the mean and variance of the micro tim-
ing deviations across conditions, the x4 and o parameters used to
characterise the distributions in the Gaussian method were derived
from the dataset of human performers. This meant that all tech-
niques were able to produce a similar range of 6 values.

4. RESULTS

4.1. Performance Analysis

From our observations of a string quartet performing 15 iterations
of a 12-bar of a piece in 4/4, we can identify characteristics of the
musical group by performing analysis on the data. Firstly, the max-
imum microtiming deviation was measured to be 198.02ms and
the minimum was -202.48ms. Overall the mean was 6.51ms, with
a SD of 2.65ms. As the mean tempo was observed to be 105BPM,
in 4/4 time signature, the maximum deviation was around 35.4%
and the mean deviation was around 1.2% of the inter-onset interval
dor1).

The dependencies between each performer in the group are
summarised in Eq. 11 and also shown using boxplots in Figure 4.
Both of these diagrams represent the variable « in the model.

0410 0.009 0.026  0.001
0.177 0.257 0.113  0.147
0.217  0.203 0320 0.175
0.007  0.151  0.072 0.181
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Figure 4: Boxplot representation of inter-player dependence mea-
sured over 15 takes. This is measured using a lagged cross-
correlation function.

Here it is evident that the most highly correlated measurements
taken from the data are based on lagged autocorrelation. This pro-
motes the use of Markov chains in musical performance modelling
as it suggests there is a strong relationship between an event (x,)
and it’s predecessor (x,—1) within the same stream. Generally, the
1% violin has very low correlation scores with the other musicians
in the group with a mean of 0.012 and a very high auto-correlation
measurement. This suggests that they have adopted the role of lead
performer. The other musicians in the group are generally more
positively correlated with each other. Here, both the 2nd Violin
and the viola player are following the lead violin, whilst the Cello
is following the 2nd violin. We can calculate a leadership metric
(lo) for each player by taking the column-wise means, excluding
the autocorrelation measurements at cell a;; where ¢ = j. This is
illustrated in Eq. 12.

lo ={ 01337 0.1210 0.0703 0.1077 }  (12)
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Figure 5: A boxplot showing subjective listening test results taken
from 20 subjects. The stimuli consisted of 5 samples taken from 5
categories (25 in total).

Here, it is evident that the 1st Violin has the highest degree of lead-
ership, reinforcing the suggestion that the performer has a leading
role within the group.

4.2. Model Evaluation

In order to evaluate the naturalness of the model, we performed
subjective tests to identify the similarity between the generated se-
quences and the performed sequences. The results from the subjec-
tive tests are illustrated in Figure 5. Here, it is evident that the mi-
crotiming sequences sampled from real musicians performed bet-
ter than any of the synthetic samples with a mean score of 77.59%.
The lowest scoring categories were Gaussian and Quantised mod-
els, which scored 22.33% and 21.42% respectively. The samples
that were generated using the proposed multivariate model scored
relatively highly with 63.39%, this was 21.94% higher than the
closest category, which was the univariate model suggested in [5].
This result shows that the multivariate model performs slightly
less favourably than using onsets taken directly from human per-
formers, however it outperforms all existing methods for univariate
modulation.

5. DISCUSSION

5.1. Model Performance

From the analysis of the string quartet, it is evident that the per-
formers all seem to have stronger lagged autocorrelation scores
(avij, where ¢ = j), than cross-correlation scores (i # 7). This
would suggest that the internal representation of time held by each
player takes priority over the external timings of group perfor-
mance. Whilst these autocorrelation scores are significantly higher
than the cross-correlation measurements, the performers still pro-
duce a sufficient amount of microtiming offset to cause potentially
audible phase errors in the piece. This suggests the model’s de-
pendence matrix () is a significant factor as both the univariate
model and the normally distributed model (with equivalent y and

o parameters) underperform at producing timing sequences with
natural expressivity. Subjectively, the multivariate model tends to
produce much more confluent sequences than any of the univariate
models running in parallel across multiple channels.

Whilst the subjective listening tests show an increased mean
score for the multivariate model, suggesting the model is able to
produce realistic musical sequences, there is a much higher vari-
ance than in other categories. This means there is uncertainty
within the results, with some participants rating the system as low
as 7/100. This is acceptable to an extent due to the relative uncer-
tainty in the human samples, however it suggests there is room for
improvement due to the inconsistency in results.

5.2. Implementation

Whilst we have demonstrated that the univariate models running
in parallel do not perform particularly well for this application,
the model allows for the conversion between univariate and mul-
tivariate methods by converting « to an identity matrix, imposing
conditional independence on all streams. Similarly, we can alter
the dependencies in « to change the characteristics of the musi-
cal group. If for example, the performance requires the group to
closely follow Violin 1, the values in column 1 can be incremented,
thus increasing the performers’ leadership score (). From an im-
plementation standpoint, this is relatively simple to parameterise
as users of the system can input values into the dependence matrix
directly or via some mapping function.

Another key aspect to producing natural sounding rhythmic
performance is tempo variation. In our listening tests, this was
based on existing templates taken from our dataset. In most hu-
manisation systems, this is ignored as control is generally main-
tained by the host application. For systems that wish to include
this attribute, another variable can be added directly to the sum
in Eq. 5, derived using the technique defined in Eq. 8. In the
performances measured for this study, the tempo variation has a
particularly high standard deviation due to the expressive nature of
the music. In other genres such as pop-music, this may not be as
important due to the prominence of quantisation and click-tracks.

6. CONCLUSION

In this paper, we have presented a model for the synchronous mod-
ulation of multiple streams of onsets using a multivariate Markov
model. The model derives parameters from a user-defined cor-
pus of multi-performer musical data and probabilistically applies
modulation to a group of concurrent sequences. We can estimate
the inter-player dependencies using lagged cross-correlation met-
ric and approximate the pulse of the group using the bar-wise mean
of all performers. The model is designed to alleviate the phase is-
sues that arise when humanisation algorithms are applied to mul-
tiple sequences simultaneously.

We have demonstrated that the model outperforms univariate
techniques including an instantaneous pseudorandom model and a
Markov chain model applied independently to multiple channels,
using data from a string quartet performing Haydn’s Quartet Op.
74 No. 1 in C-Major. Through subjective listening tests, we ob-
served an improvement of 21.94% accuracy on the closest syn-
thesized category when measured for naturalness of expression.
Whilst this was a significant improvement, sequences derived di-
rectly from human agents were still perceived to be more expres-
sive than the model, indicating the importance and complexity of
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the interdependence in multi-player musical performance that re-
quires further attention.
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ABSTRACT

This paper describes the implementation of a streaming spec-
tral processing system for realtime audio in a consumer-level on-
board GPU (Graphics Processing Unit) attached to an off-the-shelf
laptop computer. It explores the implementation of four processes:
standard phase vocoder analysis and synthesis, additive synthesis
and the sliding phase vocoder. These were developed under the
CUDA development environment as plugins for the Csound 6 au-
dio programming language. Following a detailed exposition of
the GPU code, results of performance tests are discussed for each
algorithm. They demonstrate that such a system is capable of real-
time audio, even under the restrictions imposed by a limited GPU
capability.

1. INTRODUCTION

Graphics Processing Units (GPUs) have been used for audio pro-

cessing in a variety of environments. Typically, they have been em-

ployed as co-processors in systems where their massively parallel

architectures can be harnessed for signal processing programs|[1].

There is now a significant number of reports in the literature demon-
strating their use in the implementation of various algorithms, such

as Ray Tracing [2], Wave-based Modelling [3], SMS[4], Finite

Difference Physical Models[5], to cite but a few.

In this paper we investigate the use of off-the-shelf consumer-
level GPUs for the implementation of frequency-domain audio
processing. In such a scenario, we do not have a separate dedi-
cated co-processor, but rely solely on the on-board GPU that is also
driving the video graphics subsystem. Our goal was to study and
implement efficient algorithms that could overcome the limitations
of the given hardware and possibly deliver realtime performance.
In particular, we are interested in developing applications that can
be employed by users without the need for specialised hardware
setups. Finally, we also envisage that such implementations can,
in a second stage, be applied to dedicated co-processor systems in
high-performance computing applications.

The processes implemented in this paper involve separate Phase
Vocoder (PV) analysis and synthesis, Additive synthesis from PV
data, and a Sliding PV (SPV) algorithm-based frequency domain
effect[6].

1.1. Environment and toolset

The chosen environment involved a NVIDIA GT650M GPU, with
1024MB VRAM (see Table 1), running on OSX10.9. The chosen
parallel development toolset was CUDA 5.5[7], running in con-
juction with the LLVM/Clang C/C++ compiler, with Csound 6.02
as the host for the processing plugins. The choice of environment
was dictated by two concerns: a good match for the target hard-
ware, which CUDA is, and on the hosting side, a well-developed
environment for testing of audio programs, which is provided by
Csound[8] version 6[9].

Table 1: Some specifications for the target GPU

cores 384
clock speed 900 MHz
VRAM 1024MB
compute capability 3.0
max threads/block 1024
bandwidth 80 GB/s
multiprocessors 2
cores per multiprocessor 192

2. PROGRAMMING MODEL

The programming model supported by CUDA abstracts the GPU
processors into a hierarchy of threads, blocks, and grids. At the
lowest level, we have separate threads that can be grouped into
blocks. A grid is a collection of blocks.

Each thread in a block can be given a one, two or three di-
mensional index, to facilitate computation across vectors, matrices
or volumes. All threads in a block live on the same multiproces-
sor, execute in parallel and can share fast memory. Blocks can be
scheduled in parallel in separate multiprocessors. There is an up-
per limit in the number of threads in a block, which depends on
the compute capability of the hardware used, and in the case of the
GT650M is 1024, as shown in Table 1.

Each thread has a local memory space, and can access shared
memory within its block. All threads have also access to global
device memory. The fast shared memory is very limited in size,
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but has a higher bandwidth and lower latency than global memory.
Any memory transfers between host (CPU) and device (GPU) are
costly and should be minimised.

Thread execution is grouped in warps, which contains 32 threads.
For full efficiency, it is advised that all threads in a warp have a sin-
gle execution path. Divergence via conditional branches will force
each branch to be executed serially until these converge back into
the same path. For this reason, it is important to minimise diver-
gent conditionals in the GPU code.

The code executed by a thread is provided in a unit called a
kernel. For all practical purposes, this is a C/C++ function (de-
fined by the CUDA attribute __global__ ) that is designed to
run in multiple copies, concurrently. The CUDA programming ex-
tensions provide a simple syntax to launch a grid of threads based
on a given kernel, with a certain number of blocks and threads per
block.

CUDA programming assumes a heterogenous programming
model, where a host is responsible for allocating and managing
device memory, including data transfers, as well as scheduling the
parallel execution on the device. Under this model, serial sections
of code, running on the host, are interspersed with parallel ones
running in the GPU. This is illustrated by Figure 1.

v

host (single thread)

v

device
(N threads in M blocks)

v

host (single thread)

v

Figure 1: Heterogenous programming model

3. STREAMING SPECTRAL PROCESSING

Spectral processing is said to be streaming when time domain data
is being windowed and transformed in a continuous fashion from
an input signal (such as a realtime stream from an analogue-to-
digital converter), producing a frequency domain signal of ordered
frames at a given rate [10]. This is opposed to the case where
all the input data is available for processing at once, and is more
restrictive in terms of designing parallel implementations.
Typically, windows will be placed at a constant hopsize, and
new output data is produced at a decimated rate, but there are
also algorithms for sample-by-sample output, such as the sliding
DFT[11], which is used in one of the cases studied. Thus, in the

most common cases, we would only need to process spectral data
at a reduced rate. This allows us to design a program that will use
the GPU as a co-processor to compute the spectral data. The gran-
ularity of such process is then set to hopsize samples. This is the
basic layout of the code discussed in the following sections.

3.1. Integration with Csound

The code discussed in this paper is hosted in Csound 6 as plu-
gin opcodes (unit generators). Processing is done in vectors of
ksmps samples, which can be set to any value above 1, with the
upper value determined by the analysis hopsize in the case of the
standard PV algorithms (no such limit applies to SPV). The PV
analysis, synthesis and additive synthesis opcodes work with fre-
quency domain signals (defined by the £sig Csound type), as well
as the usual time-domain audio (and control signals). Thus, GPU
processing is invoked every hopsize samples, in the case of these
algorithms. The SPV implementation works solely with audio sig-
nals (as it packages analysis, transformation and synthesis in one
single unit generator). It operates in fixed-size batches of 512 sam-
ples, which provide the best compromise in terms of performance
and latency.

3.2. Phase Vocoder Analysis

The steps involved in PV Analysis are detailed in Figure 2 [12].
At the interval of hopsize samples, we window and rotate an input
frame of time-domain data and apply a DFT to it. To obtain the
PV data in a flexible amplitude + frequency (Hz) format, we then
apply a conversion operation that takes the data from rectangular
to polar representations and calculates the one-frame phase differ-
ence at each bin, then converts it from radians per hopsize samples
to cycles per second.

waveform in
—>

apply window &
rotate samples

v

DFT

v

PV frame out

rectangular
Al
I to polar ¢ rad/hs to Hz IH

Figure 2: PV analysis

These three operations are good candidates for GPU co-processi
as they can be parallelised. The window and rotation operations
affect each sample separately, so they can be implemented in very
simple kernels.

__global___ void
rotatewin (floatx out, float=* in,
int N, int offset) {
int k = threadIdx.x +
blockIdx.x*blockDim.x;
out [ (k+toffset)$N] = win[k]*in[k];

float xwin,
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In the code above k is the thread index, which is used to ac-
cess a given sample in the input and output frames, N is the DFT
size and of £ set is the rotation offset, that depends on the current
frame index and the hopsize. The kernel is made transparent to de-
ployment on any number of blocks, so that decision of how many
threads per block can be made separately (or even dynamically).

Similarly, the conversion to PV parameters is eminently paral-
lel, dealing with each bin separately. Since 0Hz does not need to be
processed, we offset the thread index to start from bin 1. Compu-
tation is done in double precision, but PV data is stored as single-
precision values following the convention for fsigs in Csound.

__device__ double modTwoPi (double x)
{
x = fmod (x, TWOPI) ;
return x <= -PI ? x + TWOPI
(x > PI 2?2 x — TWOPI : x);

__global__ void
topvs (float* frame, doublex oldph,
double scal, double fac) {
int k = threadIdx.x +
blockIdx.x*blockDim.x + 1;

int 1 = k << 1;

float re = frame([i], im = frame[i+1];
float mag = sqgrtf(rexre + imxim);
double phi = atan2(im, re);

double delta = phi - oldphlk-1];
oldph[k-1] = phi;

frame[i] = mag;

frame[i+1] = (float)

( (modTwoPi (delta) + kxscal)xfac);

Finally, the DFT is implemented using the CUDAFFT library
cufftExecR2C () function, which is optimised to run on the
GPU hardware. Processing from real to complex data is in place,
in the format expected by the windowing and rotation, and PV
conversion kernels. This simplifies the memory handling, as there
is only the need to copy the input data to the GPU and copy the
PV output back to the host once. This is the minimum necessary
data transfer to and from the device. The location of the frame,
waveform, and phase history data is not defined in the kernel code,
but in the current implementation, global device memory is used.
Shared memory cannot be used for two reasons: in the case of
waveform and frame data, it would require access to shared mem-
ory pointers by the host which is not available; and in the case of
phase history, it would break the unit generator reentrancy condi-
tion.

In summary, we have the following sequential steps performed
at each hopsize interval:

1. A frame of waveform samples is copied to the device

2. A kernel of N threads running rotatewin () is launched
3. DFT is performed with cuf ftExecR2C ()

4. A kernel of N/2-1 threads running topvs () is launched.
5. A frame of amp + frequency data is copied from the device

Around this GPU-specific code, the host takes care of collect-
ing the input samples into the waveform frames that will be sent to
the device, as well as making the output frequency-domain signal
available to the rest of Csound.

3.3. Phase Vocoder Synthesis

PV synthesis basically re-trace the steps of analysis in reverse (Fig-
ure 3). As before, we have three highly parallel steps. The con-
version from PVS parameters into rectangular spectral data is pro-
vided by the following kernel:

__global__ void
frompvs (float+ inframe, doublex lastph,
double scal, double fac) {
int k = threadIdx.x +
blockIdx.x*blockDim.x + 1;
int 1 = k << 1;
float mag = inframel[i];
double delta = (inframe[i+1]
- kxscal) xfac;
double phi = fmod(lastph[k-1]
+ delta, TWOPI);

lastph[k-1] = phi;
inframe[i] = (float) (mag*cos(phi));
inframe[i+1] = (float) (mag*sin(phi));
}
PV frame in polar to

Hz to rad/hs = 2o rectangular

v
IDFT

rotate samples

& apply window | waveform out

Figure 3: PV synthesis

Rotation and windowing is, as in the analysis case, very straight-
forward:

__global___ void
winrotate (float* out, floatx in, float =*win,
int blocks, int N, int offset) {
int k = threadIdx.x +
blockIdx.x+xblockDim.x;
out [k] = win[k]*in[ (k+offset)%N];

The steps involved in PV synthesis are:

1. A frame of PV data is copied to the device

A kernel of N/2-1 threads running f rompvs () is launched.
Inverse DFT is performed with cuf ftExecC2R ()

A kernel of N threads running winrotate () is launched

ok wN

A frame of waveform samples is copied from the device

3.4. Additive Synthesis

At face value, additive synthesis appears to be a very suitable tech-
nique for GPU implementation, given the fact that it is based on
generating independently-computed sinusoidal streams and mix-
ing them together. However, in practice there are some issues that
need to be solved, namely
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e a suitable sinusoidal oscillator design

® memory use/access

For full-spectrum synthesis using all the analysis data, we use
two steps, both involving independent computations, which can be
parallelised: an oscillator bank, and the parameter update.

In designing the oscillator that will be used we have to con-
sider in particular the fact that conditionals are very costly in GPU
code (as discussed above). A standard table lookup oscillator with
floating-point indexing is not very efficient because of the condi-
tional checks and moduli operations for index bounds. An alter-
native is to use integer indexing and with fast wrap-around using
bitmasks. In addition, we have observed that table memory access
has an inherent cost (even if the table is loaded to shared mem-
ory, which has the fastest access), and direct use of trigonometric
functions is about 23% faster.

The most problematic issue with additive synthesis on the GPU
is memory access, which can take up a significant amount of the
total process time. Additive synthesis, in comparison to PV syn-
thesis, can be relatively memory-hungry. For example, it requires
aminimum of N x H floating-point numbers, where N is the num-
ber of bins and H the hopsize. For the full reconstruction of a
2048-point analysis (1024 bins), hopping by 256 samples, we have
a IMB memory requirement for single-precision samples. This
memory would need to be accessed twice by the device: for writ-
ing by each oscillator, and for reading at a mixdown stage. In this
particular case, memory access costs can amount to almost 70% of
the total computation time. Reducing the hopsize does not mitigate
the problem, because it will increase the number of times a given
kernel executes. A solution is to use atomic additions, if these are
available and sufficiently fast. In this case, the mix down of each
sample can be at the time of the sample generation, and no further
memory access is required. In the cases where atomic operations
are costly, then we will need to write every partial to memory first,
and, in a second sequential step, mix all of them down (in parallel).
CUDA offers a very efficient atomic addition for float samples, so
we can take advantage of it.

%V frame

in parallel oscillator bank

waveform
out

update
amps & phases

Figure 4: Additive synthesis

Of course, is always possible to synthesise a smaller number of
bins, which would reduce both memory access and raw computa-
tion. In any case, each sample of each partial can be independently
calculated (see [13]). For this we can spawn N x H kernels, each
contributing a single sample to their respective partial, in effect
parallelising across bins and samples. The additive synthesiser as
implemented here is shown on Figure 4. The kernel used compute
each sample is shown below:

#define MAXNDX ( (MYFLT) 0x40000000)
#define PHMASK  Ox3FFFFFFF

__global___ void sample (float =out,

float xframe, float pitch,
int64_t xph, float xamps,
int bins, int wvsize, MYFLT sr) {

int t = (threadIdx.x +
blockIdx.x*blockDim.x) ;
int n = t%vsize;

int h = t/vsize;
int k = h<<1;
int64_t 1ph;
float a = amps[h], ascl = ((float)n)/vsize;
MYFLT fscal = pitchxMAXNDX/sr;
lph = (ph[h] + (int64_t)

(nxround (frame[k+1]xfscal))) & PHMASK;
a += asclx (framel[k] - a);
atomicAdd (&out [n],

axsinf ((2«PIxlph) /FMAXLEN)) ;

It takes in single-precision amplitudes and frequencies in a PV-
format frame, which has been copied from the host into the de-
vice, and writes its output sine wave to out, For sake of efficiency,
we interpolate amplitudes linearly, but frequencies only change at
hopsize intervals. Output memory is accessed via an atomic ad-
dition. The layout of kernels with respect to bins and samples is
shown in 5.

0 | 1 H-1
H | H+1 2H-1

bins

(N-1)H I(N-l)H+1 - NH-1

H samples

Figure 5: Layout of kernels for additive synthesis

The synthesis expression for each kernel is given by

Shn (1) = {ah(t 1)+ [an(t) — an(t — 1) %} )
sin(on(t) + wn(t)n)

where h and n are the bin and sample indexes, respectively,
H is the hopsize, and ¢ is the time in hopsize samples. The bin
amplitudes are found in ax(t) and wp(t) = 27rf’}—it> are the bin
frequencies (with f as the sampling rate and f}, the bin frequency
in Hz).

A separate second step is needed to update the synthesis pa-
rameters for each bin (amplitudes and oscillator phases). The phases
¢n (t) are updated according to:

Sn(t+1) = on(t) +wn(t)H ®)

and the amplitudes are updated directly from the input PV
frames. This operation is parallel across bins:

__global__ void update (float *frame,
float *amps, int64_t =xph,
int vsize, MYFLT sr) {
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int h = threadIdx.x
+ blockIdx.x+xblockDim.x;
int k = h << 1, 1i;
ph[h] = (ph[h] + (int64_t)
(vsizexround (pitch*frame [k+1] *MAXNDX/sr)))
& PHMASK;
amps [h] = framel[k];
}

The memory transfer from device to host that follows the ex-
ecution of these kernels is limited to a hopsize vector of floating-
point samples.

3.5. Sliding Phase Vocoder

If the hopsize is set to its smallest value, 1, the process can be
seen in another way. The advantages and drawbacks are described
elsewhere[6], but the algorithm is highly parallel. This can be seen
as the extreme case for phase vocoding, but it offers possibilities
for use of the GPU architecture.

3.5.1. The Underlying Mathematics

The Discrete Fourier Transform (DST) is defined by the formula

Ft(’l’b) _ fj+t672ﬂ'i]‘n/N (3)
=0

where the PCM-coded input signal is f:, and F3(n) are the n fre-
quency (complex) amplitudes for time ¢, and N is the (assumed)
cyclic period of the signal.

If we know the values F;(n) we can determine Fi11(n):

N—-1
Fiti(n) = Z fk+t+1€72m;€% 4)
k=0
N .
=Y fepe 20 5)
k=1
N-1 . ,
_ fk+tef27rzkﬁ _ ft +ft+N) 6271'7,W (6)
k=0
= (Fy(n) — fe + fran) €N )

If the values of Fi(n) are kept on the GPU the need for data
transfer is much reduced, but we can make use of the transfer of
blocks of data for f: and fi4n at the expense of some latency.

There is however an immediate problem; the window cannot
be applied in the time domain. The solution in this case is to apply
the window as a frequency-domain convolution. That is to say, it
can be applied after the calculation of the DFT as multiplication
of the spectral transform of the window. Indeed for cosine-based
windows this operation is simple[14].

In the paper by Moorer ([15]) a complicated inverse formula
is developed. However it requires N2 data to be maintained and is
clearly impractical, especially on a memory-limited GPU. Instead
we use a direct calculation of the definition of the inverse DFT:

N-1

ft _ % Z Ft(n)€27ritn/N (8)

n=0

but as we only need consider one value of ¢ for each frame this is
more efficient than the formula would suggest. For a single point
t = 0 this simplifies to

N Fo(j) (&)
J

3.5.2. Implementation

A GPU-based Csound opcode was developed from the code in
[16], where we take an audio input, apply a Transformational FM
process[6] and resynthesise it. In this application, the sliding PV
allows the unique effect of audio-rate frequency modulation of
spectral data. The initialisation function is required to organise
CUDA memory for the bin data and the pre-calculate a number
of constants (e.g. ¢*™¥). The main processing is done in small
vectors of samples and it involves the following steps

1. A vector of samples is copied to the device

2. The sliding DFT is performed (on sample-by-sample basis),
in parallel across bins by N/2+1 s1ide () threads (where
N is the DFT size).

3. DFT to PV conversion, followed by frequency modifica-
tion, and finally, PV to DFT conversion is performed by
N/2+1 fmsyn () threads

4. Reconstruction is performed in parallel across the time-doma
samples by vectorsize reconstruct () kernels.

5. A vector of samples is copied from the device to the host

4. RESULTS AND DISCUSSION

In this section, we would like to demonstrate that it is possible
to execute all of the code discussed in realtime, with low-latency
wherever possible, which was the original requirement that we
have set out to prove. In testing these conditions, we employ a
soundfile as input to the process, and make the requirement for re-
altime that computation time is less than the duration of input data.
For a low-latency condition, we need to have the ratio between
computation time and input duration fairly small so that any sig-
nificant jitter in the computation load is not translated as dropped
samples (also known as xruns). Tests included running the code
to the digital-to-analog converter in realtime using buffer sizes of
128 frames (3ms at fs = 44100) without xruns, which can also
characterise a low-latency condition. Timings were taken from the
total computation time recorded by Csound, which lumps the se-
rial and parallel code, but since the interest here is the feasibility of
the system as whole, this is exactly what we want to measure. The
reported times are the average of five runs, but we have observed
very little deviation in the individual results. Below, we discuss
the individual results for each process.

4.1. PV analysis

The following Csound 6 code was used to test the PV analysis
process. It consists of a soundfile input, the GPU-run analysis
(cudanal) and a standard CPU-based PV synthesis (pvsynth,
also used to provide a means to check the correctness of the out-
put).
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/* soundfile input =*/
asig = diskin:a("flutec3.wav",1,0,1)

/* GPU PV analysis «/

fsig = cudanal (asig,
ifftsize,
ihopsize,

ifftsize, 1)
/* PV synthesis x/
asig = pvsynth (fsiqg)
asig = linenr(asig,0.005,0.01,0.01)
out (asigqg)

Table 2: GPU PV analysis program times for a 60-sec run.

(DFT size, hopsize) | time (secs)
(1024, 128) 2.95
(1024, 256) 1.68
(2048, 256) 2.20
(2048, 512) 1.28

For this algorithm, we have observed that the best performance
is obtained by maximising the number of threads in a block. Thus
we distribute the threads so that they fill the blocks completely,
up to the limit of 1024 threads. Since the number of threads is
determined by the DFT size, we will be using single blocks for
transforms of less than 1024 samples and multiple blocks above
this.

The times for a 60-sec run of the program with various com-
binations of DFT size and hopsize are shown in table 2. This indi-
cates that the best match in terms of performance is that of a 2048
transform every 512 samples. We can assess this as a generally
efficient performance, with timings more than 20 faster than the
realtime limit.

4.2. PV synthesis

Similarly to above, in order to isolate the performance of the syn-
thesis process, we employ a program that uses an analysis element
running in the CPU (pvsanal), followed by the GPU synthesis
code (cudasynth):

/* soundfile input */

asig = diskin:a("flutec3.wav",1,0,1)
/* PV analysis x/
fsig = pvsanal (asig,

ifftsize,

ihopsize,

ifftsize, 1)
/* GPU PV synthesis x/
asig = cudasynth (fsig)
asig = linenr(asig,0.005,0.01,0.01)
out (asig)

Results are shown in table 3. They also indicate a reasonable
performance, confirming the best combination of parameters ob-
tained in the analysis tests.

4.3. PV analysis & synthesis

Also interesting is the combination of GPU analysis and synthesis,
and following the results above, we can predict that they will be

Table 3: GPU PV synthesis program times for a 60-sec run.

(DFT size, hopsize) | time (secs)
(1024, 128) 3.30
(1024, 256) 1.84
(2048, 256) 2.65
(2048, 512) 1.44

well within realtime capabilities. This is the program used (and
the results are shown on Table 4):

/+ soundfile input =*/
asig = diskin:a("flutec3.wav",1,0,1)
/+* GPU PV analysis */
fsig = cudanal (asig,
ifftsize,
ihopsize,
ifftsize, 1)
/+ GPU PV synthesis */
asig = cudasynth (fsigqg)
asig = linenr(asig,0.005,0.01,0.01)
out (asigqg)

Table 4: GPU PV analysis & synthesis program times for a 60-sec
run.

(DFT size, hopsize) | time (secs)
(1024, 128) 472
(1024, 256) 2.57
(2048, 256) 3.03
(2048, 512) 1.73
(4096, 512) 1.98
(4096, 1024) 1.20
(8192, 1024) 1.64
(8192, 2048) 1.01

(16384, 2048) 1.38
(16384, 4096) 0.86

These results demonstrate that a full PV analysis/synthesis
program can be run quite efficiently on the GPU. However, if we
compare it to PV code run sequentially in a high-performance CPU
(in this case based on a 2.8GHZ Intel 17 processor), we see that it
does not compare too well (Table 5) unless the DFT size is sig-
nificantly large. Even though the scope of this research is not to
draw comparisons between CPU and GPU capabilities for audio
processing, it is important to note these results. The major short-
comings of the GPU for the particular processes discussed here are
to do with the costs involved in launching kernels in a reasonably
fine grain (determined by the hopsize), and memory access. If we
examine the sequential steps involving the GPU in the analysis or
synthesis code, we will see that these are the most costly portions
of the code (with their average computation load):

e memory transfers: 40 - 45%
e FFT:30-35%

e PV parameter conversion: 15 - 20%
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None of these issues are particularly avoidable as they are not
represented in sections of code that are good candidates for opti-
misation.

Table 5: CPU-based PV analysis & synthesis program times for a
60-sec run.

(DFT size, hopsize) | time (secs)
(1024, 128) 1.24
(1024, 256) 0.69
(2048, 256) 1.28
(2048, 512) 0.70
(4096, 512) 1.34
(4096, 1024) 0.74
(8192, 1024) 1.36
(8192, 2048) 0.75

(16384, 2048) 1.40
(16384, 4096) 0.77

Nevertheless, the results point to the fact that the GPU may
be used as a means of freeing up some computation load from the
CPU in a multicore/multiprocessor operation scenario. We also an-
ticipate a considerable speedup on more capable hardware, where
we are likely to see the GPU outperforming these CPU results.

4.4. Additive synthesis

In general, Additive synthesis does not perform as well as PV syn-
thesis, and in the parallel case there is still a significant difference
in performance between the two techniques, even if at times it is
the gap is considerably less than in the serial case. The program
used for tests is the following (cudasynth implements the addi-
tive algorithm):

asig = diskin:a("flutec3.wav",1,0,1)

fsig pvsanal (asig, ifftsize, ihopsize,
ifftsize, 1)

asig = cudasynth(fsig, 1,1, ibins)

asig = linenr(asig,0.001,0.01,0.01)

out (asigqg)

The results are shown in Table 6, with regards to bins and hop-
sizes (DFT sizes are shown for completion, but they do not influ-
ence computation load), with GPU and CPU times side-by-side. A
highly optimised serial additive synthesis algorithm was used for
this comparison, replacing the cudasynth opcode in the listing
above.

Overall, the performance is still well within the range for low-
latency realtime performance (< 12% of total input duration at the
worst case), Comparatively, additive synthesis proves to be a good
match for the GPU, especially in the case of full-spectrum recon-
struction, and with larger hopsizes. The parallel code performs
worse only in the case where the hopsize is small comparatively to
the number of bins. This is mostly due to the fact that, in this case,
the balance between the parallel load and the process granularity
is not ideal. We can observe that this makes an important contribu-
tion to the computation cost. The granularity penalty is shown by
comparing the cost of calling one grid of 65536 threads (256 bins,
256 hopsize) and two grids containing 32768 threads each (256,
128), where we observe almost 100% slowdown. This shows that

GPUs are more suited to larger batches of data, which is not ideal
in the streaming processing case.

Table 6: GPU additive synthesis program times for a 60-sec run.

(DFT size, bins, hopsize) | GPU time (secs) | CPU time (secs)
(1024, 128, 128) 493 3.28
(1024, 128, 256) 3.70 3.01
(1024, 256, 128) 7.20 5.77
(1024, 256, 256) 3.37 5.46
(1024, 512, 256) 4.20 10.76
(2048, 256, 512) 3.04 5.65
(2048, 512, 512) 3.94 10.55

(2048, 1024, 512) 6.87 20.89

These results are very encouraging, and follow other reports
of additive synthesis, such as [13], but are not as extremely per-
formant as one might anticipate (the best speed up is of the order
of 3) . However the conditions in our case are much more restric-
tive than in other tests. We have implemented here a fully-flexible
general-purpose application of additive synthesis, where we can-
not run the processing in large batches, or apply other cost-saving
measures that would maximise the GPU processing load. In partic-
ular, in order to keep latency and realtime control to a satisfactory
minimum, as well as have good reconstruction quality, process-
ing granularity is never bigger than 1/4 DFT size. We also should
note that the results obtained in [17] are more in line with the ones
reported in this paper.

4.5. Sliding PV

The sliding phase vocoder CUDA opcode (cudasliding) com-
bines analysis, frequency scaling and resynthesis. It was tested
with the Csound program

asig = diskin:a("flutec3.wav",1,0,1)
amod = 1
asig2 = cudasliding(asig,amod, idftsize)

asig = linenr(asig2,0.005,0.01,0.01)
out (asig)

and the performance compared with a similar program running

solely on the host computer CPU.

Table 7: GPU and CPU sliding PV program times for a 60-sec
run.

DFT size | GPU time (secs) | CPU time (secs)
512 33.05 68.794
1024 37.98 138.29
2048 54.99 272.33

The results are shown in Table 7. As can be seen that the
times using the GPU are within real time, but considerably slower
than the standard phase vocoder with GPU support (Table 4). The
figures also are slower than reported by [16] on different hardware
with more computing capacity. It also suggests that much more
work will be needed if the Sliding Constant-() algorithm[18] that
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needs three streams of SDFT to be calculated is to be available for
realtime on consumer-level GPUs.

In this paper, we set out to investigate the implementation of stream-

5. CONCLUSIONS

ing spectral processing operations in a consumer-level GPU at-
tached to an off-the-shelf desktop computer under a commonly-
used music programming environment, Csound. The full CUDA
source code for these unit generators, and a CMake build script,
can be found in the Csound git repository:

https://github.com/csound/csound. git

These opcodes are fully integrated into the standard system

and are included in the present release (6.03, April 2014).

We have demonstrated that each one of the processes detailed

here can be executed in realtime with low latency. The standard
algorithms can all generally be executed with good performance,
and, among these, additive synthesis is comparatively less effi-
cient, although the parallel version generally outperforms the se-
rial one. With the novel SPV process, we see significant gains,
with up to 5x speedup, where the improvements allow the code to
be used in realtime. We have identified that the major costs are re-
lated to memory transfers from host to device and vice-versa, and
device memory access. We believe that this work demonstrates
that consumer-level GPU processing can be harnessed for audio
applications. In particular a number of novel digital audio effects
can be designed to take advantage of the GPU implementation for
realtime performance.
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ABSTRACT

In this paper a novel algorithm for sound texture synthesis is pre-
sented. The goal of this algorithm is to produce new examples of
a given sampled texture, the synthesized textures being of any de-
sired duration. The algorithm is based on a montage approach to
synthesis in that the synthesized texture is made up of pieces of
the original sample concatenated together in a new sequence. This
montage approach preserves both the high level evolution and low
level detail of the original texture. Included in the algorithm is a
measure of uniqueness, which can be used for the identification
of regions in the original texture containing events that are atypi-
cal of the texture, and hence avoid their unnatural repetition at the
synthesis stage.

1. INTRODUCTION

Sound textures are a class of sounds typically associated with the
background of a scene that are somehow repetitive; for example
rain, fire, or machinery. It is difficult to define precisely the prop-
erties of sound textures. Saint-Arnaud and Popat [1] offered some
suggestions towards a working definition. They suggest that sound
textures should, in some sense ‘exhibit similar characteristics over
time’; that is that one short snippet of a texture should exhibit sim-
ilarities to another. They also suggest a two level description of
textures. At the low level atoms of the texture are time localized
sound elements, and the higher level describes the distribution of
these atoms. They note that while such an atomic model is some-
times relevant to the physics of the texture, e.g. rain, they do not
intend it as a general physical description. They give some points
summarizing their working definition of sound textures.

1. Sound textures are formed of basic sound elements, or atoms.

2. Atoms occur according to a higher-level pattern, which can
be periodic, random, or both.

3. The high-level characteristics must remain the same over
long time periods (which implies that there can be no com-
plex message).

4. The high-level pattern must be completely exposed within
a few seconds attention span.

5. High-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make a
good example of the random properties.

McDermott et al [2,3] suggest that given the temporal homo-
geneity of sound textures they can be characterized by time aver-
aged statistics. This approach was inspired by previous work on
image textures [4]. This hypothesis was tested by synthesizing
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various textures by imposing the statistics of a particular texture
on a white noise sample. The statistics used described the ampli-
tude envelopes of the textures after being passed through an au-
ditory filterbank. These statistics included the first four moments
of the envelopes, cross correlation between envelopes, and some
measures relating to the autocorrelation of each envelope. The
resulting synthesized sounds were not intended to be perceptually
accurate reproductions, rather they were meant to test their hypoth-
esis. They found that the synthesized sound textures could indeed
be identified.

These studies give important insights into the requirements
of a synthesis algorithm. There are many approaches to sound
texture synthesis (for a thorough review of the literature see [5]).
Broadly speaking, we can group these methods into model based
approaches where the signal is synthesized from model parame-
ters, and sampling or granular approaches where content from the
original signal is used in the synthesized signal.

For many applications, such as cinema and computer games,
realism of the synthesized sound is paramount. Sampling based
methods can bring realism as they contain elements of the target
sound. Some previous sampling based algorithms [6, 7] look for
points of change to segment texture signals, these segments are
then concatenated in a probabilistically determined sequence to
produce the synthesized texture. The algorithm of Dubnov et al.
[8] uses similarity in history and scale to select sampled wavelet
coefficients. Drawbacks of sampling based methods include repe-
titions of parts of the original signal, difficulty modeling the higher
level structure of the texture, and smooth concatenation of the sam-
pled elements.

The proposed algorithm falls into the sampling based category.
It looks to exploit regions of similarity in the original texture to in-
form the sequencing of sampled elements. There are two levels
to the synthesis model. Longer term sections, called segments,
are used to model the higher level structure of textures. These
segments are synthesized from the concatenation of shorter term
sections, called atoms. Atoms preserve the local structure of the
texture. The sequences of both the segments and atoms are mod-
eled probabilistically, this avoids repetition in the synthesized tex-
ture. A new overlap add method is introduced for concatenation.
This enables concatenation with short overlap without introducing
perceptible modulations.

The paper is organized as follows: Section 2 discusses the re-
lationship of the algorithm to the properties of sound textures out-
lined in section 1. Section 3 presents the basic algorithm in detail
while section 4 extends the algorithm to deal with unique events.
Section 5 presents some sound examples. Section 6 presents some
conclusions and possible future work.
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2. THE RELATIONSHIP OF THE MONTAGE
APPROACH TO SOUND TEXTURE PROPERTIES

As stated in the introduction, the montage approach to texture syn-
thesis has two levels; segments and atoms. Segments are used to
model the high level structure of the texture. By high level struc-
ture we mean features that determine the long term structure of a
texture such as quasi-periodicity (e.g. pneumatic drill) or random-
ness (e.g fire). At the lower level atoms preserve the local structure
of the segments.

Segments are modeled after longer sections of the texture. There
is not a set length for a segment, rather they have user defined min-
imum and maximum lengths. The length of each segment is de-
pendent on the selection of its successor. The sequencing of seg-
ments is informed by both local similarity for concatenation, and
longer term similarity for preserving higher level structure. This
sequencing has a probabilistic element to avoid repetition in the
higher level structure of the synthesized texture.

These segments are used as templates for the synthesized tex-
ture. The segments are synthesized by a process of atom substitu-
tion. The original texture is split into atoms. These atoms all have
the same user defined duration. For each atom a number of candi-
dates are selected as possible replacements. These candidates are
selected from throughout the texture based on the local similarity
of the envelopes from an auditory filterbank analysis. This ‘enve-
lope matching’ preserves the phase of envelope modulations in the
synthesized texture. The synthesis of segments consists of substi-
tuting each of the original atoms with one of its qualifying candi-
dates (including itself as one of the candidates). The selection of
substitutes is probabilistic. This process preserves local structure
and introduces new variation over the duration of the segment not
present in the original texture. This is to avoid repetition on the
atom scale in the synthesized texture.

The algorithm can be considered in terms of the properties of
sound textures suggested by Saint-Arnaud and Popat [1] quoted in
section 1.

e The presented model synthesizes textures from atoms.

e The high-level pattern of the atoms is preserved by sequenc-
ing them according to segments of the original texture. If
there is periodicity in the texture it can be reproduced be-
cause the atoms will be aligned according to the original
texture, this effectively matches the phase of the envelopes.
Likewise randomness is maintained by randomizing both
the selection of segments from the candidate successors and
the choice of atom from the candidates for substitution.

e New high level structure will be introduced due to the se-
quencing of segments. As the long-term similarity of seg-
ments are matched this new structure should be coherent
with the original texture.

The algorithm can also be considered in terms of the statistical
description of the envelopes suggested by McDermott in [3].

o If the segments are distributed approximately evenly over
the duration of the synthesis the moments of the envelopes
will be approximately equal to those of the original.

e As the atoms are sampled from the original texture the lo-
cal synchronicity of the envelope modulations is preserved.
This is related to cross correlation of the envelopes in Mc-
Dermott’s texture model.

e The matching of atoms over localized time and frequency,
the sequencing of atoms from segments of the original, and
the transitions based on history all relate to the autocorrela-
tion of the envelopes; the atom sequencing preserving local
modulations and the segment sequencing preserving/synthesi
longer term modulations.

3. THE ALGORITHM

In this section the algorithm for analysis and synthesis of textures
using the proposed approach is described. After the analysis phase
the choices for synthesis are tabulated; all possible segments have
candidates for their successors and each atom of the texture has
candidates for substitution.

3.1. Analysis

The analysis stage of the montage approach involves finding re-
gions in the texture that are in some way similar - this is necessary
both for the selection of candidates for segment succession and the
selection of candidates for atom substitution. The first step in the
analysis is to represent the signal in a suitable form. As ultimately
we are concerned with the perceptual closeness of the synthesized
signal to the original a perceptually informed representation of the
signal is utilized.

As much of the salient information in textures is contained in
the envelopes of the auditory bands [3], a suitable comparison for
similarity is taken to be a comparison of the time evolving energy
from an auditory filter bank. The short time Fourier transform is
a common and suitable processing platform, and so the algorithm
will be presented in the context of the STFT.

The STFT is given by:

z
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Where [ is the frame number, k is the frequency bin, N is the
analysis window length and £ is the hopsize.

Taking the envelopes to be the energies in subbands distributed
according to the ERB scale:

kb2
engEnuvy, (1) = Z |X (1, k)| Hy (K). ?2)
k=ky,
Where kp is the first bin and ko is the last bin of the bth band
and H is a bank of (frequency domain) band pass filters.

The envelopes then undergo further perceptual processing. The
perceived change in loudness with intensity approximately obeys
a power law. Hence the envelopes are compressed nonlinearly to
simulate this. Each band is also scaled according to the equal loud-
ness curve.

envy = (engEnuvy /L (f5))" 2. 3)

Where L is the loudness curve, f; is the centre frequency of the
bth band and 0.3 is an experimentally determined exponent [9].

This gives a perceptually informed time/frequency representa-
tion of the signal sampled at the rate of the STFT analysis. Here we
will refer to each time slice of both the STFT and the perceptually
processed STFT as a frame.

The next stage in the analysis divides this representation of the
signal into atoms. Each atom comprises several analysis frames
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Figure 1: Selection of candidates for an atom

and have a 50% overlap with neighboring atoms. The atoms should
be long enough to enable the comparison of envelopes and short
enough to ensure enough variation in the synthesized texture. In
our example set [10] we use 0.1s as the atom duration. This gives
us a time/frequency representation of each atom. Each of these
atoms undergoes further analysis; looking for similar regions over
the duration of the texture.

3.1.1. Candidates for Atom Substitution

For each atom a difference function is created. This difference
function gives us a measure of the difference between the atom
under consideration and the associated region of the texture. The
difference function for the ath atom at the Ith frame is given by:

da (1) =
VI S fenvy (L+ £) — envy (aF/2 + f))?
Vi Sl denun 1+ )Y

Where F' is the number of frames in an atom and the atoms have a
50% overlap, i.e. an atom hopsize of F' / 2. This difference function
is calculated at intervals of a single frame. This difference measure
corresponds to the normalized euclidean distance between the au-
ditory envelopes of the atom and the auditory envelopes of the tex-
ture from the lth to | + F' — 1th frame.

A set of substitution candidates for each atom is selected from
local minima in the difference function. There is a minimum time
distance between selected candidates, dependent on the number
of candidates to be selected. This is to ensure that candidates are
selected from across the duration of the analyzed texture. This
can be important for the selection of segments successors, as the
candidates for substitution will also be considered as candidates
for segment successors, and for this purpose it is desirable to have
candidates spread over the duration of the texture.

An example of a difference function and candidates for a sin-
gle atom of a texture are shown in Figure 1 for a helicopter sample
(available to listen to at [10]). This is a quasi periodic texture, and
this example illustrates how periodicity of events can be preserved
with this model. Note that the envelope of the candidates is in
phase with the envelope of the original atom. It is not necessary to

Figure 2: Transition from reading one segment to starting another

retain the difference function after the analysis of an atom. Once
the candidates for substitution are tabulated the difference func-
tion can be discarded. The result of the atom analysis is a list of
pointers to the addresses in the original STFT of candidates for
substitution and a normalized difference value for each of the can-
didates.

3.1.2. Candidates for Segment Successors

During synthesis segment succession occurs by substituting the
last atom of the current segment with the beginning of its suc-
cessor. And so each atom will be considered as a potential end
of a segment and its candidates for substitution as a potential be-
ginning for a succeeding segment. For segments, as well as the
local similarity from the atom analysis, a longer term compari-
son is used. This is termed the history for the segment. Hence, a
history comparison is also made between each atom and its candi-
dates for substitution. This will be used to judge the possibility of
a segment succession at the location of the atom during synthesis.
No difference function is created as the history is only calculated
for already found atom candidates.

As each segment has a minimum and maximum duration, the
succeeding segment will begin between these points (see section
3.2.1). And so in the analysis phase each atom in this range is con-
sidered as a possible transition point from the current segment to
its successor. This can be considered as a moving window anal-
ysis, the window length being the maximum minus the minimum
duration of a segment. An example of a subset of possible segment
succession points found for a texture is illustrated in Figure 2. For
each step in this analysis there are typically many candidates. For
example, for a single instance of this analysis if the difference be-
tween the minimum and maximum length between transitions is
1.5 seconds, and there are 20 atoms per second and 10 candidates
per atom then there are 300 candidate points to consider as possi-
ble transition points. Only the succession points with the lowest
measured difference are considered, again the selected succession
points spanning the duration of the texture. The outcome of the
succession analysis is a table of pointers for candidate segment
end points for the current segment, associated difference values,
and associated starting points for the next segment.

3.2. Synthesis

During synthesis the segment sequence is selected. From this the
sequence of atoms is derived. These atoms are concatenated in
the STFT domain before inverse Fourier transform and final over-
lap/add in the time domain are performed.
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Figure 3: Sequence of transition in synthesized texture vs origin in
original texture.

Figure 4: Sequence of atoms in synthesized texture vs origin in
original texture.

3.2.1. Sequence Model

Starting from a random point in the original texture the algorithm
selects successive segments from the candidates selected during
analysis. This high level navigation of the texture acts as a tem-
plate for the synthesized texture. There are some constraints on
the choice of succeeding segments:

1. A segment must be at least a minimum, user defined, length.
2. A segment has a maximum, user defined, length.

3. If the succeeding segment occurs some time before the cur-
rent segment in the original texture that time must be greater
than a user defined minimum (at least equal to the length of
the transition “history’).

The first constraint serves two functions: it prevents the syn-
thesized texture from jumping too much and it allows the candi-
dates for succeeding segments to be selected in the analysis phase.
The second constraint prevents keeping the same high level struc-
ture as the original for long periods. The third prevents repeating
parts of the high level structure in rapid succession.

Once a segment successor is selected the duration of the cur-
rent segment is determined. The atoms for this segment can then
be substituted probabilistically with the candidates selected during
analysis, each of the qualifying candidates given equal probability
of selection. A difference threshold can be used in the selection
of atom substitutes. This defines the maximum difference allowed
between atoms and possible switches. It was found that taking the
median value of the normalized difference of all the candidates for
all the atoms was an effective value for thresholding. An example
of the sequencing of transitions and substitutions is illustrated in
Figure 3 and 4.

The process of segment succession and atom substitution can
continue for any desired period of time, producing varied textures
which are perceptually similar to the original.

3.2.2. Overlap Add Operation

If we see the atoms as pieces of a jigsaw, the overlap-add operation
can be seen to be a way of squeezing in pieces similar to the origi-
nal into their place. Straightforward overlap-adding of broad band
noise leads to modulations due to phase interference. Here a new
solution to this problem is proposed. The cross fade of the atoms
is done in the STFT domain. The number of frames involved in
the cross fade is dependent on the bin number of the DFT (i.e. it is
frequency dependent). The cross fade region is taken to be 4 times
the inverse of the bin center frequency (i.e. 4 times the period),
with a maximum of half the number of frames in an atom and a
minimum of a single STFT frame. For bins with an overlap region
less than half an atom length the point of maximum cross fade (i.e.
50%) is positioned at the point of least interference. This point is
taken to be the point at which the absolute value of the complex
difference in the overlap region is minimum.

4. DEALING WITH UNIQUE EVENTS IN THE TEXTURE

Often sampled textures contain local events that are uncharacter-
istic of the long term texture. Such events can be due to a record-
ing artifact, an unwanted event in the recording, or a unique local
event that is part of the process creating the texture. At the syn-
thesis stage it may be desirable to avoid using atoms that contain
such unique events as their repetition may be noticeable and artifi-
cial sounding in the synthesized texture; highlighting the sampling
process and losing the naturalness of the synthesized texture.

Strobl [11] in a study of the concatenative algorithms of [6]
and [7] refers to such events as ’disturbing elements’, and proposes
to identify them manually. Here we propose a method for identi-
fying such elements that is a straightforward and natural extension
to the montage approach.

There are two basic steps to this algorithm; 1) identify the
unique region and 2) replace it with a qualifying piece of the tex-
ture. The replacement step allows the synthesis algorithm de-
scribed above to remain unchanged.

To identify events the difference measure obtained from 4 is
utilized as a measure of the uniqueness of atoms. After the initial
analysis stage each atom has a number of its closest matches from
throughout the texture. The difference between an atom and its
best match is taken to be a measure of its uniqueness.

A user defined parameter defines which atoms are to be re-
placed. This user parameter is a threshold and is stated as percent-
age of the maximum uniqueness found for the analyzed texture.

In order to find a region to replace the region selected as unique
we again use the difference value defined by 4. Here we use a sum
of the difference functions for the atoms adjacent to the selected
region. The difference function of the latter atom in the sum is
delayed by the appropriate time:

du (l) =da1 (1) + da2 (Il + (wu + 1) F/2). 5)

Where d., (1) is the difference function used for finding the best
match for the uth unique region, d, is the difference function
for the alth atom (the adjacent atom previous to the uth region)
and dg2 is the difference function for the a2th atom (the adjacent
atom following the uth region). The minimum of this function
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Figure 5: Example of identifying and replacing unique elements
in a sampled texture.

gives the closest matching region, according to our measure, to
replace the region identified as being unique. Once this region is
identified the analysis described in section 3.1.1 is performed for
the replacement atoms. Also, reference to the replaced atoms as
substitutes for other atoms should be removed. Synthesis can then
be performed as described in section 3.2.

An example of this is shown in figure 5. This is a recording of
a steam train which contains a single ‘click’ sound. This ‘click’ is
identified as the most unique region in the texture. For synthesis
it is replaced as described above. This method can also be used
to repair damaged recordings as is illustrated in figure 6. This il-
lustration shows the spectrograms of helicopter sample, the same
sample with a piece deleted, and the sample with the deleted piece
replaced using the above method. Note how the approximate pe-
riod of the events is preserved. The samples used to illustrate this
are available at [10].

5. RESULTS

The presented algorithm was used to synthesize both textures con-
taining quasi periodic elements and textures of a more random na-
ture. The synthesized samples are twice the duration of the origi-
nals. The original samples were taken from [3]. The details of the
synthesis for these sounds are as follows: the atom length was set
to 0.1 seconds, the history set to 0.5 secs, and the maximum dura-
tion before a new transition set to 2 seconds. 20 candidates were
selected for each atom, and 5 candidates selected for each transi-
tion. The transition candidates were selected by a simple sum of
the normalized distance of the atom (local) difference and differ-
ence in histories. These examples can be found at [10].

6. CONCLUSIONS

In this paper an efficient and versatile algorithm for sound texture
synthesis was presented. For efficient synthesis the atom and tran-
sition candidates can be tabulated from the analysis phase. Syn-
thesis is then a fairly straightforward overlap add procedure in
the STFT domain. The algorithm fulfills many requirements of a

i . | i
20 40 60 0 100 120 140 160 180 200

i
180 200

(b) With missing piece.

100 e e T T I ! =

| i
160 180 200

Eil a0 60 0 100 120 140

(c) Missing piece replaced.

Figure 6: Example of replacing a missing or damaged piece of a
sampled texture (quasi-periodic helicopter).

sound texture synthesis algorithm. At the low level the textures are
synthesized from atoms and these atoms are sequenced to model
the higher level organization of the original sound texture. Repeti-
tions are avoided by introducing randomness in the sequencing of
both the atoms and the segments, and smooth transitions are con-
structed by taking account of local similarity, longer history and a
new overlap/add method.

While there are a number of user defined parameters in this
algorithm, these parameters are not abstract, they have a natural
relationship with the synthesis.

For the atom analysis the STFT hopsize determines the tem-
poral resolution of the atom analysis, while the atom duration and
difference threshold for substitution affect the variation of the tim-
bre of the texture. For the segment sequencing the history length
defines the region in which to compare the context of the high level
structure, while the minimum and maximum length determine the
high level variation.

The synthesis examples ([10]) show that for a large class of
textures the synthesis is not extremely sensitive to these parame-
ters. However, if there are extended events or a lot of variation in
the original texture it may be beneficial to constrain the variation
in the synthesized texture, i.e. lower the difference threshold for
atom substitution and extend the history and minimum segment
length.

As well as texture synthesis the algorithm has applications to
editing textures, such as removing unique events or damaged por-
tions of a sampled texture. The results seem very promising for a
wide range of textures; from quasi periodic to random processes.
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ABSTRACT

The continuous wavelet transform (CWT) can be seen as a filter-
bank having logarithmic frequency subbands spacing similar to the
human auditory system. Thus, to make computers imitate the sig-
nificant functions of the human auditory system, one promising
approach would be to model, analyze and process magnitude spec-
trograms given by the CWT. To realize this approach, we must be
able to convert a processed or modified magnitude CWT spectro-
gram, which contains no information about the phase, into a time
domain signal specifically for those applications in which the aim
is to generate audio signals. To this end, this paper proposes a fast
algorithm for estimating the phase from a given magnitude CWT
spectrogram to reconstruct an audio signal. The experimental re-
sults revealed that the proposed algorithm was around 100 times
faster than a conventional algorithm, while the reconstructed sig-
nals obtained with the proposed algorithm had almost the same
audio quality as those obtained with the previous study.

1. INTRODUCTION

The continuous wavelet transform (CWT), also known as the
constant-Q transform, is used as a method for time-frequency anal-
ysis, which provides a time-frequency representation of a signal
with an equal resolution on a log-frequency scale (Fig. 1). The
human auditory filterbank is known to have an equal resolution on
a log-frequency scale as with the CWT particularly in a high fre-
quency band [1,2]. Thus, to let computers imitate the significant
functions of the human auditory system, one promising approach
would be to model, analyze and process spectrograms obtained by
the CWT (CWT spectrogram). In fact, recent studies (see [3-6])
have shown that multiple fundamental frequency estimation per-
forms very well in the magnitude CWT spectrogram domain. Mo-
tivated by this fact, we believe that source separation and sound
manipulation can also work well in the magnitude CWT spectro-
gram domain. However, in order to achieve source separation or
sound manipulation, in which the goal is to produce sound, there
is a need to reconstruct an appropriate time-domain signal after
processing and modifying a magnitude CWT spectrogram. To this
end, this paper proposes a method for estimating the phase from a
given magnitude CWT spectrogram to reconstruct an audio signal.

The phase estimation algorithm from a magnitude CWT spec-
trogram has already been proposed by Irino et al. [7]. Irino’s algo-
rithm consists in iteratively performing the inverse CWT and the
CWT followed by replacing the modified magnitude CWT spec-
trogram with a given magnitude CWT spectrogram. Since the

kameoka@hil.t.u-tokyo.ac.jp

ST
Time [s]
(b) STFT spectrogram.

2
Time [s]

(a) CWT spectrogram.

Figure 1: Examples of the continuous wavelet transform (CWT)
and short-time Fourier transform (STFT) spectrograms. While
STFT spectrograms have an equal resolution on a linear frequency
scale, CWT spectrograms have an equal resolution on a log-
frequency scale.

computational speed of the CWT is much slower than the short-
time Fourier transform (STFT), this algorithm needs a very long
time for computation. In practical situations, the reduction of the
computational complexity can be extremely important.

The authors and colleagues have thus far proposed a fast method
for estimating the phase from a magnitude STFT spectrogram [8].
When the hop-size is shorter than the frame length, the waveforms
in the overlapping segment of consecutive frames must be con-
sistent. This implies the fact that an STFT spectrogram is a re-
dundant representation. Thus, an STFT spectrogram must satisfy
a certain condition to ensure that it is associated with a time do-
main signal. We have referred to this condition as the consistency
condition. In [8], we have shown that the problem of estimating
the phase from a magnitude STFT spectrogram can be formulated
as the problem of optimizing the consistency criterion describing
how far an arbitrary complex array deviates from this condition.

It became clear that the deviced algorithm is equivalent to the
well-known algorithm proposed by Griffin et al., [9]. The formu-
lation derived from the concept of the spectrogram consistency has
provided a new insight into the Griffin’s algorithm, allowing us to
introduce a fast approximate algorithm and give a very intuitive
proof of the convergence of the algorithm. Since a CWT spectro-
gram is also a redundant representation of a signal [10], we may be
able to make the best use of the spectrogram consistency concept
to develop a fast approximate method for phase estimation from a
magnitude CWT spectrogram.

Following the idea proposed in [8], this paper derives an algo-
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Figure 2: Illustration of the spectrogram consistency concept for
the continuous wavelet transform (CWT).

rithm for estimating the phase from a magnitude CWT spectro-
gram. Sec. 2 formulates the phase estimation problem as an opti-
mization problem based on a consistency condition. Sec. 3 derives
an iterative algorithm for phase estimation based on an auxiliary
function approach, which turns out to be equivalent to the algo-
rithm proposed by Irino [7]. Our formulation gives a very clear
proof of the convergence of the algorithm, though it should be
noted that the proof of the convergence has already been given
in [10]. Sec. 4 describes a fast approximate method for computing
each iterative step of the proposed algorithm.

2. CWT SPECTROGRAM CONSISTENCY

2.1. Consistency condition

The scale parameter of the CWT corresponds to the period (the
reciprocal of the center frequency) of the wavelet basis function.
Here we consider discretizing the scale parameter such that the
center frequencies of the wavelet basis functions are uniformly
spaced on a log-frequency scale. Let the indices of the scale pa-
rameter and time shift parameter be denoted by / € [0,L—1] and
t € [0, T —1], respectively, and let the component of a CWT spec-
trogram associated with the /-th scale parameter a; > 0 (hereafter,
the /-th component) be denoted by s; = [s10, S115- - -, s,,T,l]T eCr.
Given a discrete-time signal f = [fy, fi,..., fr-1]' €F where ¥ :=
{f'€C"; %, f/ = 0}, its CWT spectrogram s = [s,s],...,s; 1€
CLT is defined as

s =Wf, (1)
where W e C'™T denotes the CWT matrix, defined as
Wo Yo Wi o Wira
Wi Yir-r Yo o Yir—
W=\ .|, W:=| . . e @
Wi Vg W2 oo Yo
Here, ¥y, = y(tA/a))/a; is a scaled mother wavelet with the

scale of @; and the time shift of tA, where A denotes the sam-
pling period of the time shift parameter and y(-) € C denotes the
mother wavelet satisfying the admissibility condition. Each row of
W, € C™T contains the wavelet basis function of scale a; with a
different time shift parameter. The inverse CWT can be defined by
the pseudo-inverse of W:

f=Wts, W= Wiw)"lwH, 3)

where " is used to denote the Hermitian transpose. This implic-
itly means that the inverse CWT is defined as the solution to the
following minimization problem:

W*s = argmin ||s — W13, 4)
feF

where || - ||, denotes the ¢? norm of a vector.

While the CWT spectrogram of an audio signal (i.e., a complex
vector that belongs to the subspace spanned by the column vec-
tors of W) will be mapped to itself by applying the inverse CWT
followed by the CWT, a complex vector that does not belong to
the subspace will not come back to the same point but will be pro-
jected onto the nearest point in the subspace. Thus, we can define
a condition for a complex vector to be “consistent” (in the sense
that it corresponds to a CWT spectrogram of a signal) as follows:

0LT =5 - WW+S, (5)

where 0,7 denotes an LT-dimensional zero vector. It is impor-
tant to note that when W is replaced with a matrix in which each
row is a basis function of the STFT, (5) becomes equivalent to the
consistency condition for an STFT spectrogram proposed in [8].

2.2. Phase estimation using spectrogram consistency

When given a magnitude CWT spectrogram a € [0, )T, we can
construct a signal by assigning phase ¢ € [-m,m)T to it to ob-
tain a complex spectrogram s, and applying the inverse CWT, i.e.,
W+s. Here, if we assign “inconsistent” phase to the given mag-
nitude spectrogram, the complex spectrogram s will not belong
to the signal subspace and so the spectrogram of the constructed
signal, WW+s, will be different from s. As we want to keep the
magnitude spectrogram of the constructed signal consistent with
the given magnitude spectrogram, we must find “consistent” phase
such that s satisfies the consistency condition.

2.3. Filter bank interpretation

To give a deeper insight into the consistency condition, we focus
on the filter bank interpretation of the CWT. The CWT of a signal
can be thought of as the output of a filter bank consisting of sub-
band filters whose impulse responses are given by the the scaled
mother wavelets. Now, by applying the T-point discrete Fourier
transform (DFT) to each block of (5), (5) can be written equiva-
lently as

0=8§-WWs, 6)
where
Wo
~ Wl n N TN ~
W=| . |, W=FWF}, W =Ww'w'Ww @
WL—l

Fr € C™T is the DFT matrix and - denotes the DFT of a variable.
Since W, is a circulant matrix, W, is diagonalized by Fr and F ?
The diagonal elements of W, represent the frequency response of
the [-th subband filter associated with the scale parameter ;. The
k-th diagonal element of (6) is explicitly written as

R 1 P
0=58y- I ; Yy 1S ks ®)
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where k € [0, T —1] denotes the angular frequency index, Cy is a
normalization constant, and * is used to denote the complex conju-
gate.

If the subbands of the filter bank overlap each other (more
precisely, if there exists a pair of channels such that the product
of their frequency responses is non-zero at every frequency), i.e.
Vk, Al # I, I/A/[,k&l’,k # 0, (5) becomes a nontrivial condition for a
complex vector s € CET to correspond to a consistent CWT spec-
trogram. Otherwise, all the elements of CLT trivially satisfy (5),
implying that the consistency condition cannot be used as a crite-
rion for phase estimation. Therefore, care must be taken in choos-
ing the quantization intervals of the scale parameter and the type
of the mother wavelet function. The Morlet [11], the log-normal
wavelet [4] and the wavelets used in the auditory wavelet trans-
form [7] satisfy the above requirement when the quantization inter-
vals of the scale parameter are appropriately chosen. We hereafter
assume to use a filter bank that satisfies Yk, Al # I, z/A/,,k(ﬁ,/,k # 0.

The requirement for the subbands of the CWT to overlap each
other is analogous to the requirement for the short time frames of
the STFT to overlap. The consistency condition of STFT spectro-
grams can be understood as implying that the waveforms within
the overlapping segment of consecutive frames must be consis-
tent [8]. The consistency condition of CWT spectrograms, on the
other hand, can be interpreted as implying that the outputs of adja-
cent channels within the overlapping subbands must be consistent.

3. PHASE ESTIMATION BASED ON CWT
SPECTROGRAM CONSISTENCY

3.1. Formulation of phase estimation problem

Assume that we are given a magnitude CWT spectrogram, ar-
ranged as a non-negative vector a € [0, )T, We would like
to estimate the phase of the given magnitude spectrogram such
that it meets the consistency condition. To allow for any vector
a € [0,00) T as the input, we consider finding a phase estimate
¢ € [-n,m)ET that minimizes the consistency criterion

I(¢) = lIs(a, $) - WW*s(a, )3, )
where s(a, ¢) denotes the estimated CWT spectrogram defined by
ei%o
el
s(a,$):=ac| . |. (10)
ejd)L.T-l

©® denotes the element-wise product. Z(¢) describes how far
s(a, ¢) deviates from the consistency condition. Namely, the more
consistent s(a, ¢) becomes, the smaller 7 (¢) becomes.

3.2. Iterative algorithm with auxiliary function approach

Unfortunately, the optimization problem of minimizing 7 (¢) with
respect to ¢ is difficult to solve analytically. However, we can
invoke the auxiliary function approach to derive an iterative algo-
rithm that searches for the estimate of ¢, as with [8]. To apply the
auxiliary function approach to the current optimization problem,
the first step is to construct an auxiliary function 7* (¢, §) satisfy-
ing 7(¢) = ming 7*(¢,§). We refer to § as an auxiliary variable.
It can then be shown that 7 (¢) is non-increasing under the updates
¢ « argmin, I*(¢,5) and § « argmin; 7" (@, §). The proof of this

Set of complex vectors with

the given magnitude CWT spectrogram CLT
S N

Set of discrete- N
time signals So -,

~ i
~ - -

/

Figure 3: Illustration of the iterative phase estimation algorithm.
The red and blue arrows correspond to (14) and (15).

shall be omitted owing to space limitations. Thus, 7 (¢, §) should
be designed as a function that can be minimized analytically with
respect to ¢ and §. Such a function can be constructed as follows.

Recall that the operator WW™ is an orthogonal projection onto
the subspace spanned by the column vectors of W and so WW*s
indicates the closest point in the subspace from s. Thus, we can
show that

I(¢) =min|ls(a, $) - W} (11)
feF
= min [s(a. ) - 515, (12)

where ‘W denotes the set of consistent CWT spectrograms (the
subspace spanned by the column vectors of W). Therefore, we can
confirm that

I°(9,5) := lIs(a, ) - 5|3, § €W, (13)

satisfies 7(¢) = mingew Z(4,5). (13) can thus be used as
an auxiliary function for 7(¢). We can thus monotonically de-
crease J(¢) by iteratively performing § < argming 7" (¢, ) and
¢ « argmin, I*(¢,5). Here, § « argmin; 7*(¢,5) and ¢ «
argming 7 (¢, §) can be written explicitly as

§ —WW's(a, ), (14)
¢ —/5, (15)

respectively, where Z denotes an operator that gives the arguments
of the components of a complex vector as a real vector in [, 7).

(14) means applying the inverse CWT followed by the CWT
to s(a, ¢). Here, when s(a, ¢) is already a complex vector corre-
sponding to a consistent spectrogram, this update simply becomes
§ « s(a,®). (15) means replacing the phase estimate ¢ with the
phase of §. A schematic illustration of these updates is shown in
Fig. 3. 7(¢) = O indicates that s(a, @) lies in the intersection of
the set of consistent CWT spectrograms and the set of complex
vectors that are equal to @ up to a phase factor.

3.3. Relation to previous work

The present algorithm is equivalent to an algorithm proposed by
Irino [7]. In addition, when W is replaced with a matrix in which
each row is a basis function of the STFT, the present algorithm
becomes equivalent to the phase estimation algorithm for a mag-
nitude STFT spectrogram proposed in [8].

DAFx-131



Proc. of the 17" Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Scale 1 Jﬂ

Scale 2

Scale 3 W

Scale 4

Frequency

Figure 4: Example of the frequency responses of different subband
filters (i.e., the scaled mother wavelets). The mother wavelet is the
log-normal wavelet [4].
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Figure 5: A circularly shifted version of G, ...,Gp.p-1 [12].

4. FAST PHASE ESTIMATION ALGORITHM

4.1. Fast approximate continuous wavelet transform

The CWT and the inverse CWT are computationally expensive
compared to the STFT and the inverse STFT. Here we briefly de-
scribe the fast approximate method for computing CWT proposed
in [12]. The proposed fast approximate CWT uses the fact that the
dominant part of the frequency response of each subband filter is
concentrated around its center frequency (as shown in Fig. 4), as
is common in many types of mother wavelets including the Morlet
and log-normal wavelets [4].

According to the filter bank interpretation of the CWT, the
CWT of an input signal, s; = [si0,..., s,,T,l]T = W,f, can
be computed by multiplying the DFT of the entire signal, i.e,
f = [fo, .. ,fr,l]T = Frf, by the frequency response of the /-
th subband, i.e., W, = diag(ff,g,...,%;7-1), and then computing
the inverse DFT of Wlf. This can be confirmed from

;= Wif = FRF W, FRFrf = FRW, f. (16)
Note that the second equality follows from the fact that the DFT

matrix Fr is a unitary matrix, i.e., F'/F; = Ir. Here, if we can
assume that the elements of {i;;}; are dominant within and near 0

outside the range k € [B,B+ D — 1] (0 < B,0 < D < T), we can
approximate s; reasonably well by using the elements of {iJ;, Fike
only within that range and neglecting the remaining elements. This
implies the possibility of computing an approximation of s; with a
lower computational cost.

For simplicity of notation, let us put G = i« fr. We are con-
cerned with computing an approximation of the full-band inverse
DFT of G Lk+

T-1
: 2kt

St = G[qkoffjT . (17)
=0

o~

As mentioned above, G, ..., G;r-1 can be approximately viewed
as a band-limited spectrum. In general, the inverse DFT of a band-
limited spectrum can be computed by taking the inverse DFT over
the finite support. In the time domain, this process corresponds
to downsampling the signal given by the “full-band” inverse DFT.
The proposed method uses this idea to approximate the inverse
DFT of the full-band spectrum Gy, ..., G;r-;. Now, if we choose
D such that T/D becomes an integer, we can approximate the
downsampled version of s;, by

B+D-1 B+D-1 .

~ : 2nkd - 27

Std = § Gie' ™o = Z Gue'™ T . (18)
k=B k=B

By comparing (17) and (18), we can confirm that
Syripya = S1a (d € 10,D - 1]), (19)

if we assume Gy =~ 0 outside the range k € [B, B+ D — 1]. Since
14 can be rewritten as

S

-1 D-1
- 27k B -y B - 2mkd
~ _ FE2r R )d _ 2n3d 4
S1d = Girspe\'D 5} = o5 g Giispe’ D, (20)
k=0

=~
I
o

we notice that §;, can be computed by multiplying the inverse DFT

of G 5,...,Gppip-1 by 54, Note that this is equivalent to com-
puting the inverse DFT of a circularly shifted version of G, (see
Fig. 5):

~ =0,...,B—-(n—-1)D-1
G[A,k — Gl,kﬂzD (k O’ s (}'l ) ) , (21)
Gigs-p (k=B—-m-1)D,...,D-1)
where 7 is an integer such that
B
n-1<—<n. 22)
D

We consider invoking the fast Fourier transform (FFT) algorithm
for computing the inverse DFT and so we assume the size D to
be a power of 2. Since D < T, the computational cost for com-
puting §j9, ..., 8, p-1 is obviously lower than that for computing
8105+ -5 SLT-1-

4.2. Fast phase estimation algorithm

The processes of bandlimiting and circular shifting can be repre-
sented by a matrix K:

K = |OBox0-50) Iy,
Ip_3, O(p-By)xB,

][Ong Ip ODX(T—D—B)] (23)

(i) Bandlimiting

(ii) Circular shifting
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where Ip and Opyp are the D X D identity matrix and the D x B
zero matrix. The downsampled version of s; obtained with the
abovementioned fast approximate CWT can be described as

5 = FIKW,Fr f. (24)

Similarly to the inverse CWT, the fast approximate version of
the inverse CWT can be defined by the pseudo-inverse matrix of
FiK W,Fr. Tt is important to note that convergence of the phase
estimation algorithm in which the CWT and inverse CWT steps
are replaced with the fast approximate versions is still guaranteed.

4.3. Time and space complexity

The computational costs for the CWT and the fast approximate
CWT mainly depend on the number of the points for the inverse
DFT. Since the computational complexity of the full band inverse
DFT is O(T log, T), the total computational complexity of the
CWTis O(T log, T + LT log, T). By contrast, the computational
complexity of the band-limited DFT is O(D log, D) and so the total
computational complexity is O(T log, T + Y= D, log, D;).

The space complexity of the proposed algorithm is small com-
pared to Irino’s algorithm [7]. When the signal length T is long
enough, the space complexity depends primarily on the size of
the CWT spectrogram. While the size of the CWT spectrogram
of Irino’s algorithm is LT, that of the proposed algorithm is only

21D

5. EXPERIMENTAL EVALUATIONS

5.1. First experiment: Computation time and audio quality
5.1.1. Experimental conditions

To evaluate the computation time and the audio quality of the re-
constructed signals by the phase estimation algorithms, we con-
ducted an objective experiment, and compared the proposed algo-
rithm with the Irino’s algorithm [7].

We used the magnitude CWT spectrograms of 16kHz-sampled
acoustic signals of the 113 male and 115 female speeches in the
ATR Japanese speech database A-set [13]. The FFT performs
faster for acoustic signals with a power of 2 length than those with
the other length, and the used signals were filled by O till each
length reached a power of 2. Phases were initialized randomly,
and both the algorithms were finished at 1000 iterations. As the
mother wavelet, we used the log-normal wavelet [4], which is de-
fined in the Fourier-transformed domain:

2
x (—(li‘;’) ) (@>0)

0 (w=0)

Jlw) = (25)

where w is an angular frequency and o is a standard deviation. o
was set at 0.02 and the analysis frequencies ranged 27.5 to 7040 Hz
with 20 cents interval (i.e. uniform interval in the log-frequency
domain). In the proposed algorithm, we computed the elements
within +30 around the central frequencies in the log-frequency
domain. The used computer had the Intel Xeon CPU E31245 (3.3
GHz) and a 32 GB RAM.

We employed the perceptual evaluation of speech quality
(PESQ) [14] as the evaluation measure for audio quality, which is
the world-standard objective evaluation measure for speech qual-
ity. It ranges —0.5 to 4.5 and speech quality is higher as the PESQ
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Figure 6: The averaged computation time per iteration with stan-
dard errors with respect to various signal lengths.

becomes larger. As an evaluation measure of the computation
speed, the computation time per iteration was used.

5.1.2. Results

The averaged PESQ with standard errors were 4.20 + 0.08 for the
Irino’s algorithm and 4.1 + 0.1 for the proposed algorithm. The
result indicates that the speech qualities of the reconstructed sig-
nals were high enough for practical use. The difference between
the Irino’s and proposed algorithms was negligible practically’.

Fig. 6 shows the results for the computation speed with respect
to the signal length, since the computational complexity of the al-
gorithms primarily depends on the signal length. The proposed
algorithm was around 100 times faster than the Irino’s algorithm
in the computation time. For example, the averaged computation
time per iteration by the Irino’s algorithm was around 10 s/iteration
for the 15 s signal. In contrast, that by the proposed algorithm was
around 0.1 s/iteration.

5.2. Second experiment: Relation between approximation ac-
curacy and audio quality

5.2.1. Experimental conditions

The proposed algorithm includes the approximation, and we next
evaluated the relation between the approximation accuracy and the
audio quality of the reconstructed signals. We used the 5 s from
30 s of 102 music audio files with 16 kHz sampling frequency in
the RWC music genre database [15]. As the mother wavelet, the
log-normal wavelet with o = 0.02 was chosen. The approxima-
tion accuracy of the proposed algorithm corresponds to the calcu-
lated range by the downsampling step, and we used the elements
within +Po (P = 1,2,3,5) around the central frequencies in the
log-frequency domain. The number of iterations was set at 500 for
the proposed algorithm and at 100 for the Irino’s algorithm. The
used computer had the Intel Core i3-2120 CPU (3.30 GHz) and a
8 GB RAM. The other experimental conditions were the same as
in Sec. 5.1.1.

An evaluation measure for audio quality was the objective dif-
ferential grade (ODG) by the perceptual evaluation of audio qual-

! Audio samples are available at http://hil.t.u-tokyo.ac.
jp/~nakamura/demo/fastCWT.html.
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Figure 7: Evolution of the averaged objective difference grades
with standard errors by perceptual evaluation of audio quality with
respect to the number of iterations for the proposed algorithms
with various approximations ([-Po, Po] (P = 1,2,3,5)) and the
Irino’s algorithm [7].
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Figure 8: Evolution of the objective difference grades by per-
ceptual evaluation of audio quality with respect to the computa-
tion time for the proposed algorithms with various approximations
([-Po, Po] (P =1,2,3,5)) and the Irino’s algorithm [7].

ity (PEAQ) [16]. It ranges —4 to 0, and the acoustic quality is
higher as the ODG becomes larger.

5.2.2. Results

Fig. 7 illustrates the averaged ODGs with standard errors. The
ODGs by the proposed algorithms with P = 3,5 were larger than
—2.0 after 100 iterations, and the results for P = 3,5 shows high
audio quality?. The results does not significantly differ from that
by the Irino’s algorithm in audio quality. We can thus say that the
proposed algorithm with around P > 3 reconstructs the acoustic
signals with almost the same audio quality as the Irino’s algorithm.

In a viewpoint of the computation speed, the computation time
becomes shorter as P is smaller. Fig. 8 shows the result for one of
the acoustic signals (RWC-MDB-G-2001 No. 1), and the ODGs
by the proposed algorithms quickly become higher than those by

2¢.f.) When the used audio signals were converted into MPEG-3 files
with 160 kbps, the averaged ODGs with standard errors were —3.68 +£0.03.

4.5
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Figure 9: Evolution of the perceptual evaluation of speech quality
and the computation time with respect to the proposed algorithms
with various approximations ([-Po, Po] (P = 1,2,3,5)) and the
Irino’s algorithm [7].

the Irino’s algorithm. The similar result for the speech signal
(fafsc110 in the ATR Japanese speech database A-set [13], the 7
s signal) was shown in Fig. 9. Therefore, we conclude that the
proposed algorithm with around P = 3 provides the reconstructed
signals with high audio quality in a reasonable computation time.

5.3. Demonstration of phase estimation

We demonstrate pitch transposition of acoustic signals to confirm
effectiveness of the proposed algorithm for sound manipulation.
When the analysis frequencies are located uniformly in the log-
frequency domain and Dy = Dy = --- = D;_; in the proposed
algorithm, we simply shift the components of the CWT spectro-
grams to the lower or higher analysis frequency components, and
the blank components by the move are filled by zero. However, the
shifts cause the mismatches of phases, and the use of the original
and zero phases leads to failure of the pitch transposition, hence
we need to use the phase estimation for synthesizing the pitch-
transposed acoustic signals. By the proposed algorithm, we ob-
tained the synthesized signals * as we expected.

6. CONCLUSION

‘We have proposed a fast and convergence-guaranteed algorithm of
the phase estimation by using the fast approximate CWT [12]. The
phase estimation problem has been formulated based on the con-
sistency condition, and the iterative algorithm has been derived by
applying the auxiliary function method, which is the same as the
Irino’s algorithm [7]. Furthermore, we show the requirement on
scale factors and mother wavelets for the phase estimation by using
the consistency condition. The experimental results have shown
that the proposed algorithm was about 100 times faster than the
algorithm provided in [7]. The audio quality of the reconstructed
signals for music and speech data was high enough for practical
use, and the difference between the results by the proposed algo-
rithm and the algorithm provided in [7] was negligible.

3The synthesized signals are available at http://hil.t.
u-tokyo.ac.jp/~nakamura/demo/fastCWT.html.
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We plan to combine the phase estimation with source separa-
tions for magnitude CWT spectrograms for music acoustic signal
manipulation such as conversions of chords, keys and scales. To
increase convenience, developing the online version of the pro-
posed algorithm is important.
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NUMERICAL SIMULATION OF STRING/BARRIER COLLISIONS: THE FRETBOARD.
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ABSTRACT

Collisions play a major role in various models of musicatins
ments; one particularly interesting case is that of theaguiet-
board, the subject of this paper. Here, the string is modetie
cluding effects of tension modulation, and the distribudeltiision

both with the fretboard and individual frets, and includbah ef-
fects of free string vibration, and under finger-stoppeddiitons,

requiring an additional collision model. In order to hanafieltiple

distributed nonlinearities simultaneously, a finite difflece time
domain method is developed, with a penalty potential athguior

a convenient model of collision within a Hamiltonian franuw;,

allowing for the construction of stable energy-conservingth-
ods. Implementation details are discussed, and simulagisults
are presented illustrating a variety of features of such deho

1. INTRODUCTION

Physical modeling synthesis to date has relied, mainly,ilon
ear models of distributed components, accompanied by pisiat
nonlinearities often related to excitation mechanismsHisas, for
example, models of the bow, hammer, or lip-reed interajtiSee,
e.g., [1] for an overview. In the pursuit of more realisticiad syn-
thesis, recent research has focused on inherent nontieeani the
distributed components themselves, beginning with th@dhuic-
tion of tension modulation effects in strings [2, 3, 4], skoave
effects in acoustic tubes [5], geometric nonlinearitiestimgs [6],

Alberto Torin

Acoustics and Audio Group
University of Edinburgh
Edinburgh, UK

s1164558@sms.ed.ac.uk

this paper. Here, a distributed view of the barrier is takeciud-
ing frets and the backing fretboard. Finite difference toloenain
methods are employed, with special attention paid to thbleno
of numerical stability, which is especially pronouncedeéhalue
to the inherently non-smooth form of the collision interant To
this end, a formalism based upon the use of an added poteaitii
lowing the use of a Hamiltonian framework, but permittingnso
spurious penetration of the string into the barrier is eryptb
The action of a stopping finger, in order to simulate finger r
tion against the fretboard, is also included here. The mbes
is complementary to that of Evangelista mentioned abovehah
here, string motion is taken to be perpendicular to the frattb—
in a full model, both polarizations need to be taken into acto
Finger plucking interactions have been described prelyeusee,
e.g., [20]

Section 2 presents a complete model of string vibratiol
a single polarization, including tension modulation effedis-
tributed collision against a barrier of arbitrary shape,lucking
excitation, as well as a further collision due to stopping éhger
against the fretboard. An energy analysis completes tltisose
Section 3 is a concise presentation of finite difference tlomain
construction, with a discussion of numerical stability;ivaad at
through an analogous energy analysis, and implementatoes,
and in particular a vector nonlinear equation to be solveshah
time step. Simulation results, illustrating various featuof such
a model, are presented in Section 4. Sound synthesis exaangl
available online abttp://www.ness-music.eu

and in 2D systems such as membranes and plates [7]. A distinct

form of distributed nonlinearity, and one which is of greigingf-
icance to models of strings is the contact between a diséribu
vibrating object with a rigid barrier.

The problem of the string in contact with a rigid barrier has
seen research in the realm of musical acoustics for almosha c
tury, going back to early investigations of Indian stringestru-
ments such as the sitar or tambura [8], and continuing torgeept
day, particularly using a geometric analysis for barridrsimpli-
fied forms [9, 10]. In practical sound synthesis applicatiamhere
the barrier may well be of a complex shape, and in musicalscou
tics investigations, more flexible methods have been eneglay-
cluding digital waveguides [11, 12, 13, 14, 15], modal tegbas
[16], and time-stepping methods such as finite differenceéhats
[11, 17, 14, 18].

The particular case of the interaction of a string with a,fret
modelled as a lumped barrier element, in order to emulatesfea
tic playing in fretted instruments such as the guitar hasbree
searched by Evangelista [12, 19], which is the case of isténe

* This work was supported by the European Research Coundgrun
grant number StG-2011-279068-NESS.

2. STRING MODEL

A model of constrained string vibration may be written in anec
pact form as

pOyu = Lu] + K[u] + Fe + Fe — Fs Q)

Here,u(x, t) is the transverse displacement of a string in a sir
polarization (assumed here to be perpendicular to a camistga
surface, to be described shortly), as a function of time 0 and
x € D = [0, L], whereL is string length when at rest. The stril
is of linear mass density kg/m, andd;: represents double parti
differentiation with respect to time See Figure 1. Because tr
model of a string is in a single polarization only, it is thzpable
of modelling only string plucks perpendicular to the freabtb—
which is a great simplification from the true situation, boeal-
lowing for an analysis of many of the important features afts
an instrument.

The linear operator is defined, in terms of its action on tf
functionw, as

Lu] = (T0zz — El0zzex — 200p0¢ + 201 p0¢zz) v (2)
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Figure 1: Diagram of string, of displacement(z, t), in contact
with a barrier b(x), as indicated in blue. An excitation force den-
sity F. is applied over a distributio., and a force density is
applied by a finger (indicated in green) over a distributipn A
collision force densityF. results at points of contact between the
string and barrier.

and describes the linear dynamics of the string, wheregbatif-
ferentiation with respect te is indicated byd,. The four terms
model, respectively, string tension, stiffness, freqyendependent
loss, and frequency-dependent loss. H@tes string tension, in
N, E is Young's modulus, in P4, is the string moment of inertia
(and equal tarr* /4, for a string of circular cross-section and ra-
diusr m), andoo ando; are loss parameters, which may be set
according to comparison with measured data. Such a linedeimo
is relatively standard in the musical acoustics literafuri¢h some
variation in the way in which the frequency-dependent lesss
are modelled [21, 22]).

The nonlinear operatdg is defined as

_ kA (/D (Gxu)2dw) Dzt

Klu] = oL
whereA is the string cross-sectional area ifi,rand describes ef-
fects of tension modulation in the string, giving rise toiatons
in pitch with excitation amplitude, or pitch glides; such adel
is due to Kirchhoff [23] and Carrier [24], and has seen extens
use in sound synthesis applications [2, 3, 4, 25]. This isracpa
ularly simple form of string nonlinearity—more realistiffexts,
including the generation of phantom partials [26, 6], mayobe
tained using a complete form which models the coupling betwe
transverse and longitudinal motion in the string.

The final three terms in (1) represent force densities due, re
spectively, to a plucking action, collision of the stringtlwithe
fretboard, and the stopping motion of a finger, and will bercfi
in the following sections.

@)

2.1. Excitation

A relatively simple model of excitation will be employed ber
namely that of a force density

]:e:gefe

where here,f.(t) is an applied force in N, and whekg (z) is
a distribution selecting the region of application of theigation
(chosen normalized, witlf, g. dz = 1, and perhaps as a Dirac
delta functiong.(xz) = §(z — z.), for a plucking point: = x.).
In some models of plucking excitation [27], a relatively sitio
form of excitation function is employed:
fp
_f (1 —cos(m(t—to)/tp)) to<t<t,
o= (3 " 3 @

This function is characterized by a small set of parametenrsely:
start timeto, durationt,,, and maximum forcg,.

One could go further here and specify a full model of
plucking finger, but as this is not the focus of this paper, alsd
because in general, the duration of a pluck is extremelytgbar
the order of 1-10 ms) the simple form above will be employed
in previous work on guitar synthesis [28]. More involved ratsd
are available—see, e.g., [29, 30].

2.2. TheFretboard

The string is assumed to vibrate above a rigid barrier of tite
b(z)—in the case of a fretboard, the function will include the-p
file of the board itself, as well as pointwise protuberanties frets
themselves). To this end, suppose that the function is ofdime
b(x) = bpack (x), almost everywhere, whetg,..(x) is a smooth
function representing the fretboard itself, in the abseofcéhe
frets. At locationse.,, m = 1,..., Nfre: at which theNy,.q:
frets are located, the function takes on the vah(es,) = b(;,:fe)t.
See Figure 1. '

The force densityF. acts upwards on the string, and may
defined in terms of a potential densiby. > 0 as

0.,
8t7]c

Fe where

ne=b—u (5)
The potentiaf. (7.) here is to be viewed as a penalty density,
tive whenever and wherever, the difference between the barri
height and string height is positive, implying interpeag&tn, and
thus repelling the string. A useful form of the penalty poind.
is of the form of a power lawp. = ®x (n.), where, for a value
or distributionp

a+1

Pk.o (p) = aiﬂ[ph [pl+ = % (p+ Ipl)

where K > 0, anda > 1. In simulation, the degree of inte
penetration can be controlled through a proper choic& aind
a—see Section 4.2. Note that, under this choice of the patet
F. = K[n.]%, and so this collision model is of a form simil;
to that seen in lumped models of impact, such as that of F
[31], and commonly used in models of striking action in maski
instruments [22, 32]; here, however, it is to be viewed as@n
proximation to an ideal elastic collision. The form in (5);itien
in terms of a potential, however, is more useful when it cotoe
simulation design—see Section 3.

2.3. Finger-stopping

Another separate collision which must be taken into accgouat
full articulated model of such a stringed instrument is thgom
of a stopping finger pressing the string against the fretgetr
board. This collision is slightly different from the casetbé bar-
rier/string collision described in the previous sectiontlze finger
must be permitted its own dynamics, including damping éfe
and is subject to external control. In this case, where thrgs
is assumed to move transverse to the fretboard, rubbintofmic
effects against the fret are not included—see [12].

For a lumped model of such a finger, the force dengity
now acting downward on the string from above, may be write

Fr=g9sfy
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Here,g; = g¢(x,t) is an externally specified function represent- the finger interaction, respectively, one has

ing the region of contact of the finger with the string at time
again chosen normalized, witf), g de = 1, and f; is the force
applied to the string, in N. The position of the fingey,, may be
described by
du
dtgf =fr—Jo
where here)M; is the finger mass, in kg, and whefe = fo(¢) is
an external force signal supplied by the player.

As in the case of the string/barrier collision, the intei@ct
force f; depends on a measurg of the relative displacement
between the string and finger at the stopping location:

My

. dcbf/dt

_ dnys -
T s/t

at !

an/gfudw—uf (6)
D

Here again®(ny) > 0 is a collision potential—now, however,
it is intended to model elastic deformation of the finger urttie
pressing action; the model here is identical to that of istyi

piano hammer, with losses taken into account, and undertaeon
uous excitation force. As in the case of the hammer, a chdice o
collision potentiald; = @, ., (1) is reasonable, where again
Ky > 0anday > 1. Also modelled here are losses, through a
function=f(ny) > 0. The model of Hunt and Crossley [33] is

appropriate here, with; = Ekap,8) where

= dn o
S=Ky,ap,Bf (77f) = 6fod_tf[77f}+

for some constangy > 0.

2.4. Energy Balance

System (1) includes three separate nonlinearities, duensidn

modulation, collision, and finger stopping, as well as nateaomous

time variation due to the finger-stopping distributign and thus
frequency-domain analysis will thus be of virtually no usede-
signing a numerical method. To this end, it is useful to pnese
energy balance for the system.

It may be easily verified, through the multiplication of (1) b
Oy, integrating over the domaiR, and employing integration by
parts, that the complete model described above satisfieseagye
balance of the form

s
E—*Der‘FgB @)

where here, at timg $(t) represents the total stored energy of the

system () is total dissipated powel3(¢) is input power, anés
represents energy supplied to the string at the boundaries-20
andx = L.

In particular,

H = HL+Hx +He+Hy
2 Q1+ 9y

B o= Pe+¥y

where, for the stored energy terms corresponding to lineggs
vibration, nonlinear string vibration, the collision in&etion, and

ET

N, = /B(ﬁtu)2+z(8wu)2+—(8mu)2 dz
p 2 2 2
EA 2
He = /Cbcdm
D
My (dug)?
o= (dt) Py

For the individual power loss term3; and; in the string and
finger, respectively, one has

A,

/ 2poo (8tu)2 + 2po1 (8mu)2 dx
D

dns\? -
Qy = <%) Er(ny)

For the supplied power terni8. and’3 from the excitation anc
stopping finger, respectively, one has

fe / geOru dx
D

d
ff/ udegy dx — %fo
> t

Be

B

The boundary power terf is given by

2
B = <T+ E—A (/ 8zudas) )&u@zu
2L D

—FEI (01u0zpat — Orpudgzu) — 2p018tu8mtu\§ié

In this study, boundary conditions are chosen as simply atipgd
(i.e.,u = Ozou = 0 atz = 0 andx = L), and thusB vanishes
identically.

Under unforced conditions (i.e., with no excitation forte
no applied finger stopping forcg), and no time variation of th
stopping finger distribution ), note thath > 0, andQ > 0, and
thus, for allt > 0

d—y’go —

7 0 < 9H(t) <9H(0)

and the system as a whole is dissipative. If, furthermorss le
not present (i.e., ibo = 01 = Z5 = 0), then the system is exact
lossless. Such an energy balance serves as a useful desigplpr
in arriving at numerically stable simulation methods. Seet®n
3.

3. TIME STEPPING METHODS

In this section, the basic techniques underlying the caostn
of time-domain finite difference schemes are presented cona
densed vectorized form. For a more expanded treatment bf
methods, see, e.g., [34], or, in the context of physical riogle
synthesis, [35].
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3.1. Grid Functionsand Difference Operators

The grid functionu;’, for integern > 0 andl = 0,..., N, rep-
resents an approximation to the functio(z, ¢) at timet = nk
andx = lh. Here,k is the time step (and; = 1/k is the sample
rate, chosen a priori), arfdis the grid spacing, chosen such that it
divides the lengtil evenly asN = L/h.

and the nonlinear operatéias
EAR

2L
Note the use of the time averaging operaterin (13) above, nec:
essary in arriving at a stable scheme [36].

{g[un} = (Dz+un)T (Mt~Dz+un)Dl‘zun (13)

In this case, where the system under study is 1D, and becausg3 3. Discrete Force Densities

the boundary conditions are of simple form (that is, simpip-s
ported), it is useful to move directly to a vector represgéota
of the state, namely the column vectaf = [uf,...,u%_1]".
Here, the values:} and u} have been omitted from the vec-
tor form, and thus need not be calculated, as they are igdigtic
zero—this choice has implications for the matrix represgomns
of various spatial difference operators, as will be desctichortly.
For any vectow™, unit time shiftse,. ande,_ are defined as

+1 —1

n n n n
Et+W =W et—-W =W
The forward, backward and centered difference approxonatio

a first time derivative may thus be defined as

Ct4+ — 1 1-— Ct— €t — €t—
Opt = 0pm = ——— .= ——— (8
o k ‘ k ¢ 2k ®
and time averaging operators as
ey +1 14+e €4 + et
= _= L= 9
M+ 2 ot B Mt 5 ( )

An approximation to a second time derivative follows as

Ct4+ — 2 + er—
k2

Forward and backward approximations to spatial diffeeenti
tion 9., when applied to the grid function™, and taking into ac-
count the simply supported boundary condition, may be amith
matrix form asD,4+ andD,_, whereD, isanN x (N — 1)
matrix, andD,— is (N — 1) x N:

Sut = 0o by = (10)

-1 1
1
Dy = — .
+= 3 )
-1 1

—1

where” indicates the transpose operation.

Approximations to the second and fourth spatial derivative
D., andD... respectively, botfN — 1) x (N — 1) matrices,
may be written, under simply supported conditions, as

Dzz = Dz—Dz+ D:L‘zzz = Dzle‘z

3.2. Finite Difference Scheme

A finite difference time domain scheme for (1) may then be-writ

ten, in vector-matrix form, in terms of the grid functia®, as
popeu” = I[u"] + eu"] +§o +fo —§7 (11)

Here, in analogy with definition (2) for the linear operatbyr
the linear discrete operators defined as

[u"] = (TDye — EIDgyqs — 20000t + 201p0i—Dys) u”
(12)

The discrete force density terrfis, f¢ andf} given in (11) are all
(N — 1) element column vectors.

The discrete force excitation densjfymay be written a§; =
g. f* whereg,. corresponds tg.(z), with h17g. = 1, wherel
isanN — 1 element column vector consisting of ones, and wt
f& is sampled frony.(¢), as defined in (4).

The discrete collision force due to the interaction withlbae-
rier f¢ requires a more detailed treatment. Because one w
like to model collision between the string and the fretboatc
the N — 1 grid points at which the string is defined, and a
at the N¢,.; locations at which the frets themselves are defi
(which, in general, do not lie at grid locations), it is udetuwrite
fo = G.f, wheref.isanN. = N — 1 + Ny,.; element force
vector, andG. is an(IN — 1) x N. matrix interpolant. In particu
lar, Ge = +[In—1|Gfret], Wherely _; isthe(N — 1) x (N —1)
identity matrix, and wher€& s,..; is an(N — 1) x Ny, matrix,
themth column of which is an interpolant to theth fret location
xm. Any form of interpolant (i.e., bilinear, Lagrangian, ¢tmay
be employed in this construction.

For the collision itself, one may then write, in analogy w
), .
o 0. D7,

de.mit
in terms of theN. element vectorsb!, n/ andb™. This lat-
ter vector, representing the barrier profile, may be decaegpas
b = [bj,.|bfci]”, Wherebyq, is the N — 1 element columr
vector consisting of samples of the fretboard profile) at the
grid locations, andy,..; is an Ny, element column vector cor
sisting of the fret heightBﬁ,Tgt, m =1,..., Ngree. Asinthe con-
tinuous case, a power law potential may be employed, such
P = Pk o (n7). (Here and henceforth, expressions such as
first in (14) represent a vector resulting from element-tgreent
division of two vectors.)

The finger force density may be written agy = ;. (g%) /7,
where as in the case of the excitatigf},is an/N — 1 element nor-
malized column vector—note in particular that it is timeyiag,
allowing for gestural control of the finger-stopping actiomhe
finger force may be discretized, in analogy with (6), as

5.7
5t77?

nr=b—hGIu" (14)

n—n

—+ 5t<77f:4f

n n n T n n
Ir = nf =h(gf) u" —uj (15)
where®} = @y, o, (1), and whereE} = Zx ;o ,5,(n}). Fi-
nally, the equation of motion of the finger, in terms of digglment

u’f may be written as
Mybeeuj = f7 = fo

3.4. Discrete Energy Balance and Stability Conditions

In analogy with the energy balance (7) for the continuousesys
a discrete energy balance follows for the scheme presemtgelo-
tion 3.2:

6t7hn+1/2

——q" (16)
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where herep™ /2 represents the total stored energy of the system where hereA™, B andC™ are(N —1) x (N —1) matrices definec

(written here as interleaved with respect to values caiedla the
scheme itself)g™ is total dissipated powep,” is input power, and

b" represents energy supplied to the string at the boundaties a A"

I = 0andl = N—in this casep™ = 0 by construction, so may be
safely ignored in the remainder of this analysis. Here, trégous
terms may be decomposed as

hn+1/2 _ bz-H/Q + h7;<+1/2 +b?+1/2 + h:;4-1/2
9" = qr+qf
Pt = pl +py

where, for the stored energy terms corresponding to linesgs
vibration, nonlinear string vibration, the collision inéetion, and
the finger interaction, respectively, one has

P = %\5t+u I+ — (Dayu ) Dyyu”
EAR? 2

n+1/2 n\T n+1

bR = E (Daru) Do)

Z+1/2 _ lT,U/t+¢Z

i = S ) +

and for the power loss terms,

2paoh|§t‘un\2 + 2p0’1h|6tADz+un|2
n\2 —n

(0em7)” E}

For the supplied power termg’ andp’ from the excitation and
stopping finger, respectively, one has

a7 =

ar =

fh (6" ge
fih(pen™)" 6rgf — beuf fo

pe =
Py

Considering the discrete power balance (16), under undorce

conditions (i.e.p; = p7 = 0), note that the loss termg, and

q7 are non-negative; the only stored energy term which is not

non-negative is that corresponding to the string enérgy It is
straightforward to show [35] that under the conditior™> hin,

where
Tk Tk 2 16EI
—+4U1+\/(—+4a1> +— | @7
p p p

2
hmin =

|

the termh 1, is non-negative; this condition serves as a stability con-

dition for the entire scheme. Again, under lossless caniitii.e.,

with 09 = 01 = E" = 0), the scheme is numerically lossless.

See Section 4.4. Notice that condition (17) is equivalerthtd
arrived at using von Neumann analysis [34] for the lineangtin
isolation, though now for the complete system involving tiplz
nonlinearities.

3.5. Vector-matrix Update Form

In the interest of illustrating how such a scheme may be used i

practice, it is useful to rewrite it in a vector-matrix upedbrm as

A"u"M =Bu" + C"u" o+ I (18)

as

(1 + Uok) In_1+ (a") (an)T

T EIK?
B = 21]\7_1 + (k— + QUlk) D:mc - —ijxzmz
P P
Cn = (0’()]€ — 1) IN71 — (a") (a”)T — 20’1sz1

Due to the tension modulation nonlineari#,” and C" are de-
pendent on previously computed state values through themco
vectora”, defined as
a" = k E—AhD”un

2 pL

The vectog. is defined ag. = k*g./p, andf™ = [(£2)" | f7]°
is the consolidation of the contact forces due to the baarelrfin-
ger, with the combined matri&™ given byJ™ = k*G"™ /p, where
G" = [G.| — g}]. Notice that]™ andG™ include effects of time
variation due to the motion of the stopping finger.

The update form (18) requires the determination of the -c:
sion force vectof™; to this end, it may be rewritten as

un-}—l — qn + jnf'n (19)

where

qn _ (An)—l (Bun 4 Cnunfl +jefcn) jn —_ (An)—l J
Though the calculation af” andJ™ might appear to require th
full inversion of a matrixA™ (or at least a linear system solutior
note thatA™ is a rank one perturbation of a scaled identity mat
and thus the inverse may be written directly, using the Shasr
Morrison-Woodbury formula [37] as

(A

_ (IN_1 _ (a") (a)” >
1+ ook 1+ ook + (an)” (an)
which leads to a matrix multiplication witl(N') operations.

3.6. A Nonlinear Equation
Define the set of collision distanceg asn™ = [(n2)" Inf1".
From the definitions (14) and (15), one then has

n o__ b n_.-n
n —{_U}L}—h(} u
T

From this, one may further define the vectdr = [(r?)” |7%]
asr™ = " — "1 andr” may be written as

rn _ 'y"—Zf"—h ((Gn+1)T un+1 _ (anl)Tunfl) (20)

where
On,1

"= n n— 2 rn
! [—2 (w7 -5 ) + —f}
where0Oy, 1 is an N, element column vector, arid is an (N, +
1) x (N, + 1) matrix, all zero, except for a value &f /M as the

entry at the lower right corner.
For the forces, from the definitions (14) and (15), one has

£ = A" + P " (21)
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whereA™ is a diagonal V. + 1) x (N. + 1) matrix with diagonal

entries given byliag (A™) = [(A7)" [A7]7, with 1 % 1p t=86ms
o o &

lon (r:‘ +77?_1) — ¢ (77?_1)

u (mm)
u (mm)

AP = = _q L IR N NARTTT ] I
rC
0 0.2 0.4 0.6 0 0.2 0.4 0.6
and 2 (m) z (m)
1 1 1t t=9.5ms 1t t=11ms
Lo () e () z 2
f 3_1 | 3_1

and whereP™ is an(N. + 1) x (N. + 1) matrix, all zero excepi

for a value of=% /(2k) in the lower right hand entry. 0 02 " (m? N 06 ° 02 " (m? * 06
Finally, (19), (20) and (21) may be consolidated into a €n 1} t=12ms 1} t=13ms
vector nonlinear equation as g Ow E) 0 =
AR = RN TTTTTTT] T—
Q'r" + M"A" +1" = 0 s g L s
0 0.2 0.4 0.6 0 0.2 0.4 0.6
where @ (m) x (m)
n _ n n+1 T 5n
M" = Z"+h(G")J Figure 2: Time evolution of the profile of a string in conta
Q" = Iy +M'P" with a fretboard (in blue), under plucking excitations offelient
" = —y"4h (Gn+1)T q" —h (Gn—l)T a"! amplitudes—in black, with a maximal excitation f = 0.5 N,

and in red, withf, = 1 N. In this case, the string is of paramete
L=065m,p=525x10"3kg/m,T =60N,E = 2x 10! Pa,
with radiusr = 4.3 x 10~* m, and loss parameters, = 1.38
ando; = 1.25 x 10~*. The barrier collision parameters ar
K = 10'® anda = 2.3, and the pluck occurs pointwise at loc

Numerically, such an equation may be solved using an iterati
method such as, e.g., Newton-Raphson.

4, SIMULATION RESULTS tion x = 0.52 m. The sample rate is 88.2 kHz.
In this section, various features of simulations for theesysde- 16
scribed above are explored. O L ‘
é 0.5 4
4.1. Visualization: FreeVibration ; ll l
. . . . b 00 2(;0 4(;0 6(;0 8(;0 10‘00 12‘00 1400
As a first example, consider a string positioned above adestb time step n

and a series of 12 frets, under a plucking action—see Figure 2

showing the time evolution of the string profile under diéfer  Figure 3:Maximal penetration, in m, as a function of time step
plucking forces. In one case, the string vibration is frearficolli- for the simulation described in Section 4.1.

sion, but in the other, itis sufficient to allow for reboungliagainst
the frets, greatly distorting the profile of the string sufsantly. It
should be noted that under normal lossy conditions, stribgay
tion amplitude is decreased over time, and thus the cafligiibh
the fretboard will lead to transients; similarly, stiffisesffects in As a further example, consider the string under the apjdicaif a
the string lead to dispersion, also decreasing the maximtings  tapping gesture on the fretboard, as illustrated in Figur 4his
displacement after the initial pluck. case, the tapping is modelled (crudely!) as an unforced fingh
an initial velocity rebounding from the string, accompahiy an
intermediate pinning action against the fretboard itsgdfe Figure
4, illustrating the interaction of the finger with a stringckad by
The penalty potential formulation intended to model thédripl- a fretboard and a series of 12 frets, with parameters forttiregs
lision between string and fretboard allows some unphysgieak- and finger as given in the caption.

tration of the string into the fretboard itself. One questwhich
emerges is then: how large is this penetration? For the ptick
excitation simulation described in the previous sectibm, haxi-
mum penetration over the length of the string is plotted ama-f In this example, the system has been assumed lossless,hsuc
tion of time step in Figure 3—in this case, it takes on valusdeu a plot of the energy partition for the system over time may
10~° m, which is definitely acceptable in any acoustics simuhatio  shown, as in Figure 5 at left; the finger energy is transfefirst
The degree of penetration may be controlled through thecetafi to the linear and nonlinear energy components of the sttiren
K—the larger it is, the less the penetration, with the sideaff  to the stored energy of the collision, when the string is in-c
that the number of iterations required in Newton’s methauiseto tact with the fretboard, and finally fully back to the fingehiah
increase. See Section 5 for more commentary on this point. rebounds with a speed identical to its initial speed. Notite

4.3. Visualization: Finger Tap

4.2. Spurious Penetration

4.4. Energy Partition
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2 2
_ ° t =0ms . t =0.499ms
=] =
g 0 E 0
= [ LLLLLLEEEm = o LLLLELHn
0 0.2 0.4 0.6 0 0.2 0.4 0.6
2 2 (m) 2 z (m)
_ t =0.998ms s t =1.5ms
=
s, =R,
0 0.2 0.4 0.6 0 0.2 0.4 0.6
2 2 (m) 2 z (m)
_ t =2ms s ° t =2.49ms
ig, ow é 0»\/\|/\ﬁ/w
= | LLLELEIm = [ LLLLLTE
0 0.2 0.4 0.6 0 0.2 0.4 0.6
2 (m) 2 (m)

Figure 4:Collision of an unforced finger (in green), with a string

(in black) in contact with a fretboard (in blue). In this cadbe
string/fretboard parameters are as given in the caption iguFe
2, and the finger is of mass x 10~2 kg, and approaches the
string with velocity 3 m/s, at a position 0.012 from the endhef
string. The finger collision potential parameters dig = 10*°
andajy = 2.3 and the sample rate is 88.2 kHz.

particular contact/recontact phenomena visible in thegnef
the string/fretboard collision. Energy is conserved togtdy 14
places in this case, as is visible in a plot of the normalizestgy
variation at right in Figure 5.

x 10
102 —— 4 . {:":".",,J'ﬂ%
— | T
2 . *
5 i
50" o+,
S [T w . »
g i (I -2 .
w . Il ~ 3
- -4 o
10 r " e
i -6 $
|
0 100 200 0 100 200

time step n time step n

Figure 5: Left: energy partition for the system of parameters as

given in the caption to Figure 4, as a function of time stefin-
ear string energyhr, (red), nonlinear string energyx, (blue),
string/barrier collision energy. (green), finger energly; (cyan)
and total energyh (black). Right: normalized energy variation
€= (h’nJrl/Z _ b1/2)/h1/2-

4.5. Time-varying Finger Position

As a final example, consider the same system, under the applic

tion of a sliding finger stop position—see Figure 6, showings
shots of the string profile as the finger, under a constantiexppl

force, slides across a single fret, effecting a pitch chartgere,
the finger is assumed to act pointwise, at the position asateli;
notice in particular that due to the finite string stiffnetdge slope
of the string exhibits a strong variation at the fret locafiand the
minimum may occur at a location slightly shifted from thatloé
finger.

t =40ms t =80ms

Al L1 jﬁ\m

u (mm)
u (mm)

0.08 0.1 0.120.140.160.18
2 (m)

0.08 0.1 0.120.140.160.18
2 (m)

t =1.2e+002ms

0.08 0.1 0.120.140.160.18 0.08 0.1 0.120.140.160.18

() ()

t =1.6e+002ms

u (mm)
u (mm)

Figure 6: Time evolution of string profile, for
string/barrier/finger system of parameters as described
the previous sections, where the finger, modelled pointslges
over a single fret during a playing gesture.

5. CONCLUDING REMARKS

This paper is intended as an exploration of various featafe
string vibration in a more realistic setting, particulaimyolving
the non-trivial contact of various components, includinigaarier
intended to represent a fretboard. Various features hase he-
glected here. The most important of these is the modellin
vibration in both polarizations; here, only the polaripatitrans-
verse to the barrier has been modelled, allowing for an exan
tion in particular of a colliding finger. In the case of extita in
the other polarization, however, a different nonlinear hagism
is required for the finger stopping, which closely resemibfes
of the bow-string interaction—see [12]. The other impottale-
ment, not modelled here, is coupling to a body (in the cassayf,
an acoustic guitar), and perhaps to the surrounding acmsice.
When such features are included, one is not far from a futig-a
ulated model of a guitar, leaving, then, the enormous proldé
gestural control—which is not considered here.

From a numerical point of view, a Hamiltonian potential fi
mulation has been used here in order to arrive at a stableraah
method. As with all such stable methods, this leads to aniaihf
design in the nonlinear part of the problem (note that thedlir
part of the scheme, in isolation, remains explicit), animadtely
to a nonlinear vector algebraic equation to be solved at tamh
step. Though it is possible to show, for very simple systenas ¢
as a lumped mass colliding with a rigid barrier [38], and @erex-
tensions to the distributed case [18], that a unique salugiasts,
in this vector case, a means of showing existence and uregs:
is not immediately forthcoming—meaning that, when an ifeea
method such as Newton-Raphson is employed it may eithe
not converge, or (b) converge to one solution which may be
rious. Thus an open question, for this and all nontrivialisiain
problems, is the determination of such uniqueness andeexis
conditions.

Beyond this basic question, at the level of the iterativeeo
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employed (in this case, Newton Raphson, but many others are[17]
available), there are further issues—one is that, evenistenxce
and uniqueness results are available, convergence of iaypart
iterative method is not ensured. Another is that, in genéhalit-
erative solver can prove to be something of a bottleneck eotin
in terms of the over-all operation count (here, 50 iteragibave
been employed, for results to machine accuracy, thoughctris
be significantly reduced for audio synthesis), but also iralpel
implementations, where reducing the number of iteratiovtsch
must be performed serially) is of paramount importance.
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ABSTRACT

In this paper, a physics-based model for a snare drum will be dis-
cussed, along with its finite difference simulation. The interac-
tions between a mallet and the membrane and between the snares
and the membrane will be described as perfectly elastic collisions.
A novel numerical scheme for the implementation of collisions
will be presented, which allows a complete energy analysis for the
whole system. Viscothermal losses will be added to the equation
for the 3D wave propagation. Results from simulations and sound
examples will be presented.

1. INTRODUCTION

Physics-based simulation of musical instruments is now an active
research topic, both for acoustical studies and sound synthesis, and
various numerical techniques can now tackle a wide range of com-
plex systems. Percussion instruments, and drums in particular,
with their various interacting components, constitute attractive and
challenging target problems. From the first attempts at simulat-
ing single membranes in 2D, research has rapidly moved towards
the simulation of complete instruments (see [1] for a review.) In
recent years, a physical model for nonlinear circular membranes
with snares has been proposed [2]. Finite difference methods have
been employed to model timpani drums [3], snare drums [4] and
nonlinear double-headed drums (i.e., tom toms and bass drums)
[5].

In this paper, a physics-based simulation of a snare drum will
be presented. The model consists of two membranes (batter and
carry head), coupled with the surrounding air and connected by a
rigid shell. A set of snares (thin metal wires) is placed below the
carry head, in contact with it. In the present work, a novel energy
conserving scheme for the simulation of collisions between the
snares and the resonant membrane will be presented. This con-
stitutes a major improvement with respect to previous attempts
[4], for which numerical stability is not guaranteed (and is in-
deed a problem in implementation.) A similar approach can be

* This work was supported by the European Research Council, under
grant StG-2011-279068-NESS.

adopted for the mallet-membrane interaction, which is included
in this model, thus giving an energy conserving scheme for the
whole system. When used as a sound synthesis tool, the usual 3D
scheme describing the acoustic field produces artefacts that harm
the quality of the sound. This problem can be addressed by adopt-
ing a more realistic model of 3D wave propagation that includes
viscothermal losses.

A major issue broached in this paper is the numerical simu-
lation of collisions, which play an important role in many fields,
including engineering and computer graphics, and the literature
on the subject is abundant (see [6] for a review). A mainstream
approach for collision detection in many applications is the use
of penalty-based methods, based on repulsive forces generated by
slight interpenetration between the objects. In musical acoustics,
many instruments rely on collisions for the production of sound,
with an obvious example given by percussions. Several approaches
have been used in the past, and in many cases this type of interac-
tion has been modelled as a nonlinear Hertzian force depending on
the mutual penetration of the colliding objects [7]. This model has
been successfully adopted, e.g., for the simulation of the hammer-
string interaction in pianos [8, 9].

For totally elastic collisions, these methods could be consid-
ered as unphysical, as they allow interpenetration in otherwise
rigid bodies, and simulations of collision without the need for con-
tact forces have been proposed [10]. Nonetheless, penalty-based
methods have many advantages, as they offer a mathematically
tractable and phenomenologically accurate description of the be-
haviour of the system, and will therefore be adopted in this study.
Furthermore, the maximum penetration allowed can be bounded
by choosing suitable values for the coefficients. When it comes to
numerical schemes, the risk of instability is always present, and
is particularly pronounced for rigid collisions. Energy-based finite
difference approaches, which have a long history [11, 12], provide
useful analysis tools in this sense but, for nonlinear interactions,
existence and uniqueness of a solution are not always guaranteed.
For the particular choice of penalty force used in this work, how-
ever, a uniqueness result has been proved recently in the case of a
mass in contact with a rigid barrier [13].

This paper is organised as follows: a brief description of the
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underlying physical model will be given in Sec. 2, while its numer-
ical implementation using finite difference methods will be dis-
cussed in Sec. 3. Sec. 4 presents an analysis of the implementation
of the collision scheme; finally, some results and sound examples
will be shown in Sec. 5.

2. DESCRIPTION OF THE MODEL

The geometry of the snare drum model under consideration is shown
in Figure 1. Two circular membranes of equal radius R are posi-
tioned within a finite enclosure V of air, with which they are cou-
pled. They are placed parallel to one another with centres along
the z axis, and are defined over regions M, at z = z;, and M. at
z = Zze, respectively, with

My =M= {(z,y) |«* +y* < R*}. (1

A rigid cylindrical cavity connects the membranes, by enclosing
the portion of air between them (z. < z < 23).

As mentioned before, the important feature of snare drums is
the presence of a set of snares in contact with the resonant mem-
brane. Generally, these are 12-15 in number. For the sake of
simplicity and to avoid the proliferation of notation, the follow-
ing analysis will concentrate on a single snare of length L defined
over a 1D domain D;. In implementation, however, it is straight-
forward to include several snares in the model.

The upper membrane is struck by a mallet, modelled as a
lumped object, while the bottom membrane, together with the snare,
is set into motion by the air pressure inside the cavity generated by
the blow. Absorbing conditions are applied at the walls of the air
box V.

As a similar model has been employed already [4], some of
the details of the system will be omitted here.

box V

® mallet M

batter head M,

2o

rigid shell S

Zc

carry head M,

snare Dy

Figure 1: Geometry of the model.

2.1. Membranes

Let the index ¢ = b, c identify batter and carry head, respectively.
The transverse displacements w; = w;(x,y, t) of the membranes
at some position (z,y) € M; and time ¢ can be described by
lossy wave equations with additional terms due to coupling con-
ditions with the air and external collision forces. Batter and carry
membrane equations read, respectively:

poOuwy = Lo[ws] + F, + Fy + Fur, 2

peBiwe = Le[we] + FF + Fo + Fa+ Fo+Fr. 3
with

Li[w;i] = TiAspw; — 2pi00,i0iw; + 2pio1 i Aepdyw;,  (4)

where Asp = Ozaz + Oyy is the 2D Laplacian operator in Carte-
sian coordinates and 9y denotes partial time differentiation. £;[w;]
groups together the linear terms in the wave equation, while the
other terms are the air pressure exerted above (]—'Z.Jr ) and below
(F,; ) each membrane. The last term Fas in (2) describes the
mallet-membrane interaction. The equation for w. is almost iden-
tical to (2), except for the form of the collision term F, and for
the presence of two additional terms Fo and Fr, resolved at the
two ends of the string attached to the membrane (see Sec. 2.5).
The explicit expression for the coupling and collision terms will
be discussed below, while the various physical parameters in (2),
(3) and (4) are listed in Table 1. Additional terms, like stiffness or
tension modulation nonlinearities, could be easily included in this
model. For the sake of simplicity, their discussion is omitted in
this work.

At the rim of both membranes, fixed boundary conditions are
applied.

Table 1: List of physical parameters used in this model.

Membranes (i = b, ¢)

wi(z,y,t) membrane displacement (m)
T; tension (N/m)
pi surface density (kg/m?)
00,i frequency independent loss coefficient (1/s)
O1,i frequency dependent loss coefficient (m%/s)
Air
U(z,y,2,t) acoustic velocity potential (m?)
Ca wave speed (m/s)
Pa density (kg/m?)
Oa viscothermal loss coefficient (m)
Mallet
zm () mallet position (m)
M mass (kg)
KM stiffness parameter (N/m®)
o nonlinear exponent
Snare
u(x,t) snare displacement (m)
Ts tension (N)
Ps linear density (kg/m)
00,s frequency independent loss coefficient (1/s)
O1,s viscosity coefficient (m?*/s)
Ks stiffness parameter (N/m?)
B8 nonlinear exponent
2.2. Air

In this model, the equation for air propagation adopted is:

6,575\11 = CZASD\II + CaUaASDat\Ily (5)
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where ¥ (z,y, z, t) is an acoustic velocity potential as in [14] and
Aszp = Oz + Oyy + 0. is the 3D Laplacian operator. The co-
efficient o, for viscothermal losses generally depends on various
physical parameters, among which temperature and humidity, but
values for it generally lie in the range of 10~7 to 107° m [14].
The drum shell S is modelled as a rigid, reflective boundary
encircling the cylindrical region between the membranes. This can
be obtained by imposing the normal derivative of ¥ to be zero
across the shell:
n-Vsp¥ =0. (6)

where Vap is the gradient and n is the unit vector normal to the
shell surface. Absorbing conditions are applied over the bound-
aries OV of the computational region. In this work, first order
Engquist-Majda conditions will be adopted [15], as they are easy
to implement within an energy-based framework. Another possi-
bility is the use of PMLs [16].

2.3. Coupling conditions

Coupling conditions between the membranes and air can be ob-
tained by imposing the continuity of pressure and velocity at the
interface. In terms of W, these conditions may be written as:

Fir = —pa lim Oy |a, Fi = pa lim 87 |a,, ()

Z—z; z—z;
i i

Orw; = — lim 0.V |\, = — lim+ 0:¥ |Mm; - ®)

2=z, 2=z

These conditions hold over the membrane regions M, and M..

2.4. Mallet interaction

The mallet exciting the membrane is modelled as a lumped, but not
necessarily point-like object, with mass M and position zps () €
R measured relatively to z,. Let the contact region over M, be
defined by a distribution g, (z,y), with [ M, 90 = 1. For a mallet
striking the membrane from above, the equation of motion and the
collision term appearing in (2) can be written as:

Mzy = fum, Fmr = —gb fm, )
where the dot symbol represents total time differentiation. It is
usual in the literature to express the collision force fas as a power

law in terms of the mutual interpenetration 7 of the two objects
(3,71

fu=ruml, n= / gpwedrdy —zm  (10)
My

with stiffness parameter x5; > 0 and a > 1, and which is active
only when 1 > 0; the symbol [ - |+ is used in this article to indicate
the positive part, [7]+ = (1 + |n])/2. Such an approach traces its
origins in the work of Hertz at the end of 19th century (see [6] for
a historical review.)

An equivalent approach, which leads to an energy conserving
numerical scheme (see below), is to express the collision force fas
as the derivative of a potential ®,;, which again will depend on
the average distance 7 between the mallet and the membrane:

d@]\{ iju KM
= = = by =
Jar dn 7’ MT Al

M. an

2.5. Snare

A single snare can be modelled as a 1D string with internal losses
and an additional term describing the collisions with the mem-
brane. The equation of motion can thus be written as:

PsOt = TsOyyu — 200,s01u + 201,50y Ot — Fe.  (12)

Note the change of sign in the collision force density F-, as in this
case the string is striking the membrane from below. A stiffness
term could be included as well, without complicating too much the
implementation. As before, in order to define a function G(z, y)
that distributes collisions over the membrane, it is necessary to in-
troduce a two-element affine mapping 7(x) : Ds — M., from
the 1D domain of the snare to the resonant membrane, that projects
each point of the string onto the corresponding point on the mem-
brane above it. A natural choice for G5 is

Ga(x,x) = 0% (x — m(x)), (13)

where x = (z,y) and 6 is a 2D Dirac delta function. The
collision density F5 can thus be written as

Fs= [ Gs(x,x)Fe(x)dx- (14)

Ds

Analogously to the mallet-membrane case, F. () can be written
in terms of a distributed potential ®,(x):

o,
Felx) = aétg : (15)
with
200 =508 €0 =u- | Gouwedsdy.
‘ (16)

Once again, note the change in sign in the definition of £(x) com-
pared to the corresponding quantity 7.

The choice of perfectly elastic collisions between the snare
and the membrane must be considered only as a starting point for
simulation. More refined models that introduce damping in contact
forces can be adopted, like that proposed by Hunt and Crossley
[17], and could be perceptually important in determining the decay
time of the sound. This model requires, however, an experimental
investigation of the loss coefficient, which is outside the scope of
this paper.

At the end points of the snare, boundary conditions must be
carefully analysed. Let go = 6 (x — m(0)) be the distribution
function from the end of the snare at x = 0 to the corresponding
point on the membrane M.. When the snare is attached to the
membrane, their displacements must be the same at the end point:

U|y=0 = / go we dzr dy. a7
Furthermore, the force density acting on M at the same point can
be written as:

Fo = go fo, fo = TsOyu|x=0 + 2ps01,50xt|x=0. (18)

These expressions can be easily arrived at through energy analysis
techniques (see Sec. 2.6). Analogous conditions can be written for
the edge at x = L.
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2.6. Energy balance

A thorough analysis of the model presented above by means of fre-
quency methods can be ruled out, given the simultaneous presence
of several interacting components with strongly non-linear cou-
plings and irregular geometry. To this end, an alternative approach
is given by energy methods.

One way of calculating the energy of the system is to multiply
Egs. (2), (3), (5), (9) and (12) by the first time derivative of the
variable on the left side of the equation, and then to integrate over
the corresponding domain (e.g., multiply (2) by O, wy, and integrate
over My, etc.) Using integration by parts leads to an energy bal-
ance and to the determination of suitable boundary and coupling
conditions, as outlined below.

An energy balance for the whole system can be arrived at by
summing the contributions for the various components, and can be
written as

a9 _

a -0+, 19

where $ = 9y + Hc + Hvr + Hs + Ha is the total energy of
the system, 9 represents all the loss terms and 8 groups together
boundary terms. The explicit expressions for the various contribu-
tions to §) are given below:

gi:/ &(atwi)2+%|V20wb\2dmdy, i=b,c, (20a)
M

.2
- Pa 2 Pa 2

o = / Lo 0,0)° + P2 |Vap W] de dy dz, (20b)
v 2¢2 2
M

Hm = 7212»1 + P, (20c)

s TS

9.= [ B0+ 0w+ 2.dx (20d)

D

s

where Vap represents the 2D gradient. In order for the scheme
to be energy conserving, all the terms in 8 must sum to zero, and
it is indeed the case here, while contributions to £ come from
the loss terms in the membranes’ and snare’s equations, plus from
absorbing conditions over the boundaries of V. It can be shown
that each of these individual terms is positive, thus leading to a net
dissipation of energy in the system.

3. FINITE DIFFERENCE SCHEMES

In this section, the implementation of the model described above
will be carried out using the finite difference method [18].

The discretisation in space of the various components will be
performed over different Cartesian grids in 1D, 2D or 3D depend-
ing on the dimension of the domain. Time discretisation, instead,
will be unique for the entire system, with temporal step k = 1/F's
defined as the inverse of the sampling frequency F. Spatial grid
steps can be derived in terms of £ according to stability conditions
analysed below. A one dimensional function, like u(x,t) for ex-
ample, will be approximated by a discrete function w;", over a grid
with step hs (Where n and [ represent the time and spatial index, re-
spectively.) However, it is very convenient to represent grid func-
tions as column vectors, regardless of their dimensions. If in the
1D case it is obvious how to perform such operation, in the 2D and
3D cases several options are available. On a 2D grid, points will
be grouped columnwise along the y axis, while in the 3D the same
operation will be applied to successive horizontal slices along the
vertical axis for increasing values of z.

Let u” be the vectorised form of u;*. For such a variable, one
can define forward and backward time shift operators as following:

epu” =u"t, er_u” =u"l. 21

Time difference and averaging operators can be obtained from
combinations of the previous ones, and are listed in Table 2. Space
difference operators, when operating on vectors, can be expressed
as matrices [18].

Table 2: List of time difference and averaging operators.

Time difference operators
ot = (et — 1)/k

5,5_ = (1 — Et_)/k

6,5‘ = (614_ — et_)/2k

6tt = (6t+ -2 + 6t7)/k2

forward difference
backward difference
centred difference
second difference

Time averaging operators
per = (e +1)/2

pe— = (1+e-)/2

Mt = (€t+ + et—)/2

forward average
backward average
centred average

3.1. Membranes

Let w;' be the discrete approximations in vector form of the mem-
branes” displacements w;(z, y,t) over grids of spacing h;, with
i = b, c. Equations (2) and (3) can be thus discretised as

puduwy = L[wi ]+ f0" 4+ 5, + i 22)

peduwy = le[Wi]+ 5" + 50" + 5 + 50 + 1. (23)

The operator [;[w;'] is the discrete counterpart of (4):
[Z[Wm = TZ‘DEH’I-W?72p¢0'o,i(5t.w?+2p¢0'1,i5t7DEEJW? (24)

where Dg ; is the matrix form of the 2D Laplacian Az p, which is
generally different between the two membrane grids.

3.2. Air

Let ¥ be a discrete approximation of ¥(x, y, 2, t) over a 3D grid
of spacing h,. A finite difference approximation for (5) can be
written as

5 ¥" = caDggP" + ca0adi-DggP”, (25)

where D is the matrix representation of the 3D Laplacian Azp.
The last term introduces a frequency-dependent loss that in-
creases with frequency. It is critical to include viscothermal losses
in this model in order to suppress spurious artefacts that are per-
ceptually very relevant. More will be said about this in Sec. 5.3.
The implementation of boundary conditions over the shell, ab-
sorbing conditions over the walls and coupling conditions with the
membranes will be omitted, as they have been analysed several
times in recent works. The interested reader is referred to [4, 5].
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3.3. Mallet

Let 23 and f;' be the sampled versions at time t = nk of zps(t)
and f3(t), respectively. Equation (9) becomes:

Moéuzyy = i o = —gufy, (26)
where g, is a column vector representing the distribution gy (x, y).
Normalisation is obtained by imposing h217gy, = 1, where 17 is
the transpose of a column vector consisting of ones.

As discussed in Sec. 2.4, f;' can be expressed in terms of a
discrete potential ®%,:

n
0.9y

5o 1t =higiwi — 2, @7
t-7]

fe =

where %, = Par(n™).

3.4. Snare

The displacement u(,t) of the snare can be represented by the
vector u”, over a 1D grid of spacing hs. Equation (12) can be
written as:

psouu” = TsDyyu™ — 2p,00,:0e.u" +
+2ps01,50- Dy u” — o, (28)

where D, is the matrix representation of the operator Oy. The
discrete version f, of the collision force density F; in (14) is de-
fined as:

fs = Gafe, (29)

where G is the matrix form of the linear operator [, G (-) dx.
As in the mallet case, it is possible to express fe in terms of a
discrete potential %

e — 6t£n )

f (30)

_ _hs B+1 _ T
=5 €T, =ut-Gowe. (D
The vector by vector division in (30) is intended here and in the
remainder of the article as an element-by-element operation.

At the end point [ = 0, continuous boundary conditions (17)
and (18) can be discretised as

ug = higs wi, (32a)

fo =gofe, fo = (Tsdx— +2ps01,s6—0x—)ug, (32b)

where g is the discrete approximation of the distribution go. Anal-
ogous expressions can be found for the other end point. When
applied to the grid point ug, the operator d,— would give:

Syl = (ull — ") /ha. 33)

As w7 lies outside of the 1D grid, it is sometimes called virtual
or ghost point (hence the notation *). Equation (32b) must be con-
sidered as a formal way of determining suitable update conditions
for the scheme (see Sec. 4.2.)

3.5. Energy and Stability

In the numerical case, an energy balance corresponding to (19) can
be written as:

6t7hn+1/2:_qn+bn, (34)
where is the numerical energy of the system at time
(n + 1/2)k, q™ represents losses and b™ the boundary terms. As

in the continuous case, b”“/ 2 can be written as a sum of the fol-
lowing terms:

n+1/2

n (3 n T’L n n
e (%\5t+wi I + 5((D1+Wi )" et (Doswi))

Tl n n .
+§((Dy+wz‘ )" err (Dyrwi ))) , i=bc (35)

nt1/2 _ s (%wtmnf + %”((DH\II”)T 1+ (Dpp T))

+%a Dy ¥ ey (D T™))

+%a (D, 2")". €t+(Dz+‘I’"))) ; (36)
n M n n
M+1/2 = ?(5t+ZM)2 + e+ P, (37)

n s n TS n n
b2t = h, <%|5t+u *+ 3 (Dxtu )" ery (Dysu™)

4 1Tpt+q>:), (38)

where | - | denotes the Euclidean norm of a vector, and the various
difference matrices represent forward spatial difference operators
[19]. It is understood that, in the air term, the z derivative be cal-
culated everywhere but across the two membranes. The boundary
term b" is identically zero. When the system is lossless, and re-
flective conditions are applied over the walls of the box, the total
energy h"*1/2 is conserved to machine accuracy. See Sec. 5.1 for
details. Otherwise, energy is monotonically dissipated.

By requiring that all the energy terms be positive, stability con-
ditions for the schemes can be arrived at. For the membranes and
snare schemes, the presence of collisions does not alter the usual
conditions:

h? > 2K*T;/pi 4+ 801k, i=b,ec, (39)

hi 2 k?ZTe/ps + 401,sk- (40)

For the air scheme, stability condition depends on o:

h2 > 3¢2k* + 6cqoak. (41)

4. NUMERICAL IMPLEMENTATION

In this section, the numerical implementation of mallet-membrane
and snare-membrane collisions will be discussed. In both cases,
it is necessary to solve a nonlinear equation at every time step.
Existence and uniqueness of solution will be analysed.

4.1. Mallet-membrane collision

Consider the mallet and batter membrane schemes first. The up-
date for the membrane points included in the distribution g will be
coupled to the mallet’s position by the collision force f;'. When all
the terms in (22) and (26) are expanded and air coupling is taken
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into account, the update expressions for w and z can be

schematically written as

n+1 n+1
b M

n n n n— n n— ki2 n
Aywy = W fwywp T B B 1]_Egbfb7 42)

At = Gulein 2 '+ KM, 3)
where A, is a symmetric, positive definite matrix due to losses
and air coupling, and wy and (j; represent linear combinations of
known terms from previous time steps. These two components can
be updated by finding ™ first, then by calculating f;* and finally
by inserting it in (42) and (43). To this end, start by inverting the
system (42) and by multiplying it by h2g?, then subtract (43).
After a brief calculation, it is possible to write a nonlinear equation

inr™ = n" ! — "1 which must be solved at every time step:
(P n n _ (b n
Py 2l +“r3 ul@) g0, @
where
h2 TAfl k? kQ
v = 7bgb b Bb + —, a’ = ’I]n717 (453.)
Pb M
b =" — higy Ay twp + 0" (45b)

The particular choice of a power law nonlinearity for ®»s guar-
antees a unique solution for (44), as has been shown in [13] for a
simpler case.

4.2. Snare-membrane collision

The implementation of the snare-membrane interaction is some-
what complicated by the fact that the snare is a distributed object,
and by the presence of air coupling and boundary conditions at the
end points. As before, Eqs. (23) and (28) can be schematically
written as

N 1o K n n n
wc+1 = Ac 1wc + ;Ac ! (gofo + gLfL + Gsfe) (46)

w'th =" g0 = K /(psgs), @7
where wZ w2, wi™ !t " ¥" ! and v™[u”, u" '] depend on
known values of the various variables, A, is a constant matrix
analogous to Ay and gs = 1 4 09 sk.

One way to proceed in order to solve this system is to start
by solving for the pointwise forces fo and fr,. Using (32b), it is
possible to write

2
n+1l _ k:
Ug = —

o+ o, 48)
qspPs gs

where the first term on the right hand side replaces derivatives that

could not otherwise be calculated, and fg'; = 0 because the snare

and the membrane are attached. By multiplying (46) by hZgZ and

by imposing condition (32a), it is possible to write fg' in terms of

the (still unknown) force density f;

1o =5 —v"il, (49)

with ¢¢ combination of known terms and v a constant vector. A
similar process can be repeated for fr..

Now, after substituting these expressions for f¢' and f} back
into (46), it is possible to follow the same procedure used for the

mallet-membrane case. Multiplying (46) by h2GT and subtract-
ing this from (47) leads to a nonlinear equation in the unknown
vector r™ = £" ! — ¢"~1 formally similar to (44):

B, (r" +a") — B,(a")

rn

"+ T +b" =0, (50)
where I' is a constant, symmetric and positive definite matrix, and
b™ and a™ depend only on known values. Once this equation is
solved, it is possible to calculate f¢, and therefore to update the
rest of the scheme explicitly. Uniqueness of a solution in the vector
case is guaranteed by the special form of I" [20].

As explained in Sec. 2, the present analysis has concentrated
on a single snare for simplicity sake. However, it is straightfor-
ward to extend the derivation of the previous section to Ns > 1
snares. The grid values for the various snares can be consolidated
in a single vector, and expressions like (50) still hold. Conditions
involving the end points, instead, will be transformed into vectors
of size N, and their values will generally be coupled.

5. RESULTS

5.1. Energy conservation

As discussed in Sec. 3.5, the numerical energy of the system can
be calculated, and must remain constant to machine accuracy in
the lossless case and without absorbing conditions over the walls
of V. Figure 2 shows the normalised variations of h, together with
the partition into the various components. Such an energy measure
can be extremely useful for debugging purposes, as virtually any
error has an impact on the conservation of . The drum is excited
by a mallet with M = 0.028 kg and initial velocity v = —5 m/s
att = 0 s. Seven snares are included in the model.

x 107" 0

.3
. o
2 .
= 2
s -4 “
> H
% N
g -8f ¢
5y
12 '
0 t (ms) 15 0 t (ms) 15

Figure 2: Left: normalised variations of the total energy h for a
snare drum in the lossless case. Right: contribution to the total
energy given by the various components (solid black: mallet, red:
upper membrane, blue: lower membrane, dashed black: air, green:
snares). The sample rate is 44 100 Hz.

5.2. Evolution of the system

Figure 3 schematically illustrates what happens when the drum
is excited with parameters given in the previous section. A posi-
tive pressure due to the compression of the membrane is generated
inside the cavity, which pushes the lower membrane downwards,
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Figure 3: Snapshots of the evolution of the snare drum system at
times as indicated. The pressure variations from atmospheric in-
side the cavity are depicted (green: zero variation, red: positive
variation, blue: negative variation.) Displacements have been al-
tered for illustration purposes.

together with the snares. The snares reach their maximum dis-
placement at ¢ = 6 ms, when they start to move upwards. At
about t = 9 ms, the snares hit the membrane almost coherently
(notice the pressure wave generated by the impact). At later times,
the behaviour of the snares becomes rapidly chaotic.

5.3. A note on dispersion error, ABCs and viscosity

It is well-known for the lossless case (o, = 0 m) that the scheme
employed for the 3D air box exhibits significant dispersion er-
ror [21]. Dispersion error essentially means that the ideal linear
relationship between temporal and spatial frequencies is warped in
the finite difference scheme. Numerical wave speed is thus depen-
dent on direction and frequency. In this case, high frequencies tend
to lag along the axial directions. While more accurate schemes ex-
ist for minimising dispersion, such as interpolated schemes [21],
due to the complexity of the full 3D drum embedding presented
here and with the goal of presenting a complete energy analysis,
such schemes are currently distant options. This 3D scheme is of-
ten used with a large oversampling of the grid in order to reduce
dispersion error to acceptable levels, such as in [3] where a 24 kHz
sampling rate was used for a 700 Hz output. The full audible band-
width is of interest here so oversampling was not employed, since
computational costs rise drastically when reducing the time-step

(16x increase for doubling of the sampling rate).

The presence of dispersion error causes some challenges when
absorbing boundary conditions (ABCs) are used. The absorbing
boundaries employed here are of the first-order Engquist-Majda
type:

(8 —can-V3p)¥ =0, (z,y) € IV. (51)

The problem that is encountered with this condition (and any ABC
for that matter), is that it assumes the wave speed to be constant,
but in the finite difference scheme the numerical wave speed is di-
rectionally and frequency-dependent [21]. Another problem with
condition (51) is that it is less effective for incoming waves that
are not normal to the boundary. Ultimately, these two effects com-
bine such that the ABCs only partially absorb incident waves. This
can be seen in the spectrogram displayed in Fig. 4a, which refers
to the output of a simulation without viscosity in the air (o, = 0
m) and without the cavity or snares. The output was taken along a
diagonal above the top membrane and the spectrogram uses a 512
sample Hann window with 75% overlap. It can be seen there is en-
ergy which is slow to decay at approximately 8643 Hz. This is in
fact the temporal frequency (0.196F) that experiences the worst
dispersion error (approx. 30% error) for axial-directed waves [21].
There is another peak at 0.304 F;, which is the temporal frequency
pertaining to the worst error for side-diagonal directions (approx.
25% error) [21].

When the cavity and snares are added to the simulation there is
an increase in mid-frequency energy due to the modes of the cavity
and due to the snares activity. A spectrogram for this case is shown
in Fig. 4b. In this case, the energy that is slow to decay causes
audible ‘hiss’ and ‘ringing’ artefacts. Although not presented here,
higher-order ABCs (up to fourth order) were also not effective at
reducing this effect. Fortunately, viscosity in air has a damping
effect that targets high frequencies [14]. A spectrogram from the
same listening position, now with o, = 2 x 107 m, is shown in
Fig. 4c. It can be seen that the energy in this band of frequencies
decays faster than in the lossless case. It was found that this added
decay was sufficient to eliminate the audible artefacts.

5.4. Sounds and Videos

Sound examples and videos can be found at the author’s website:
www2 .ph.ed.ac.uk/~s1164558

6. FINAL REMARKS

In this paper, a physics-based model of a snare drum has been
presented. A novel, energy conserving numerical scheme for the
simulation of collisions has been discussed, which can be applied
both to the mallet-membrane and to the snare-membrane interac-
tions. This constitutes a major improvement with respect to previ-
ous works, as in this case the stability of the numerical scheme can
be guaranteed.

Another problem that has been discussed in this work is the
effect of dispersion in the 3D Cartesian scheme in virtual embed-
ding simulations such as this. It has been found that, when high
frequencies are created in the model, either by the mallet or by
the snares, a slowly attenuating “hiss” is produced, which domi-
nates the spectrogram of the output sound and harms its quality.
This problem has been interpreted as dispersion of the 3D scheme
exacerbating the proper functioning of absorbing boundary con-
ditions. However, when viscothermal effects are added to the 3D
scheme these artefacts are rendered inaudible.
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(b) With cavity and snares, without viscosity
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Figure 4: Spectrograms for simulation output.

A point which has not been mentioned in this work is the com-
putation cost of this model. As discussed in Sec. 4, the collision
model presented relies on the solution of a nonlinear equation with
the Newton-Raphson method at every time step. If in the case of
the mallet this is just a scalar equation, it becomes a challenging
problem for the snares-membrane interaction, where a vectorial
equation is involved. When a realistic number of snares is included
in the numerical model, the dominant part of the code in terms of
computation time is the solution of the nonlinear system (50), and
not, as one would expect, the update of the 3D field. The former, in
fact, requires the iterative solution of a linear system, which in this
case is dense. It is, therefore, an intrinsic serial operation. As well
known, parallel hardware like GPGPUs can be extremely useful in
accelerating the computation of systems with a high degree of par-
allelisability, and this is becoming a mainstream approach to room
acoustics simulation [22]. However, this hardware is not suited for
cases like the present one, where operations must be performed in
a sequential order. One of the major challenges at the moment is
to find alternative methods that could tackle more effectively this
problem.
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ABSTRACT

In this study, a famous boxed effect pedal, also called stompbox,
for electrical guitars is analyzed and simulated. The nodal DK
method is used to create a non-linear state-space system with
Matlab as a physical model for the MXR Phase 90 guitar ef-
fect pedal. A crucial component of the effect are Junction Field
Effect Transistors (JFETs) which are used as variable resistors to
dynamically vary the phase-shift characteristic of an allpass-filter
cascade. So far, virtual analog modeling in the context of audio
has mainly been applied to diode-clippers and vacuum tube cir-
cuits. This work shows an efficient way of describing the non-
linear behavior of JFETSs, which are wide-spread in audio devices.
To demonstrate the applicability of the proposed physical model,
a real-time VST audio plug-in was implemented.

1. INTRODUCTION

Nodal analysis has been widely used to derive non-linear state-
space systems from electrical circuits [1-6]. In this work the type
of the nodal DK method described in [1] is applied to the circuit
of the MXR Phase 90 phaser effect. The used modeling technique
has the advantage that the state-space matrices can directly be cal-
culated from so called incidence matrices, which describe the po-
sition of each circuit element in relation to the nodes of the circuit,
and diagonal matrices which contain the values of the correspond-
ing circuit elements.

The research field of virtual analog modeling in the audio context
was so far dominated by studies investigating distortion and over-
drive effects. Musical distortion circuits, like diode clippers, and
various guitar amplifier and effect circuits were analyzed in [3, 6].
In [4] the main focus is on the modeling of vacuum tubes, which
can mainly be found in guitar amplifiers. A dynamic filter broadly
used in musical environments, known as Dunlops Crybaby Wah-
wabh effect pedal, is based on a circuit including two bipolar junc-
tion transistors (BJTs). The modeling of the BJTs and the simu-
lation of the effect device was reported in [1]. However, the class
of modulation effects was not subject of detailed research so far.
Therefore, this paper focuses on modeling a time-variant phasing
effect and in particular, the usage of JFETSs as non-linear variable
resistors in audio circuits.

A slightly modified version of the original circuit by MXR, which
was available as a D.LIY. effect pedal kit from [7], is used as the
reference device. The circuit of the kit was thoroughly analyzed
and every circuit element was measured prior to assembling the
pedal. The characteristics of every JFET used in the reference
circuit have been measured and are used in the implementation,
which is of relevance since they strongly influence the tonal be-
havior of the effect pedal.

In section 2 a brief review on the nodal DK method, the used dis-
cretization method, the handling of operational amplifiers and non-
linear elements as well as the used non-linear solver is given. Sec-
tion 3 describes how the phaser operates in general and discusses
the circuit of the analog reference device. In section 4 the results
of the measurements are evaluated. Section 5 specifies the real-
time VST plug-in implementation, whereas section 6 concludes
this paper.

2. NODAL DK METHOD

The nodal DK version of [1] has been used in this work to transfer
the effect’s schematic to its digital emulation. The laws of Kir-
choff, namely Kirchoft’s current law (KCL) and Kirchoff’s voltage
law (KVL), are used to design a state-space system of the circuit
under test. The state-space matrices are constructed using inci-
dence matrices Nj, which describe the connections of the iy group
of circuit elements, like resistive, capacitive, or inductive elements,
to the nodes of the circuit. A further requirement for constructing
the state-space system are diagonal matrices G, containing the
values of the circuit elements and the so called system matrix

(¢))

S_ NICIQ—‘GRNR‘}_N;G:BNm Nvo
- Nuyi 0

resulting from the aforementioned incidence and diagonal matri-

ces. Nj are m X n matrices with m as the total number of a certain
circuit element (e.g. resistors or capacitors) and n as the total num-
ber of nodes in the circuit. As it is common for nodal analysis, the
reference node (commonly the ground node) is not numbered. The
positive and negative poles of every element are marked by a (4 1)
and a (— 1) in each row. If an element is connected to the refer-
ence node, only the pole of the element which is not connected to
the reference node is marked by a (4 1) in the incidence matrix.
The G; matrices hold the information about the values of each
circuit element and the N, matrices give the position of voltage
sources in the circuit. Note, that the subindices R and X refer to
resistive and capacitive elements, respectively.

The procedure uses the trapezoidal discretization rule to get the
discrete-time approximations for the energy storing elements of
the circuit. In the circuit of the phaser there are only capacitors as
energy storing elements. The resulting state-space system has the
form

x(n) = Ax(n — 1) + Bv(n) + Cin(n) 2)
y(n) = Dx(n — 1) + Ev(n) 4+ Fia(n) 3)
vn(n) = Gx(n — 1) + Hv(n) + Kin(n). @
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The matrices A, B, C,D,E,F, G, H, and K can be computed
from S, Nj, and G; (more detailed information on the state-space
system is provided in [1]). The actual computation of the state-
space system consist of three steps. At first the non-linear relations
between the present voltages at the non-linear element vy (n) and
it’s non-linear currents in (n) are obtained through Eq. (4). This is
done by an iterative non-linear solver (see section 2.3). Then, the
output of the system y(n) can be computed using Eq. (3). At last
the internal states x(n) of the system, representing the amount of
charge in the capacitors, have to be updated using Eq. (2).

2.1. Capacitors

; ic(n)

vo(n) R x(n—1)

Figure 1: Companion circuit for energy-storing elements of the
circuit

From the differential equation, describing the current through
a capacitor
. dvc
ic =C—— 5
ar’ &)
it’s discrete-time approximation (using the trapezoidal discretiza-
tion rule)

3 (ic(n) +ic(n—1) = £ (voln) —voln—1)),  ©

and the canonical state

ro(n) = 2 vo(n) — ic(n) @)

the state-update equation can be formulated

zc(n) = 2%1}0(@ —zc(n—1). 3)

Combining Eq. (7) and Eq. (8) yields

tc(n) = %vc(n) —zc(n—1) 9)

which describes the companion circuit shown in Fig. 1.

Due to this procedure every capacitor is replaced by a parallel cir-
cuit consisting of a resistor R = % and a current source which
holds the state information.

2.2. Operational Amplifiers

In this work operational amplifiers are considered to be ideal. They
consist of three nodes, describing the inverting input (—), the non-
inverting input (+) and the output (out). The ideal operational
amplifier (op-amp) is considered as a voltage controlled voltage
source, where the voltage difference at the input defines the output
voltage vout = A(vy — v—). The input resistance R;, = oo )
is infinitely large and the output resistance Ro.: = 02 infinitely
small as illustrated in Fig. 2. A is the open-load amplification fac-
tor [5].

Without any op-amp in the circuit the relation between the voltage

V—
o—
Rin = 00§}
[] ,_,Rout =00 Vout
—0
vy ) Vout = A(vy —v-)
o—-

1

Figure 2: Equivalent circuit diagram for an operational amplifier.

incidence matrices (see section 2) would be
Nyi = Ny (10)

and
Nvo = Nv (1 1)

with N, being of n X k size. n corresponds to the number of
nodes in the circuit while k is the number of voltage sources.
To add an ideal op-amp to the state-space system described in sec-
tion 2 the only modifications that have to be made are changes in
the incidence matrices for the voltage sources N+ and N. There-
fore, one row is added to the NI matrix and one column to the N,
matrix. The additional row in the N'T matrix contains a (+1) at
the corresponding node representing the inverting and a (—1) for
the non-inverting input of the op-amp respectively

ri=(..01—-10...), (12)

T
Ny = (]Z) (13)

These modifications indicate that the inputs of an ideal op-amp
have the same potential though they draw no currents.

Since the controlled voltage source describing the op-amps output
is connected to the ground node the additional column in the Nyo
matrix contains only a (+1) at the corresponding node

which yields

Co=(...010..)7 (14)

leading to
Nyo = (No  ¢o). (15)
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This describes the voltage source from Fig.2. By using this tech-
nique, an ideal op-amp can be easily integrated in the state-space
representation and its behavior is described by the peripheral wiring
around the op-amp.

2.3. Non-linear Circuit Elements

A major challenge in virtual analog modeling are non-linear ele-
ments. Typically, the non-linear relation between voltages and cur-
rents are iteratively solved by minimizing an error function f(z)
producing the current iteration’s residual e. This costly compu-
tation has to be performed for every sample and every non-linear
component of the desired system. One way to avoid these com-
plex computations, potentially inhibiting real-time functionality,
is to pre-compute the non-linear function for a certain range of in-
put values and store the corresponding results in a lookup table.
Certainly, the storing of lookup tables requires a decent amount of
memory. Hence, an actual implementation is always subject to a
compromise between computational complexity and memory re-
quirements.

The non-linear elements in the Phase 90 circuit are 4 JFETSs

) Vbsm
Vas <

Figure 3: Measurement setup for the JFETs.

which modify the center frequency of the allpass filter cascade and
a PNP BJT as a summing amplifier. The input-output characteris-
tic of each JFET was determined by varying the gate-source volt-
age Vgs and drain-source voltage Vps and measuring the drain
current Ipg of the device. A low-impedance resistor Riesc Was
connected in series to the drain-source channel of the JFET for ul-
tra high frequency (UHF) stability as can be seen in Fig.3. The
relevant voltage ranges for Vps € [—-2V,...,2V] and Vgs €
[-2.8V,...,—1.5V] were determined using a SPICE simulation
of the phaser circuit and from measurements on the reference de-
vice.

The results of these measurements were saved in lookup tables
which are used in the model to calculate the current-voltage rela-
tions for every JFET in the circuit.

2.4. Non-linear Solver

As previously mentioned, the non-linear voltage-current relations
are solved by iteratively minimizing an error function. The well
known Newton-Raphson method has been used to solve the error
function

f(va(n)) = Gx(n—1)+Hv(n) + Ki(n) —va(n) = e, (16)

which is Eq. (4) in a slightly modified form.

The function is linearized at a certain starting value and the root of
the linearization is used as the next starting point until the resid-
ual of the error function is smaller than a predefined tolerance

while |f(vm)| > edo

end
Algorithm 1: Pseudo code for the Newton-Raphson method.

f(vm) < ¢, as illustrated with algorithm 1, where m denotes the
iteration index and the step size b is 1.

For the PNP-BJT a damped approach of this method has been
implemented. Due to the exponential functions in the Ebers-Moll-
Model, describing the BJT, a step with a size that is too big may
lead to a function value which can not be represented by normal
floating point arithmetic. Thus the non-linear solver does not con-
verge and this again leads to invalid numbers which can lead to an
unstable state-space system. Therefore the step size of the damped
method is halved as long as the resulting residual is bigger than the
original residual being computed with the previous step size. List-
ing 2 shows the corresponding pseudo-code for the implemented
method

while | f(vm)| > e do
b=1;

Vm+1 = Vm — b;/((‘:,:)),
Vi = Vm+1;

b= %;

V4l = Vm — bff/(vm) 5

V)’
while | f(vmi1)| > [f(Vim+1)| do
b= g;
Vim+1 = Vm — bff/((‘:,le)),
end

Vm+1 = Vim+1,

end
Algorithm 2: Pseudo code for the damped Newton-Raphson
method.

3. PHASER EFFECT

Phasing is a common modulation effect in audio applications. Many
hardware realizations are based on the following idea. The input
signal is sent through an allpass filter cascade which leads to a
frequency dependent phase shift. The phase-shifted signal is then
added to the original signal which introduces phase cancellation
and elevation for certain frequencies. Since each first order all-
pass filter introduces a maximum phase shift of 180 ° the amount
of resulting spectral notches is half the number of used allpass
stages. The center frequency of each allpass filter is varied by a
low frequency oscillator (LFO) in the same way. This leads to
a time variant phase shift in the output signal of the allpass fil-
ter cascade causing the phase cancellation to sway back and forth
the frequency axis and thus creating the characteristic effect of the
phaser.

3.1. Phase90 Circuit

The circuit of the Phase90 can be divided into functional blocks,
like the power supply block, the low frequency oscillator, and the
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Figure 4: Circuit of the Phase90.

signal processing blocks which actually process the input signal.
For physical modeling of audio circuits only the signal process-
ing blocks of the device are of interest. Other blocks can be ne-
glected as their contribution would not affect the tonal qualities of
the model but only increase the computational effort.

In Fig. 4 the negligible blocks of the circuit have been marked as
power supply and LFO. The complete power supply block can be
replaced by a voltage source with the value of the voltage defined
by the zener diode D;. This voltage will be called Vi since it
adds a constant DC offset of about Vi = 5V to the input signal.
Modeling of the low frequency oscillator (LFO) is not necessary
since the output of the LFO can be described analytically. The
LFO can thus be replaced by another voltage source which pro-
duces an oscillating voltage Vosc of the same characteristics as the
LFO would create.

The signal path of the circuit contains three main blocks. The first
one is the input stage, which is just a simple voltage follower, lift-
ing the input signal up to Vjr. It consists of an op-amp, R1, R2
and C'. The (A) in Fig. 4 marks the output of the input stage.

It is possible to divide the circuit into stages, because the op-amps
have a low output resistance. The corresponding nodes are suit-
able for dividing the signal path of the circuit into blocks. After
the input stage the signal passes a cascade of four allpass filters,
using JFETs Q1 — Q)4 as variable resistors. The continuous change
of the resistance Ryrer leads to alternating center frequencies

1
" 27 (Rix|| Rirer) i

of the allpass filters. Rpgx are the resistors [Rs, Rs, R11, R14],
applied in parallel to the JFETs, and Clix denotes the capacitors
C5,... 5, that are placed at the positive op-amp input. The output of
the allpass-stage is marked in Fig. 4 as (B).

The resistance R15 introduces a feedback in the allpass cascade
which leads to an amplification of certain frequencies. This reso-
nance introduces a harmonic distortion of the amplified frequen-

fe a7

cies in the output signal of the Phase 90. By including a switch or
a potentiometer in this feedback path the resonance can be com-
pletely switched off or adjusted by the potentiometer allowing a
kind of tone control. In 1974 the first version of the Phase 90 was
released. The circuit of this early version did not include the feed-
back path with resistor Ri5. The so called script version (due to
it’s script font MXR logo) is still popular amongst guitar players
and reaches horrendous prices in trade. In the state-space model
this change of circuitry can be easily adapted leading to a usage of
the Phase 90 model beyond the limitations of the circuit.

The last stage of the signal path is the output stage. The phase-
shifted allpass signal is added to the direct signal at the base of the
PNP bipolar junction transistor ()5 driving the output voltage vou
of the phaser. Figure 4 illustrates this process: signal (A) is added
to signal (B) at the base of the PNP-BJT Q5 (C).

4. EVALUATION

This section shall present the undertaken experiments, assessing
the model’s quality. Besides the illustration of the JFET measure-
ments, the static and dynamic behavior of the Phase 90 emulation
is shown in detail. Additionally, the auditory impression is graded.

4.1. JFET Characteristics

The JFETs were measured as described in section 2.3 and the re-
sults of these measurements can be seen in Fig.5. The absolute
value of the drain-current decreases when the gate-source voltage
Vas declines thus increasing the channel resistance of the JFET.
In [8] or similar literature the functionality of the JFET is described
in detail. To reduce computational complexity the relations be-
tween voltages and currents are stored as a lookup table for the
efficient calculation of the non-linear element in the circuit.

In this circuit and for the given operating point of the JFETs the
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Figure 5: Output characteristic of a single JFET.

gate-source voltage Vs is independent of the drain-source volt-
age Vpg or the drain-current I pg. Since the gate-source voltage is
controlled by the LFO it is sufficient to calculate the drain-current
drain-source voltage relations subject to the current value of the
gate-source voltage which can be computed linearly without the
need of a non-linear solver.

Furthermore, it was important to use a matched set of four JFETs
with similar characteristics in the reference device. Due to produc-
tion uncertainties the characteristics of JFETSs vary from transistor
to transistor. Since all JFETs are driven by the same control volt-
age an unmatched set of transistors would not have the same oper-
ating point and thus the allpass-filters would not be tuned correctly.

4.2. Static Behavior

The connection between resistor Ra7 and Ro4 or capacitor C'g re-
spectively was unraveled to disconnect the LFO from the circuit
(see Fig.4) and a voltage source with a constant DC value was ap-
plied to this node. A sine wave with the frequency fsin, = 1kHz
and amplitude of 1 V was fed into the input of the reference device
and into the input of the state-space model.

Figure 6 shows the spectra of the output signals for the analog

....... analog reference

8 20t —— state-space model
- 40+
= 60
= 80 . s e ,
0 5 10 15 20
finkHz

Figure 6: Output spectrum of analog reference device (dashed red
line) and state-space model (solid blue line) for a mono-frequent
excitation signal with fs;,, = 1kHz and 1V amplitude.

reference and the digital model. The model exhibits more signal
energy for lower frequencies than the reference device but apart
from that the similarity of the distortion behavior of model and
system are satisfactory.

4.3. Dynamic Behavior

Since the phaser is a time-variant modulation effect the dynamic
behavior is of major importance since it strongly influences the au-
ditory impression. To visualize the varying spectral notches, both

f in kHz

(a) Analog Device (b) State-space model

Figure 7: Output of (a) the analog reference device and (b) the
state-space model of the phaser for white noise as the input signal
and maximum LFO frequency.

systems were fed with white noise. The output was measured us-
ing the maximum depth setting and two settings for the speed: (1)
the maximum speed and (2) the minimum speed.
As previously mentioned, the amount of spectral notches is half
the number of allpass stages. The Phase90 circuit contains 4 stages
and hence, two notches can be seen in Fig. 7 and 8 in form of os-
cillating dark lines, indicating the frequencies that are canceled.

It is noticeable that the analog signal contains AC hum at

f in kHz
f in kHz

tins tins

(a) Analog Device (b) State-space model

Figure 8: Output of (a) the analog reference device and (b) the
state-space model of the phaser for white noise as the input signal
and minimum LFO frequency.

f = 50Hz. In Fig.7(b) the charging process of the capacitor
models can be seen for ¢ < 0.1s. When the capacitors are fully
charged the frequency cancellation occurs at the same frequencies
as in the reference device.

Figure 8 indicates that the approximated output voltage of the state-
space LFO does not behave exactly like its analog counterpart. The
output voltage of the LFO was approximated by a triangular func-
tion while the actual LFO output voltage has slightly curved edges
and the falling edge is a little longer than the rising edge.

The notch width of the analog reference device seems larger than
for the state-space model while the edges of the notches seem to be
sharper in the state-space representation. This is probably caused
by noisy side-effects occurring in the JFETSs but not in their sim-
plified model.
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4.4. Auditory Impression

Despite the afore mentioned differences of state-space model and
analog reference device the auditory impression of the model is
satisfactory. The difference of the LFO signals is barely noticeable
for slower oscillation speeds and perceptually diminishes for faster
LFO speeds. Listening examples for the reference device, the em-
ulated system, and the emulated script version (without resonant
feedback) can be found online. See [9] for listening examples.

5. REAL-TIME IMPLEMENTATION

State-space implementations are known to be complex due to the
necessity to perform many matrix operations. Hence, a real-time
implementation was done to test the real-time capability of the
phaser emulation. The authors decided to implement a VST plug-
in in C/C++ using the well-known JUCE framework [10] that al-
lows straight-forward implementations by simply extending an au-
tomatically generated plug-in template with the actual signal pro-
cessing code.

The circuit was divided in several processing-blocks and the same
was done in the real-time implementation. Every module was im-
plemented in a separate class and each object of a module class
is a member of the phaser class. There are 6 modules needed to
calculate a sample of the output signal. At first the input module,
then 4 allpass modules and at the end of this chain the output mod-
ule. The second allpass module is expanded to contain resistance
R15 and another input to integrate the feedback path mentioned
in section 3.1. Alternatively this stage can also be replaced by an
allpass module without feedback via the graphical user interface
of the plug-in to include the afore mentioned 1974 version of the
Phase 90. The phaser class offers a public processing function,
called from the VST host through the JUCE interface, that pro-
cesses a block of audio data.

Initially the authors planned to use a wide-spread C++ library for
linear algebra [11]. It allows a similarly compact representation
of matrix operations as Matlab. The compact representation,
leading to nice readable and maintainable code, is achieved with
the help of massive templating. Unfortunately, the implementa-
tion based on the templated code was intolerably slow. Hence, a
new class providing functionality for memory allocation, addition,
multiplication, and copying of matrices was implemented and used
from thereon. The computation of the matrices A to K of Eq. (2-
4) requires the inversion of the potentially large system matrix S.
This inversion was performed using the well-known Linear Alge-
bra Package (LAPACK) [12], implemented in Fortran. Using these
tools, allows to realize the plug-in, that is now applicable in man-
ifold applications and running real-time. Nevertheless, this first
unoptimized, straight-forward implementation utilizes about 70 %
of a single Intel i5 processing core.

6. CONCLUSIONS

In this work the circuit of the MXR Phase 90 was analyzed and
emulated using a state-space implementation. A D.LY. clone of
the effect was assembled and measured to have a reference device.
The measurements focused on measuring the JFETSs characteris-
tics, which were saved in a lookup-table to efficiently describe the
behavior of the transistors. To realize the state-space representa-
tion of the effect, the nodal DK method was used, which is a lucid
method to transform an analog circuit into a mathematical model.

A Matlab implementation of the state-space model was devel-
oped allowing to imprint the tonal characteristics of the effect on
pre-recorded . wav files. Additionally a VST plug-in of the effect
was implemented in C/C++ to allow real-time application of the
Phase 90.

The model was analyzed and compared to the reference device in
the static (non-oscillating) and the dynamic case. The compari-
son showed that model and reference are not exactly the same but
particularly in the dynamic case the results are very satisfactory.
The proposed model also has the possibility to expand the effect
beyond the limitations of the circuit. The very first 1974 script ver-
sion of the Phase 90, without the resonant feedback, can be used
as well as todays version.
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ABSTRACT

We present an analysis of the bass drum circuit from the classic
Roland TR-808 Rhythm Composer, based on physical models of
the device’s many sub-circuits. A digital model based on this anal-
ysis (implemented in Cycling 74’s Gen ™) retains the salient fea-
tures of the original and allows accurate emulation of circuit-bent
modifications—complicated behavior that is impossible to capture
through black-box modeling or structured sampling. Additionally,
this analysis will clear up common misconceptions about the cir-
cuit, support the design of further drum machine modifications,
and form a foundation for circuit-based musicological inquiry into
the history of analog drum machines.

1. INTRODUCTION

When Roland discontinued the TR-808 Rhythm Composer in 1984,
it was considered somewhat of a flop—despite significant voice
design innovations, disappointing sales and a lukewarm critical re-
ception seemed clear indicators that digitally-sampled drum ma-
chines were the future. Ironically, this lack of interest drove second-
hand prices down and made it an attractive source of beats for
techno and hip-hop producers. It soon became ubiquitous, play-
ing a central role in the development of acid house. More than a
decade later, when the Beastie Boys rapped “nothing sounds quite
like an 808” [2], no one disagreed.

To this day, the 808 remains a benchmark against which all
other analog drum machines are measured. Among all of its voices,
perhaps the most influential has been the bass drum, the thumping
foundation of countless four-on-the-floor dance beats. It could be
tweaked via stock user controls to sound like a fairly realistic kick,
or extended beyond recognition to a multi-second-long decaying
pseudo-sinusoid with a characteristic sighing pitch. Its clicky at-
tack could cut through a mix, but could be dialed back with a pas-
sive tone control.

Despite the significant work that has been done on cloning'
and emulating® the 808 bass drum, there is an almost complete

TFull analog clones such as the AcidLab Miami, clones of individual
voices in a modular synth like the Analogue Solutions line of Concussor
modules, and new drum machines using simplified 808 circuitry [3] are
common (references are representative but far from comprehensive).

2The first 808 emulation, Propellerhead’s sample-based ReBirth RB-
338 [4], was introduced in 1997. Since then, there have been many com-
mercial emulations based on structured sampling and black-box models.
Marketing materials for the D16 Group’s Nepheton mention circuit mod-
eling. Roland’s TR-8 Rhythm Performer, from their upcoming AIRA line,
will employ their proprietary Analog Circuit Behavior (ACB) technique,
presumably a form of physical modeling.

lack of published analyses on the circuit.® The history of the 808
is steeped in anecdote, and misinformation about its voice de-
sign still abounds. Although the fabric of lore surrounding the
design, inception, and use of the 808 lends a richness to its over-
all mythology, they also give credence to a blithe sort of analog
fetishism. The device’s ingenious and satisfying properties are of-
ten attributed to mere circuit element nonlinearities. In addition to
being inaccurate, this mindset directs attention away from a more
interesting story. The designers of the 808’s voice circuits* master-
fully blended ingenuity and efficiency, creating circuits with great
detail and complexity, but a part count low enough to be amenable
to mass manufacture.’

The 808 was released just before the development of the MIDI
standard (it used Roland’s DIN sync protocol). As MIDI gained
traction, users and technicians became accustomed to retrofitting
the 808 with MIDI capabilities, also making extensive modifica-
tions to its voice circuitry.® This tradition parallels the develop-
ment of circuit-bending and other music hardware hacking, and
could unfortunately be lost in the process of digitally emulating an
808.7

The goals of this research are to partition the 808’s bass drum
circuit into functional blocks, create a physically-informed analy-
sis of each block, model each block in software, and evaluate the
results, paying special attention throughout to analysis of the cir-
cuit’s behavior in terms of the electrical values of circuit elements
(resistors and capacitors). These methods are well-represented in
virtual analog literature,® but have not previously been used in the
analysis of analog drum machine circuits.’

3 [5] discusses [1] in the context of designing and building a hardware
clone of the bass drum. [6] offers a qualitative description in the context
of imitating classic bass drum sounds with other synthesizers. [7], which
takes a control systems approach to designing an 808-inspired bass drum
synthesizer, is a rare academic treatment.

4Roland president Ikutaro Kakehashi names Mr. Nakamura, though
also indicates that it was a team effort [8].

SRobert Henke writes [9]: “The TR-808 is a piece of art. It’s engineer-
ing art, it’s so beautifully made. If you have an idea of what is going on in
the inside, if you look at the circuit diagram, and you see how the unknown
Roland engineer was making the best out of super limited technology, it’s
unbelievable. You look at the circuit diagram like you look at an orches-
tral score, you think, how on earth did they come up with this idea. It’s
brilliant, it’s a masterpiece.”

Sfor instance, Robin Whittle’s professional modification work [10]

7 [11] presents one approach to simulating circuit-bent instruments
based solely on digital circuitry.

8For instance, [12] collects a representative set of references on model-
ing classic analog filters, and [13] is a comprehensive treatment of musical
distortion circuits.

9However, [14] presents a physical and behavioral circuit model of the
digital E-mu SP-12 sampling drum computer.
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Figure 1: TR-808 bass drum schematic, blocks marked (adapted from [1]).

Our analysis of the circuit will clear up a host of common mis-
conceptions about the 808 bass drum, including the role of device
nonlinearities, the difference between the bass drum’s characteris-
tic pitch sigh and the frequency jump during the attack, and why
unmodded bass drums can sound very different from one another.

Drawing on this analysis, we’ll propose methods for software
modeling of a modified/circuit-bent 808 bass drum circuit. By
adopting a physically-informed approach, this work will avoid com-
mon pitfalls of software-based analog drum machine emulations,
including the “machine gun effect,” inaccurate behavior when a
new note is triggered before the previous one has died out, and
inaccurate behavior under various accent voltages.

In addition to the analysis itself, the primary result of this will
be software that implements a circuit-bendable 808 bass drum.

An overview of the circuit is discussed in §2 and an analysis
of each part of the the circuit and their interconnections is given
in §§3-9. This is followed by a discussion of digital modeling
techniques in §10 and results in §11.

2. OVERVIEW

Fig. 1 shows a schematic diagram of the TR-808 bass drum cir-
cuit. This schematic labels important nodes and currents, and em-
phasizes how the circuit can be broken down into blocks: trigger
logic (see §3), a pulse shaper (see §4), a bridged-T network (see
§5 and 7), a feedback buffer (see §6), an output tone and volume
stage (see §9), and an envelope generator with complex behavior
(see §8). Fig. 2 shows a block diagram of the digital model of the
bass drum circuit. Both figures should be consulted alongside the
analysis of each block in the following sections.

A bass drum note is produced when the ¢PD650C-085 CPU
applies a common trigger and (logic high) instrument data to the
trigger logic. The resulting 1-ms long pulse is delivered via the
pulse shaper to the bridged-T network (a band pass filter), whose
ringing produces the core of the bass drum sound. The 1-ms long
pulse also activates an envelope generator, which alters the bridged-

T’s center frequency for the first few milliseconds and supplies a
retriggering pulse to the center of the bridged-T network after a
few milliseconds. Leakage through the retriggering pulse circuit
accounts for “sighing” of the bass drum’s pitch.

Certain features of the bass drum sound are user-controllable.
The output level is set by variable resistor (potentiometer) VRy,
the tone is set by VR, and the length of a bass drum note is con-
trolled via VRg.

Partitioning the circuit into blocks will serve the triple purpose
of greatly simplifying the mathematics of the system, elucidating
the design intent of each sub-circuit, and allowing for the design
and simulation of “mods” and “bends” that aff<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>